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Soft Errors
• Temporary nature

• Occurs due to particle strikes on the silicon
• Source of particles :
▫ Solar ion flux
▫ Explosion of distant stars
▫ Impurities in the chip
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Soft Errors

• Rare event
▫ Particles need to strike at the right place, at the 

right angle, with the right amount of energy
• Not rare enough to be ignored
▫ The critical charge required to flip a bit reduces 

with reducing feature size and operating voltage



Soft Errors

• Solutions
▫ Device level radiation hardening

Two to four generations behind commercial 
counterparts [Courtland2015]

▫ System level hardening techniques required
Redundancy

Compare Vote

DMR TMR



Problem Statement

• To efficiently execute a set of applications on a 
chip multi-processor (homogeneous SMT-
capable cores), while ensuring reliability in the 
face of soft errors



Related Work : DIVA [Austin1999]

Leader Checker

•Meant to provide reliability.

• IP
• Execution Assistance :

• Branch Prediction Hints
• Operand Value Hints

• Result
• Example

<0x1234><op1=5><op2=2><res=7>
• Cache line forwarding



Related Work

Leader/
Checker

SRT [Reinhardt2000],
AR-SMT [Rotenberg1999]

•Saves area
•Better throughput per core

L2
C1

L1
C2

L3
C4

L4
C3

CRT [Mukherjee2002]

•Improvement over SRT
•Circumvents hazards borne out of 
resource requirement similarity 
between a leader-checker pair
•Better throughput per core
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FluidCheck

•Throughput = 3.76
•Schedules based on the 
applications’ behavior
•FluidCheck is a superset 
of schedules; SRT, CRT 
are instances within 
FluidCheck
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Challenges to achieving FluidCheck

• Reactive phase-based scheduler
• Efficient transfer of hints
• Efficient forwarding of cache lines from the 

leader to the checker
• Circumventing subtle livelock scenarios



Hardware Architecture



Overview of Redundant Execution
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Arbiter Logic: I

• Activity
▫ IPC
▫ WIPC(x)

• Mapping a Single Thread
▫ Select the core with minimum activity that has 

free SMT slots
▫ If activity is IPC, scheme is termed minIPC
▫ If activity is WIPC(x), scheme is termed 

minWIPC_x



Arbiter Logic: II
• Mapping a Set of Threads
▫ Scheduling Policies:

Pinned Leaders (SP-PL)
Unpinned Leaders (SP-UL)
Unpinned Leaders All Leaders First (SP-UALF)

• SMT Fetch Policy
▫ Full Simultaneous Issue [Tullsen1995]
▫ If n threads on a core have activities A1, A2 .. An, then 

the ith thread gets              fetch cycles (cycle block of 
size B considered) B

A
A
n

k k

i ×
∑ =1



Evaluation: Simulation Parameters

• 16-core processor, 4-way SMT
• Core configuration based on Intel Sandybridge

and IBM Power7
Parameter Value

Pipeline width 4

i-cache and d-cache 32 kB

Shared L2 cache 12 MB

NOC topology 2D torus

Hint buffer 512 entry

Victim Cache 32 entry

RFB and LFB 64 entries each



Evalation Methodology
• Tools
▫ Tejas Architectural Simulator
▫ McPAT and Orion2 models

• Workloads
▫ “low”: 16 applications (16 + 16 threads)
▫ “medium”: 24 applications (24 + 24 threads)
▫ “high”: 32 applications (32 + 32 threads)
▫ In each case 100 random combinations of SPEC CPU2006 

benchmarks were considered
• Comparison Metric

1|| −∏ ∈
W

Wb bexecuteunreliablytotakencycles
bexecutereliablytotakencycles



Evaluation: Results 

47%

37%

27%



FluidCheck’s Mapping Ability



Performance of Forwarding Filters



Comparison with Generic Scheduling 
Schemes

• DCCS [Settle2004]            • IPCS [Parekh 2000]                   • RIRS [ElMoursy2006]
• TCA [Acosta2009]             • L1 BW-aware [Feliu2013]



Conclusions

• Efficient system-level solutions to handle soft 
errors are critically sought

• The protection of modern multi-core, 
multithreading capable processors presents 
interesting challenges

• Our solution FluidCheck achieves reliability with 
a mere 27% reduction in performance on 
average, while seminal works such as SRT (47%) 
and CRT(37%) present much higher slowdowns



Extra slides



DIVA : Checker Operation

Fetch
• Check IP
• Fetch From IP
• <0x1234>

Decode

• <R1=R2+R3>

Execute
• Using the 

operand value 
hints

• <5+2>

Writeback
• Check 

communication
• R2 == 5 ?
• R3 == 2 ?

• Check 
computation
• 7 == res ?

• Write 7 to R1

Commit
• Complete store



DIVA : Execution Assistance

• The DIVA checker
▫ Faces no data hazards

Operand value hints are passed from leader
▫ Faces no control hazards

The stream of packets from the leader are in correct 
dynamic order (if no soft error struck the prediction 
or branching logic)
If a soft error occurred (rare event), it is detected 
when the branch condition is evaluated at the 
checker



DIVA : Consequence of Execution 
Assistance
• What gains can be achieved through execution 

assistance?
▫ Checker can be made simpler
▫ Checker can be made slower
▫ Checker can be made to do more work



Resolving Livelock Issues
• Suppose a checker thread faces a decode stall since 

the ROB was full
• Suppose some other leader thread on the same core 

is occupying the head of the ROB and is facing a 
long latency miss

• The checker thread is forced to migrate
• Possibility of multiple forced migrations in quick 

succession – detrimental to performance
• Solution – Reservation. If a resource is greater than 

95% full, it will not accept any more leader entries
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