
FluidCheck: A Redundant
Threading based Approach for
Reliable Execution in Manycore
Processors

Rajshekar Kalayappan, Smruti R. Sarangi
Dept of Computer Science and Engineering
Indian Institute of Technology Delhi
New Delhi, India.

Soft Errors
• Temporary nature

• Occurs due to particle strikes on the silicon
• Source of particles :
▫ Solar ion flux
▫ Explosion of distant stars
▫ Impurities in the chip

[img src : aviral.lab.asu.edu]

Soft Errors

• Rare event
▫ Particles need to strike at the right place, at the

right angle, with the right amount of energy
• Not rare enough to be ignored
▫ The critical charge required to flip a bit reduces

with reducing feature size and operating voltage

Soft Errors

• Solutions
▫ Device level radiation hardening

Two to four generations behind commercial
counterparts [Courtland2015]

▫ System level hardening techniques required
Redundancy

Compare Vote

DMR TMR

Problem Statement

• To efficiently execute a set of applications on a
chip multi-processor (homogeneous SMT-
capable cores), while ensuring reliability in the
face of soft errors

Related Work : DIVA [Austin1999]

Leader Checker

•Meant to provide reliability.

• IP
• Execution Assistance :

• Branch Prediction Hints
• Operand Value Hints

• Result
• Example

<0x1234><op1=5><op2=2><res=7>
• Cache line forwarding

Related Work

Leader/
Checker

SRT [Reinhardt2000],
AR-SMT [Rotenberg1999]

•Saves area
•Better throughput per core

L2
C1

L1
C2

L3
C4

L4
C3

CRT [Mukherjee2002]

•Improvement over SRT
•Circumvents hazards borne out of
resource requirement similarity
between a leader-checker pair
•Better throughput per core

Motivational Example

Lperlbench
Cperlbench

Lmcf
Cmcf

Lgromacs
Cgromacs

LcactusADM
CcactusADM

Without any checking, throughput = 4.84 instructions per cycle

SRT

Motivational Example

Lperlbench
Cperlbench

Lmcf
Cmcf

Lgromacs
Cgromacs

LcactusADM
CcactusADM

Without any checking, throughput = 4.84 instructions per cycle

•Throughput = 3.24
•Similarity in resource
requirement
•High throughput
threads together

SRT

Motivational Example

Lperlbench
Cperlbench

Lmcf
Cmcf

Lgromacs
Cgromacs

LcactusADM
CcactusADM

SRT

Without any checking, throughput = 4.84 instructions per cycle

•Throughput = 3.24
•Similarity in resource
requirement
•High throughput
threads together

Lperlbench
Cmcf

Lmcf
Cperlbench

Lgromacs
CcactusADM

LcactusADM
Cgromacs

CRT

Motivational Example

Lperlbench
Cperlbench

Lmcf
Cmcf

Lgromacs
Cgromacs

LcactusADM
CcactusADM

SRT

Without any checking, throughput = 4.84 instructions per cycle

•Throughput = 3.24
•Similarity in resource
requirement
•High throughput
threads together

Lperlbench
Cmcf

Lmcf
Cperlbench

Lgromacs
CcactusADM

LcactusADM
Cgromacs

CRT

•Throughput = 3.55
•Similarity is broken
•Can we do better?

Motivational Example

Lperlbench
Cperlbench

Lmcf
Cmcf

Lgromacs
Cgromacs

LcactusADM
CcactusADM

SRT

Without any checking, throughput = 4.84 instructions per cycle

•Throughput = 3.24
•Similarity in resource
requirement
•High throughput
threads together

Lperlbench
Cmcf

Lmcf
Cperlbench

Lgromacs
CcactusADM

LcactusADM
Cgromacs

CRT

•Throughput = 3.55
•Similarity is broken
•Can we do better?

Lperlbench
Cmcf Cgromacs

Lmcf
CcactusADM

Lgromacs
Cperlbench

LcactusADM

•Throughput = 3.76

Motivational Example

Lperlbench
Cperlbench

Lmcf
Cmcf

Lgromacs
Cgromacs

LcactusADM
CcactusADM

SRT

Without any checking, throughput = 4.84 instructions per cycle

•Throughput = 3.24
•Similarity in resource
requirement
•High throughput
threads together

Lperlbench
Cmcf

Lmcf
Cperlbench

Lgromacs
CcactusADM

LcactusADM
Cgromacs

CRT

•Throughput = 3.55
•Similarity is broken
•Can we do better?

Lperlbench
Cmcf Cgromacs

Lmcf
CcactusADM

Lgromacs
Cperlbench

LcactusADM

FluidCheck

•Throughput = 3.76
•Schedules based on the
applications’ behavior
•FluidCheck is a superset
of schedules; SRT, CRT
are instances within
FluidCheck

Simplified Illustration of FluidCheck’s
Working

Arbiter

Core A

L1 L2

L3 L4

Core B

Core C Core D

C4

C3

C2 C1

Simplified Illustration of FluidCheck’s
Working

Arbiter

Core A

L1 L2

L3 L4

Core B

Core C Core D

C4

C3

C2 C1

C1

C1 unable
to keep up

HELP

Simplified Illustration of FluidCheck’s
Working

Arbiter

Core A

L1 L2

L3 L4

Core B

Core C Core D

C4

C3

C2 C1

Checker
assignment

request

Core C

Simplified Illustration of FluidCheck’s
Working

Arbiter

Core A

L1 L2

L3 L4

Core B

Core C Core D

C4

C3

C2

C1

Simplified Illustration of FluidCheck’s
Working

Arbiter

Core A

L1 L2

L3 L4

Core B

Core C Core D

C4

C3

C2

C1

Periodic
reassignment

Simplified Illustration of FluidCheck’s
Working

Arbiter

Core A

L1 L2

L3

L4
Core B

Core C Core D

C4

C3

C1 C2

Challenges to achieving FluidCheck

• Reactive phase-based scheduler
• Efficient transfer of hints
• Efficient forwarding of cache lines from the

leader to the checker
• Circumventing subtle livelock scenarios

Hardware Architecture

Overview of Redundant Execution

Memory Checkpointing
Leader

CtPipeline

L1

L2

Checker

CtPipeline

L1

Memory Checkpointing
Leader

CtPipeline

L1

L2

Checker

CtPipeline

L1

Hint

Store

11010101 1

Memory Checkpointing
Leader

CtPipeline

L1

L2

Checker

CtPipeline

L1

11010101 1

Memory Checkpointing
Leader

CtPipeline

L1

L2

Checker

CtPipeline

L1

Ld/St

11010101 1

Memory Checkpointing
Leader

CtPipeline

L1

L2

Checker

CtPipeline

L1

Ld/St

11010101 1

Miss!

Memory Checkpointing
Leader

CtPipeline

L1

L2

Checker

CtPipeline

L1

Ld/St

11010101 1

Miss!

Memory Checkpointing
Leader

CtPipeline

L1

L2

Checker

CtPipeline

L1

Ld/St

11010101 1

Evict!

Memory Checkpointing
Leader

CtPipeline

L1 Victim Cache

L2

Checker

CtPipeline

L1

Ld/St

00001111 0

Evict!

1101.. 1

Memory Checkpointing
Leader

CtPipeline

L1 Victim Cache

L2

Checker

CtPipeline

L1

Memory Checkpointing
Leader

CtPipeline

L1 Victim Cache

L2

Checker

CtPipeline

L1

Store

11010101

Memory Checkpointing
Leader

CtPipeline

L1 Victim Cache

L2

Checker

CtPipeline

L1

1101.. 1
1001.. 1

11010111 1
11110101 1

11001101 1

SYNC

Memory Checkpointing
Leader

CtPipeline

L1 Victim Cache

L2

Checker

CtPipeline

L1

1101.. 1
1001.. 1

11010111 1
11110101 1

11001101 1

SYNC

Memory Checkpointing
Leader

CtPipeline

L1 Victim Cache

L2

Checker

CtPipeline

L1

11010111 0
11110101 0

11001101 0

SYNC

Memory Checkpointing
Leader

CtPipeline

L1 Victim Cache

L2

Checker

CtPipeline

L1

1101.. 1
1001.. 1

11010111 1
11110101 1

11001101 1

Rollback

Memory Checkpointing
Leader

CtPipeline

L1 Victim Cache

L2

Checker

CtPipeline

L1

Rollback

Forwarding Filters
Leader

CtPipeline

L1

L2

Forwarding Filters
Leader

CtPipeline

L1

L2

Ld/St

Forwarding Filters
Leader

CtPipeline

L1

L2

Ld/StHit!

Forwarding Filters
Leader

CtPipeline

L1

L2

Ld/StHit!

Do Not Forward

Forwarding Filters
Leader

CtPipeline

L1

L2

Miss!

Forwarding Filters
Leader

CtPipeline

L1

L2

Miss!

RFB

Forwarding Filters
Leader

CtPipeline

L1

L2

Miss!

RFB

Hit!

Forwarding Filters
Leader

CtPipeline

L1

L2

Miss!

Do Not Forward

RFB

Hit!

Forwarding Filters
Leader

CtPipeline

L1

L2

Miss!

Do Not Forward

RFB

Miss!

Forwarding Filters
Leader

CtPipeline

L1

L2

Miss!

Do Not Forward

RFB

Miss!

LFB

11010011 0

Forwarding Filters
Leader

CtPipeline

L1

L2

Miss!

Do Not Forward

RFB

Miss!

LFB

11010011 0

Forwarding Filters
Leader

CtPipeline

L1

L2

Miss!

RFB

Miss!

LFB

11010011 1

Forwarding Filters
Leader

CtPipeline

L1

L2

Miss!

Forward

RFB

Miss!

LFB

11010011 1

Arbiter Logic: I

• Activity
▫ IPC
▫ WIPC(x)

• Mapping a Single Thread
▫ Select the core with minimum activity that has

free SMT slots
▫ If activity is IPC, scheme is termed minIPC
▫ If activity is WIPC(x), scheme is termed

minWIPC_x

Arbiter Logic: II
• Mapping a Set of Threads
▫ Scheduling Policies:

Pinned Leaders (SP-PL)
Unpinned Leaders (SP-UL)
Unpinned Leaders All Leaders First (SP-UALF)

• SMT Fetch Policy
▫ Full Simultaneous Issue [Tullsen1995]
▫ If n threads on a core have activities A1, A2 .. An, then

the ith thread gets fetch cycles (cycle block of
size B considered) B

A
A
n

k k

i ×
∑ =1

Evaluation: Simulation Parameters

• 16-core processor, 4-way SMT
• Core configuration based on Intel Sandybridge

and IBM Power7
Parameter Value

Pipeline width 4

i-cache and d-cache 32 kB

Shared L2 cache 12 MB

NOC topology 2D torus

Hint buffer 512 entry

Victim Cache 32 entry

RFB and LFB 64 entries each

Evalation Methodology
• Tools
▫ Tejas Architectural Simulator
▫ McPAT and Orion2 models

• Workloads
▫ “low”: 16 applications (16 + 16 threads)
▫ “medium”: 24 applications (24 + 24 threads)
▫ “high”: 32 applications (32 + 32 threads)
▫ In each case 100 random combinations of SPEC CPU2006

benchmarks were considered
• Comparison Metric

1|| −∏ ∈
W

Wb bexecuteunreliablytotakencycles
bexecutereliablytotakencycles

Evaluation: Results

47%

37%

27%

FluidCheck’s Mapping Ability

Performance of Forwarding Filters

Comparison with Generic Scheduling
Schemes

• DCCS [Settle2004] • IPCS [Parekh 2000] • RIRS [ElMoursy2006]
• TCA [Acosta2009] • L1 BW-aware [Feliu2013]

Conclusions

• Efficient system-level solutions to handle soft
errors are critically sought

• The protection of modern multi-core,
multithreading capable processors presents
interesting challenges

• Our solution FluidCheck achieves reliability with
a mere 27% reduction in performance on
average, while seminal works such as SRT (47%)
and CRT(37%) present much higher slowdowns

Extra slides

DIVA : Checker Operation

Fetch
• Check IP
• Fetch From IP
• <0x1234>

Decode

• <R1=R2+R3>

Execute
• Using the

operand value
hints

• <5+2>

Writeback
• Check

communication
• R2 == 5 ?
• R3 == 2 ?

• Check
computation
• 7 == res ?

• Write 7 to R1

Commit
• Complete store

DIVA : Execution Assistance

• The DIVA checker
▫ Faces no data hazards

Operand value hints are passed from leader
▫ Faces no control hazards

The stream of packets from the leader are in correct
dynamic order (if no soft error struck the prediction
or branching logic)
If a soft error occurred (rare event), it is detected
when the branch condition is evaluated at the
checker

DIVA : Consequence of Execution
Assistance
• What gains can be achieved through execution

assistance?
▫ Checker can be made simpler
▫ Checker can be made slower
▫ Checker can be made to do more work

Resolving Livelock Issues
• Suppose a checker thread faces a decode stall since

the ROB was full
• Suppose some other leader thread on the same core

is occupying the head of the ROB and is facing a
long latency miss

• The checker thread is forced to migrate
• Possibility of multiple forced migrations in quick

succession – detrimental to performance
• Solution – Reservation. If a resource is greater than

95% full, it will not accept any more leader entries

	FluidCheck: A Redundant Threading based Approach for Reliable Execution in Manycore Processors
	Soft Errors
	Soft Errors
	Soft Errors
	Problem Statement
	Related Work : DIVA [Austin1999]
	Related Work
	Motivational Example
	Motivational Example
	Motivational Example
	Motivational Example
	Motivational Example
	Motivational Example
	Simplified Illustration of FluidCheck’s Working
	Simplified Illustration of FluidCheck’s Working
	Simplified Illustration of FluidCheck’s Working
	Simplified Illustration of FluidCheck’s Working
	Simplified Illustration of FluidCheck’s Working
	Simplified Illustration of FluidCheck’s Working
	Challenges to achieving FluidCheck
	Hardware Architecture
	Overview of Redundant Execution
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Memory Checkpointing
	Forwarding Filters
	Forwarding Filters
	Forwarding Filters
	Forwarding Filters
	Forwarding Filters
	Forwarding Filters
	Forwarding Filters
	Forwarding Filters
	Forwarding Filters
	Forwarding Filters
	Forwarding Filters
	Forwarding Filters
	Forwarding Filters
	Arbiter Logic: I
	Arbiter Logic: II
	Evaluation: Simulation Parameters
	Evalation Methodology
	Evaluation: Results
	FluidCheck’s Mapping Ability
	Performance of Forwarding Filters
	Comparison with Generic Scheduling Schemes
	Conclusions
	Extra slides
	DIVA : Checker Operation
	DIVA : Execution Assistance
	DIVA : Consequence of Execution Assistance
	Resolving Livelock Issues

