
Citation: Title. Smart Cities 2023, 1,

1–33. https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2023 by the authors.

Submitted to Smart Cities for

possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

PC-ILP: A Fast and Intuitive Method to Place Electric Vehicle
Charging Stations in Smart Cities

Mehul Bose 1, Bivas Ranjan Dutta 1, Nivedita Shrivastava2,* and Smruti R. Sarangi 1

1 Department of Computer Science and Engineering, Indian Institute of Technology Delhi, India;
mcs212128@cse.iitd.ac.in, mcs212139@cse.iitd.ac.in, srsarangi@cse.iitd.ac.in

2 Department of Electrical Engineering, Indian Institute of Technology Delhi, India;
nivedita.shrivastava@ee.iitd.ac.in

* Correspondence: nivedita.shrivastava@ee.iitd.ac.in

Abstract: The widespread use of electric vehicles necessitates meticulous planning for the placement 1

of charging stations (CS) in already crowded cities, so that they can efficiently meet the charging 2

demand while adhering to various real-world constraints such as the total budget, queuing time, 3

electrical regulations, etc. Many classical and meta-heuristic-based approaches provide good solu- 4

tions, but they are not intuitive, and they do not scale well for large cities and complex constraints. 5

Many classical solution techniques often require prohibitive amounts of memory and their solutions 6

are not easily explainable. We analyzed the layouts of the 50 most populous cities of the world and 7

observed that any city can be represented as a composition of five basic primitive shapes (stretched 8

to different extents). Based on this insight, we use results from classical topology to design a new 9

charging station placement algorithm. The first step is a topological clustering algorithm to partition 10

a large city into small clusters and then use precomputed solutions for each basic shape to arrive 11

at a solution for each cluster. These cluster-level solutions are very intuitive and explainable. Then 12

next step is to combine the small solutions to arrive at a full solution to the problem. Here, we use 13

a surrogate function and repair-based technique to fix any resultant constraint violations (after all 14

the solutions are combined). The third step is optional where we show that the second step can be 15

extended to incorporate complex constraints and secondary objective functions. Along with creating 16

a full software suite, we perform an extensive evaluation of the top-50 cities and demonstrate that 17

our method is not only 30× faster but its solution quality is also 36.62% better than the gold standard 18

in this area – an integer-linear programming (ILP) approach with a practical timeout limit. 19

Keywords: Topological data analysis; Persistent homology; Convolutional neural network; Electric 20

vehicle charging station placement 21

1. Introduction 22

It is widely believed that in the next 10-20 years, the sale of electric vehicles (EVs) 23

will overtake that of petrol and diesel based vehicles. A recent analysis indicates that the 24

number of EVs will increase by a factor of 60− 70× and will account for 28% of the global 25

fleet by 2040 [1]. As a direct consequence of this, there will be a substantial increase in the 26

need for placing charging points in our already-crowded cities [1]. 27

Efficiently placing charging stations in cities as part of infrastructure planning to make 28

them EV-friendly has been a very active area of research for at least the last 7 years, and as 29

of today, there is a rich body of literature in this area [1–12]. Charging station placement 30

is a specialization of the generic facility location problem that is known to be NP-Hard. 31

Along with bespoke algorithms, there are many specialized approximation algorithms for 32

facility location that are tailored towards charging station placement [13–16]. This area is 33

still far from saturation because existing algorithms are still quite slow and many produce 34

non-intuitive solutions. 35

Version November 13, 2023 submitted to Smart Cities https://www.mdpi.com/journal/smartcities

https://doi.org/10.3390/smartcities1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/smartcities

Version November 13, 2023 submitted to Smart Cities 2

Skeptics may argue that town planning and construction are slow activities and take 36

months to years. As a result, charging station placement is not a very time sensitive 37

activity. However, the academic consensus is different because it is often necessary to run 38

these algorithms hundreds of times with different kinds of objective functions, constraints, 39

traffic models and demand maps [17]. With a small change in the city layout, all these 40

simulations need to be run again. Hence, the need for speed will always be there subject 41

to a minimum bar on the quality of the solution. Moreover, with the rapid development 42

of fast-charging technologies such as eXtremely Fast Charging (XFC) [4,18–20], this problem 43

has become even more important. The short-term power requirement is very high and can 44

bring down a sub-grid unless the load is appropriately distributed across charging stations 45

(CS) [12,21]. 46

Integer Linear Programming (ILP) [22] is the first approach that one would use to solve 47

such problems given that most variants have linear objective functions and constraints. 48

ILP-based methods are very easy to code, and are often used as the gold standard for such 49

problems because they produce optimal solutions. They are, however, very slow and thus 50

seldom considered for practical use[23]. 51

Hence, a rich set of metaheuristics has evolved to solve such problems quickly with 52

an acceptable quality (with respect to ILP). These approaches include methods that use 53

particle swarm optimization [24], genetic algorithms [5], ant colony optimization [15], 54

chicken swarm optimization [14], gray wolf optimization [25] and bee colony optimization 55

[16]. Furthermore, there are approximation algorithms as well as intuitive heuristics 56

that are, in essence, smart greedy algorithms that intelligently combine local and global 57

information [8]. There is an accuracy-performance trade-off, and different algorithms fall 58

at different points. The standard objective for designing new algorithms in this space is to 59

either to add new constraints/objective functions or, given the same quality, minimize the 60

execution time (increase the performance). 61

Sadly, this vast body of work scores low on intuitiveness. For instance, it is not 62

possible to logically argue with simple arguments as to why a given city layout leads to a 63

better-quality solution with a certain algorithm and another city does not. What features 64

of a city ensure that charging stations can be placed easily and efficiently? If we intend 65

to expand the city, what should the layout of the new satellite township be like? Given 66

that most algorithms are in a certain sense opaque, a more intuitive analysis of the solution 67

space is not possible. This sometimes causes some consternation to town planners because 68

they may not want to make all their decisions based on the output of an optimization 69

algorithm, which is a black box. It may lead to extremely unconventional city designs that 70

may inconvenience human beings in many other ways. It is not always possible to capture 71

everything in the objective function and constraints. 72

Aim of this paper: To summarize, there are three axes that characterize the solution 73

space: quality of the solution, its intuitiveness and the time it takes to compute the solution. 74

We can never compromise on the quality. However, given a quality bar we would like to 75

get a solution that is as intuitive and explainable as possible, and we need to be able to 76

quickly compute it. Additionally, it should be possible to make small iterative changes 77

when the layout of the city slightly changes without recomputing the entire solution. Our 78

approach PC-ILP provides all these features, which we claim is novel (vis-a-vis known 79

related work). 80

1.1. Salient Features of PC-ILP 81

We rely on a class of approaches that use a hierarchical decomposition framework [26–28]. 82

The idea is to break a large problem into much smaller subproblems, solve them and 83

combine them to form the final solution. Charging station placement problems are natural 84

fits because there is little interaction between regions that are far apart in a city – most 85

of the interaction is local (across adjoining sub-regions). Hence, a lot of constraints can 86

be split (one per sub-region). An astute reader may argue that it may be the case that 87

after combining the smaller solutions, some constraints may get violated when the global 88

Version November 13, 2023 submitted to Smart Cities 3

solution is created. This is indeed possible, which is why the method of surrogate functions 89

is used [29,30]. Here, we solve a problem that is slightly different from the original, often a 90

simplified version with less constraints. For sub-regions, we solve a surrogate version of 91

the original optimization – this can be done quickly. Then, we combine the solutions. Each 92

surrogate function comes with a repair method, which is a way to degrade the solution 93

such that all the constraints are satisfied. The penalty that is paid is a slightly worsened 94

quality [29]. 95

For, each sub-region, we use a fast ML-based method to compute our solutions. We 96

observe that the layouts of cities across the world are not very different from each other – 97

their basic structures are similar. For example, many American cities are defined by mesh- 98

like arrangements, particularly in the downtown areas of the city [31]. Many European 99

cities are designed like a star – all roads pointing to the center of the city. Many Indian cities 100

are designed as a set of concentric circles. We looked at the top-50 cities by population and 101

found that their sub-regions broadly align with one of a few basic sets of patterns. A city is 102

basically formed using these basic patterns that act as primitives – we shall refer to them as 103

basic shapes. For example, New Delhi’s main government area looks like a star, the outer 104

region is a set of concentric circles, and the satellite township of Noida looks like a mesh. 105

Our idea is that if we can compute partial solutions for these basic shapes, we can combine 106

them to solve the overall problem. This method is intuitive, easy to understand and reason, 107

scales incrementally and is fast. 108

A brief overview of our approach is as follows. We first divide a large city into regions 109

or a cluster of candidate charging station points (CCSs). The CCSs are uniformly distributed 110

across the city – at the end, the charging stations will be placed in a small subset of these 111

CCSs. Instead of using standard clustering algorithms, we use a topology-based clustering 112

algorithm to divide a big city (or a large number of CCSs) into smaller and well-defined 113

clusters. We found that they provide more meaningful and intuitive results. They perceive 114

the world roughly the same way a human would. 115

The mapping of these clusters to basic shapes (mesh, rings, star, etc.) is then done 116

using a bespoke Convolution Neural Network (CNN) model [32]. To enhance the accuracy 117

of the CNN, we pre-process the CCS data using the Medial Axis Transform (MAT) [33] and 118

we use Persistence-homology Diagrams (PDs) [34] as features. These clusters act as smaller 119

sub-problems. Identification of these basic shapes is a contribution in itself because it gives 120

us a unique insight into how cities are designed and what are the basic layout elements. 121

We pre-compute a set of optimal solutions for each basic shape for different runtime 122

conditions. Given that there are a few such basic shapes, a large database can be created 123

depending on our desired accuracy and storage resources. At runtime, the problem reduces 124

to reading the database for each shape and demand distribution and creating a global 125

solution out of optimal local solutions. The end result may require the use of repair functions 126

to satisfy all constraints. There is a scope here for making manual adjustments as well. The 127

key point to note is that experimentally we have observed that the quality of our solutions 128

is good, and we are always aware of the way the solution process is proceeding and the 129

expected quality of the solution. 130

1.2. List of Contributions 131

Needless to say, it is not possible to compare our work PC-ILP with all the work in 132

this area; we thus compare our solution with some of the latest work in this area that has 133

shown good speedups with respect to prior work. We compare with a fast metaheuristic [5] 134

JAYA and a smart greedy algorithm LGEG [8]. We consider them to be state-of-the-art in 135

this area. Our solution PC-ILP is 3.27× faster than the LGEG approach, and the cost of 136

the solution (defined in Section 3) is 38.87% better. PC-ILP is 200× faster than JAYA while 137

generating a 5.09× better solution. 138

To summarize, the main contributions of this paper are as follows. 1 A novel 139

clustering technique to divide a city into basic shapes. 2 A way to classify (identify) the 140

basic shapes by designing a highly accurate deep learning model that takes into account the 141

Version November 13, 2023 submitted to Smart Cities 4

point cloud diagram and the persistent homology diagram. 3 A novel approach to estimate 142

the similarity between two clusters and then adapt the pre-computed solution of one 143

cluster to the other. 4 Design and implementation of a novel algorithm to find the optimal 144

placement of CSs for a city and its demand points (DPs) using topological data analysis. A 145

detailed analysis and evaluation of the proposed scheme vis-a-vis state-of-the-art solutions. 146

5 A fully-featured tool that is integrated with OpenStreetMaps [35] to interactively conduct 147

all these analyses and run different charging station placement algorithms. 6 An extensive 148

experimental analysis of the impact of various basic topological shapes on the accuracy 149

and performance of the proposed solution for the top-50 most populated cities. 150

The rest of the paper is organized as follows. We provide the required background in 151

Section 2. We formulate and describe the problem statement in Section 3. Section 4 presents 152

an analytical and experimental characterization of the parameters and Section 5 describes 153

the proposed scheme. Section 6 presents the results and analysis. Section 7 presents the 154

related work, and we finally conclude in Section 8. 155

2. Background 156

In this section, we present the background of some mathematical techniques that we 157

use in the paper and the Simulation of Urban Mobility (SUMO) traffic simulator. 158

2.1. Mathematical Techniques 159

2.1.1. Clustering 160

Clustering is an extremely useful unsupervised machine-learning technique for group- 161

ing data based on its characteristics in order to understand its underlying structure. The 162

K-means clustering [36] algorithm is one of the most well-known clustering algorithms; it 163

organizes data into κ clusters, where κ is a user-defined variable. It assigns each data point 164

to the closest centroid of a cluster and modifies the centroids based on the mean of the data 165

points. 166

In agglomerative clustering, each point is treated as its own cluster, and clusters are 167

merged iteratively. The number of clusters or a distance threshold can be specified for 168

deciding when the algorithm should terminate. In density-based clustering, data points 169

are clustered according to their spatial density. There are numerous such density-based 170

clustering algorithms such as DBSCAN (Density-Based Spatial Clustering of Applications with 171

Noise) [37] and OPTICS (Ordering Points To Identify Cluster Structure) [38]. 172

ToMATo (Topological Mode Analysis Tool) [39] is a popular state-of-the-art algorithm 173

that combines the density with persistent homology (which is discussed in more depth in 174

Section 2.1.3). Broadly speaking, the field of topology tries to group all geometrical shapes 175

that have a similar structure, for instance a ring can be stretched and deformed to form a 176

coffee cup – both have a single hole. However, a ring is not the same as a Figure 8, because 177

the latter has two holes. 178

We present a high-level comparison between different clustering algorithms in Figure 179

1. Figure 1a shows the data points, while Figures 1b, 1c, and 1d show how the three 180

algorithms perform: K-means clustering, agglomerative clustering, and ToMATo. 181

2.1.2. Medial Axis Transform (MAT) 182

MAT, often known as skeletonization or topological thinning, is a powerful mathemat- 183

ical technique to extract the central line representation or skeletal outline of an object [40] 184

(see Figure 2b). It has numerous applications in object tracking, path planning and image 185

processing such as shape-based matching, shape recognition, feature extraction, and object 186

segmentation. The medial axis (skeleton) approximates the object’s shape [33] by passing 187

something conceptually similar to a regression line through the points such that we trace 188

out the shape of the object from the points. It is obtained by removing the redundant pixels 189

while preserving the basic connectivity to generate a set of curves and lines outlining the 190

object’s shape. In Figure 2b, the circular curve denotes the skeleton of the input image. 191

Version November 13, 2023 submitted to Smart Cities 5

(a) (b)

(c) (d)

Figure 1. A high-level comparison of different types of clustering algorithms: (a) A point cloud
representation of the original data; (b) K-means clustering with 10 clusters; (c) Agglomerative

clustering with 10 clusters; (d) Topological clustering with a radius of 80 meters [Note: the difference.
It captures the key shapes in a more intuitive manner.]. Clusters are formed by combining the density

and topological data within the given radius.

(a) (b)

Figure 2. MAT of an image: (a) A point cloud representation of points. The elliptical curve is the
ideal skeleton that we wish to achieve; (b) MAT of the points

2.1.3. Topological Data Analysis (TDA) and Persistence Homology 192

This is a new field with many applications in computational geometry and data 193

analysis. It uses the topology and geometry of the data to obtain information about its 194

structure and perform qualitative and quantitative analyses [41]. TDA captures complex 195

topological structures within data that are represented as a point cloud. A point cloud refers 196

to a collection of distinct data points distributed in an n-dimensional space. 197

The concept of a Persistent homology involves measuring topological features at multiple 198

spatial scales. This is achieved by studying the evolution of different topological features 199

such as the number of holes in the object representation (topological space) of the point 200

cloud. The Rips complex [42] and Cech complex [43] are two such well-known topological 201

Version November 13, 2023 submitted to Smart Cities 6

(a) (b)

Holes

(c)

Figure 3. Steps to generate the PD diagram of a point cloud: (a) A point cloud representation of
points; (b) Rips complex of the points; (c) PD of the points. The red points (crosses) denote the holes,
whereas the blue points (filled dots) denote the connected components

space construction methods. Both these approaches consider neighborhoods of a given 202

radius around points and merge all the points within the neighborhood. 203

The Persistence Diagram (PD) provides a way to study a topological space by depicting 204

the birth and death of topological features, such as connected components or holes, as 205

we increase the radius. It provides a nice graphical view of the topological structure of a 206

dataset (represented as an n-dimensional point cloud). It is used for various purposes such 207

as feature selection, pattern recognition, and shape analysis [34]. It maintains a simplex 208

tree, which is a flexible and efficient data structure to represent and store filtered data. 209

Figure 3 demonstrates the creation of a PD for a given cluster using the Rips complex as the 210

topological space creation method [44]. Figure 3a is the point cloud representation of the 211

cluster, Figure 3b represents the Rips complex of the points in the cluster, and Figure 3c is 212

the final PD of the cluster. The x and y axes represent time units, where it is assumed that 213

the radius is increased linearly with time. A point at (x1, y1) means that a specific feature 214

(hole or connected component) was visible for the first time (born) at time x1 and stopped 215

being visible at time y1 (died). 216

2.2. Simulation of Urban Mobility (SUMO): Traffic Simulator 217

SUMO is an open-source, microscopic traffic simulation software widely used to 218

generate traffic distributions in an urban area [45]. It can simulate various transport-related 219

entities such as public transport, vehicles, and traffic control mechanisms. We can model 220

traffic, build networks, control traffic, conduct environmental analyses, and visualize real- 221

time simulated traffic data. It is widely used in academia and industry. It can easily be 222

integrated with other tools for various applications. Figure 4 represents the traffic simulated 223

on the map of a region in Berlin, Germany. The points shown in this figure depict the road 224

network of the city. 225

2.3. JAYA algorithm 226

The JAYA algorithm is a recent population-based metaheuristic algorithm proposed by 227

Rao et al. [46]. The algorithm combines the characteristics of evolutionary algorithms and 228

swarm intelligence. It is inspired by the survival of the fittest principle of natural selection. 229

The algorithm uses very few hyperparameters. Hence, it does not require extensive tuning. 230

3. Problem Formulation 231

We shall describe a generic charging station placement problem [2–5,8] in this section. 232

A few definitions follow. Candidate charging stations (CCSs) are all the potential locations 233

for deploying CSs on a given city map. We define a DP (demand point) as a location where 234

EV charging is in significant demand. Let us define SDP to be the set of all demand points, 235

SCS to be the set of all charging stations, and SCCS to be the set of all candidate charging 236

Version November 13, 2023 submitted to Smart Cities 7

(a)

Nodes

(b)

Figure 4. Simulated traffic of a region in Berlin, Germany using SUMO. The black circles indicate the
points on the road. (a) Points on the road network in 2D; (b) Simulated traffic density for the points

in 3D

stations. Clearly, SCS ⊆ SCCS. Ndp = |SDP| is the total number of DPs, Ncs = |SCS| is 237

the total number of charging stations and Nccs = |SCCS| is the total number of candidate 238

charging stations. 239

We can now define a shortest Euclidean distance matrix D of dimension Ndp × Nccs, 240

where, D[i][j] denotes the shortest Euclidean distance between the ith DP and the jth CCS. 241

Let the maximum distance that an EV user can travel to reach a charging station be τ. 242

This is known as the reachability distance. As a result, we must ensure that after traveling a 243

distance of τ, the EV user definitely has access to a CS. 244

The total number of CSs that can be deployed in a city is subject to a budget. Let β 245

represent the maximum number of CSs that can be deployed in a city. Hence, the actual 246

number of deployed CSs (Ncs) should always be less than the maximum budget (β) for 247

CSs i.e. Ncs ≤ β. Let S be the supply matrix of dimension Ndp × Nccs, which represents the 248

allocation (mapping) of a CS to a DP. S[i][j] = 1 implies that the jth CCS is allocated to the 249

ith DP, otherwise S[i][j] is 0. Let O be a binary array with Nccs elements which indicates 250

whether a CCS is finally chosen to be a CS or not. O[i] = 1 implies that the ith CCS is 251

considered as a CS, otherwise it is not considered to be a CS. 252

The aim is to ensure an optimal placement of the CSs across the city. To solve 253

this problem, we minimize the cost, which can be represented as an objective function 254

∑
Ndp

i=1 ∑
Nccs
j=1 D[i][j]× S[i][j]. This is the sum of the total distance that all EV users have to 255

travel (assuming there are the same number of users at each demand point). The overall 256

mathematical formulation of the problem is shown below. 257

Minimize

Ndp

∑
i=1

Nccs

∑
j=1

D[i][j]× S[i][j] ⊲ Overall distance (1a)

Subject to:
Nccs

∑
j=1

D[i][j]× S[i][j] ≤ τ, ∀i ∈ {1 . . . Ndp} ⊲ Reachability (1b)

Nccs

∑
j=1

S[i][j] = 1, ∀i ∈ {1 . . . Ndp} ⊲ One CS connected to one DP (1c)

S[i][j] ≤ O[j], ∀i ∈ {1 . . . Ndp}, j ∈ {1 . . . Nccs} ⊲ Associate only if the CCS is a CS
(1d)

Nccs

∑
i=1
O[i] ≤ β ⊲ Budget condition (1e)

Version November 13, 2023 submitted to Smart Cities 8

Constraint 1b ensures that all the DPs must be at most τ units of distance away from 258

a placed CS. Constraint 1c states that ∀DP, a CS must be allocated to it. This constraint 259

is very helpful in distributing the demand of DPs efficiently. Constraint 1d ensures that 260

the allocated CS must be chosen as a CS (sanity check). Finally, Constraint 1e states that 261

the number of CSs must be less than or equal to the budget β. This model is similar 262

to the one proposed by Kulkarni et al.[47] and is similar to the models in many more 263

references[1,7,9–12]. 264

Our primary constraints helped us to identify the exact location to place the CSs. But, 265

just placing the CSs does not solve our woes. We need to take care of other electrical 266

constraints such as Constraint 2 (described in Section 3.1), and we need to be sure that the 267

areas with high traffic (most visited roads) are handled well. We establish that if a CS is 268

located in an area with high traffic density, it would require additional chargers to serve the 269

customers. Basically, a charger is a power supply device that supplies power for recharging 270

an EV. A CS can have multiple chargers. These chargers reflects the size and capacity of a 271

CS. 272

In order to simplify the underlying problem and enhance the performance of the 273

method, we consider all these constraints as additional constraints. 274

It is a standard practice to divide the problem into two parts: a solution that satisfies the 275

primary constraints and then modifications to the solution based on additional constraints: 276

traffic conditions, capacities of charging stations (issue of inductive and capacitive loads), 277

electrical regulations and importance of the area as additional constraints. The additional 278

constraints mostly affect the internal working of the charging station [48,49]. 279

3.1. Additional Constraints 280

Let us incorporate additional information about the traffic, electrical load, and queuing 281

time in the model. The overall electrical load is dependent upon multiple aspects, including 282

but not restricted to the charging pattern (fast charging), the popularity of the charging 283

stations (public charging stations, workplace charging stations), the power efficiency of 284

the chargers, and the charging capacity of the electric vehicles. EV chargers are high 285

frequency electronics converters that transform the AC supply into a DC supply to charge 286

an EV. These convertors impose a load of nonlinear nature that has an adverse impact 287

on the performance of the power grid as they introduce harmonics into the system [50]. 288

Additionally, the process of charging electric vehicles (EVs) results in a quick and impulsive 289

increase in the load on the charging infrastructure, hence causing voltage instability issues. 290

Thus, balancing the load among the CSs is very crucial. 291

To achieve this, first, we need to define the number of chargers in a CS. So, let the 292

matrix K of size Ncs × Na represent the allocation of a charger to a CS, where Na is the 293

total number of chargers. K[i][j] = 1 means that the jth charger is allocated to the ith CS, 294

otherwise K[i][j] is 0. Using K, we define ai = ∑
Na
j=1 K[i][j] as the number of chargers at the 295

ith charging station. 296

Let us add some electrical constraints to the model [12]. In the real world, CSs will 297

present themselves as large electrical loads. By adding these constraints, we can distribute 298

the electrical load more efficiently across phases and across CSs. We define an array L of size 299

Ncs, where L[i] denotes the total load placed on the ith CS. It is a deciding factor in estimating 300

the largest amount of load that can be placed on a CS such that it still maintains harmonic 301

in-line currents, phase balance, and voltage deviations (within the limit). Additionally, each 302

CS should contain at least one charger (sanity check). The following equation (Constraint 2) 303

highlights that the chargers in a CS should not be overloaded, and still contain at least one 304

charger. 305

1 ≤ ai ≤
L[i]

ρev
⊲ Chargers in a CS must not be overloaded (2)

Version November 13, 2023 submitted to Smart Cities 9

Here, ρev denotes the charging power rating of an EV. Constraint 2 is used to tackle 306

the load imbalance problem across CSs as the maximum load of a CS must be less than 307

the overloading factor L [21]. The chargers are also alloted a budget (βa). Constraint 3 308

highlights the fact that the total number of chargers in a region should not exceed the 309

budget for that region (βa). This will ensure that there are no local hotspots and the 310

power requirement of a CS never exceeds the substation’s capacity and power quality is 311

maintained. 312

Ncs

∑
i=1

ai ≤ βa ⊲ Total budget of chargers (3)

Next, we define the queuing time [51,52] as the time spent waiting in a queue to charge 313

the EV. This depends on several factors such as the traffic at a CS, the charging time for 314

each EV and the number of chargers available at a CS [51]. We use a queuing model to 315

model the traffic and the queuing time across the city; this is a popular model that has been 316

used in a lot of prior work. It was proposed by Zhu et al [51]. 317

The queuing time at a CS increases proportionally to an increase in demand and traffic, 318

whereas an increase in the number of chargers at the said station will reduce the queuing 319

time as presented in Equation 4a. This model is similar to the one proposed by Zhu et 320

al [51]. 321

Qi =
ai(ηiai)

ai+1P0i

λiai!(ai − aiηi)2 ⊲ Queuing time at the ith CS (4a)

λi =
∑

x
j=1 Xi[j]

tc
⊲ Traffic flow rate around the ith CS (4b)

P0i =

[(

ai−1

∑
j=0

(ηiai)
j

j!

)

+
(ηiai)

ai (ai)

ai!(ai − aiηi)

]−1

⊲ Probability of finding an idle charger at the ith CS

(4c)

ηi =
λi

µai
⊲ Chargers’ utilization at the ith CS (4d)

µ =
1
ts
⊲ Service time of a charger (4e)

Here, λi denotes the EV traffic at the ith CS (Equation 4b) and tc denotes the time 322

duration during which the traffic was monitored. We estimate the traffic at a CS by 323

simulating the traffic flow using the SUMO traffic simulator. Here, we make the reasonable 324

assumption that the traffic in a CS is dependent on the EV traffic within the reachability 325

distance. λi is calculated by adding all the EV traffic of the nodes on the road that are 326

τ-reachable (within τ units of distance) from that CS. Let Xi be an array of size x, where, 327

x is the number of nodes that are τ-reachable from the ith CS and Xi[j] denotes the traffic 328

between the ith CS and the jth connected node. 329

Next, P0i defines the probability of finding an idle (empty) charger upon arrival at 330

the ith CS, and is defined in Equation 4c, where ηi represents the utilization factor of a CS, 331

which measures the degree of utilization of the chargers (Equation 4d). Here, µ represents 332

the service time of a charger, which is inversely propontial to the charging time of a single 333

charger ts (Equation 4e). 334

Version November 13, 2023 submitted to Smart Cities 10

The aim is to reduce the queuing time and minimize the total number of chargers used. 335

Keeping this in mind, additional objective functions can be defined as follows: 336

Minimize
Ncs

∑
i=1

Qi ⊲ Additional objective function 1

Minimize
Ncs

∑
i=1

ai ⊲ Additional objective function 2

(5)

We can have multiple objective functions in our formulation. From a single-objective 337

optimization problem, it will become a multi-objective optimization problem. A Pareto 338

optimal point can be chosen subject to some overall desirability function, as is the standard 339

practice. Now, that the problem has been defined, we need to find a method to effectively 340

solve it. For doing this, we need to understand the features present in modern cities and 341

show that their layouts are quite similar – in a topological sense. This means that they 342

consist of a set of basic primitives, where each primitive can be arbitrarily stretched and 343

deformed (in certain ways). This is the objective of the next section. 344

4. Characterization 345

A collection of selected nodes (CCSs) represents a city’s road network. In order to 346

identify the topological shapes present in a city, the first aim is to select the best clustering 347

algorithm to identify and isolate constituent topological clusters (of CCSs) from a city’s 348

road network. 349

4.1. Clustering Algorithm - Identification of the Clusters in a City 350

We perfrom an extensive analysis of several state-of-the-art clustering algorithms 351

namely K-means, Agglomerative, and ToMATo to determine which algorithm can successfully 352

isolate the topological clusters of CCSs present in a city. The details of the clustering 353

algorithms are presented in Section 2.1.1. The analysis is performed on a section of Berlin, 354

Germany using the system configuration mentioned in Table 1. 355

Hardware Settings

Chip: Apple M1 CPU cores: 8
GPU: Apple M1 8-core GPU DRAM: 8GB

Software Settings

Operating System: MacOS Monterrey 12.6 Python Version: 3.7
TensorFlow Version: 2.11.0 Tkinter Version: 8.6.12

Gudhi Version: 3.8.0 CVXPY Version: 1.3.1

Table 1. System configuration

We improve the computation speed of the clustering algorithms by performing random 356

point reduction [53–55] (random sampling) to reduce the number of points. This is done 357

for all the algorithms. We empirically determined that it is possible to decrease the points 358

by up to 75% without causing much distortion to the topological shapes. 359

Let us consider a representative example. Figure 1a shows the input points for the 360

clustering algorithm after performing point reduction on a section of the Berlin city. Figure 361

1b shows the outcome of K-means clustering with 10 clusters (k = 10). Due to the fact 362

that K-means assumes that each cluster has the same size and is susceptible to noise, it is 363

quite incapable of isolating the topological shapes. 364

Figure 1c shows the outcome of agglomerative clustering with 10 clusters. We observe 365

that the clusters that are generated by the algorithm are relatively similar to the ones 366

generated by K-means clustering. They also fail to isolate the topological shapes. Figure 367

1d shows the outcome of ToMATo with radius r = 80. The algorithm generates clusters 368

by connecting all the nodes within a radius of 80 meters. It can isolate the majority of 369

the topological shapes as it considers both the highly dense and less dense areas. We 370

Version November 13, 2023 submitted to Smart Cities 11

conclude that the clusters generated by ToMATo can successfully isolate a majority of 371

the shapes. In our experiments, this observation is found to hold across all big cities (our 372

dataset). Therefore, this becomes the most desirable clustering algorithm for identifying 373

the constituent topological shapes of a city. 374

Next, we take a look at the proposed scheme and how it uses the clustering algorithm. 375

5. Material and Methods 376

5.1. Overview of the Scheme 377

Problem: 1 The primary objective of this work is to identify the locations of CSs based on a 378

set of primary constraints (budget, reachability radius, demand points). Similar to prior 379

work [56–58], we address an (Problem: 2) additional objective of distributing the chargers 380

among the CSs such that no additional constraints (traffic, electrical regulations, queuing 381

time) are violated. 382

Primary objective
(prim. constraints)

Check for constraint
violation ?

Solution feasible ?

Repair (Surrogate
function) Additional objective

(additi. constraints)

Yes

Yes

Chargers at
each CS

No

No

Hierarchical
decomposition
framework

Optimal
locations
of CSs

PC-ILP: Placement
of CSs

Chargers at CSs

Figure 5. A high-level representation of the proposed scheme.

Problem: 1 Figure 5 shows that the primary objective is acheived using the proposed 383

PC-ILP algorithm by using a hierarchical decomposition method. In this method, the city 384

map (represented as a set of CCSs) is decomposed into clusters of CCSs using a topological 385

clustering algorithm. Next, a CNN is used to identify the geometric shape of each cluster. 386

We study topological shapes (clusters of CCSs) present in 50 of the largest cities in 387

the world and based on our findings, we argue that a few basic shapes can be used to 388

capture the topological structure of most cities. This conclusion is supported by the fact 389

that a small number of 2-D simplexes (a line, a circle, a mesh, a star and a concentric circle) 390

can be used to define any topological shape of interest in a modern city [59]. We present a 391

pictorial representation of all the 2-D simplexes in Figure 6. Our experiments support this 392

assumption. 393

(a) (b) (c) (d) (e)

Figure 6. Representation of the five 2-D simplexes. (a) Circle; (b) Concentric circle; (c) Line; (d) Star;
(e) Mesh

These clusters are seen as small sub-problems and we use a database of precomputed 394

solutions to solve these sub-problems. The database comprises optimal solutions for 395

various shapes (clusters of CCSs) over a spectrum of parameters including the number of 396

DPs, budget, and reachability distance as shown in Table 2. During runtime, an user only 397

needs to look at the database to get a solution for each shape. However, the final solution 398

that has been obtained from the database may not be feasible. Such infeasible solutions are 399

fixed using a surrogate function (details to follow). 400

Version November 13, 2023 submitted to Smart Cities 12

Parameter Description

SCCS The CCSs depicts the potential charging stations across the city.
τ The reachability distance is the maximum distance an EV user needs to travel

from a DP.
β The budget represents the maximum possible CSs in a city.
SDP The demand points correspond to the points in the city that demand EV charg-

ing.

Table 2. Primary parameters of the problem

Problem: 2 Then, the repaired/feasible solution from PC-ILP is sent to the second 401

stage – a small ILP optimization problem. This considers a few of the additional parameters 402

(traffic, queuing time, and electrical regulations). The reason for this is that the traffic 403

patterns within a city can exhibit severe variations. Consequently, attempting to create a 404

database capable of accommodating all of these combinations would not be feasible. The 405

queuing time also depends on the traffic in a CS, so it is also considered as an additional 406

parameter. Additionally, the electrical regulations also directly influence the number 407

of chargers in a given CS. Therefore, all of these factors are categorized as additional 408

parameters, which have a direct impact on the number of chargers in each CS. This ILP 409

stage (which is a much smaller problem) finds the optimal number of chargers that need to 410

be placed at each CS. This stage is needed for flexibility. Modern EV placement problems 411

can have a lot of constraints and objective functions (soft and hard). Hence, a two-stage 412

approach suits us well. 413

5.2. Placement of Charging Stations (Primary Objective) 414

A high-level diagram of the proposed scheme is shown in Figure 7. The algorithm 415

is divided into six major components: 1 Precomputation of the ILP solutions for various 416

basic shapes. These solutions are stored in a database. 2 Identification of the potential 417

charging point locations (CCSs) in a city. 3 Partitioning of the city map into distinct clusters 418

of CCSs using ToMATo. 4 Basic shape identification of the clusters using a CNN. 5 Finding 419

the most appropriate match in the database for the identified shape. 6 Estimation of the 420

final solution based on the matching solution from the database. Algorithm 1 describes our 421

proposed scheme. We also show a glossary of the symbols in Table 3. 422

Identification

of the potential

charging stations

CCSs point
reduction

Shape identification

CCSs

Optimally
placed CSs

Database

computation

CCS, DP,
Budget

CCS, DP,
Budget

MapperCS
Tool

Clustering

ToMATo

Convolution NN

For each cluster

Offline

Reduced
CCSs & DP

Divide the

budget
Placement of

the CSs
Budget

Matching solution

from the database

Demand

points

5

4

3

2

1

6

Figure 7. A high-level diagram of the proposed scheme

5.2.1. Create Database of Pre-Computed Solutions (Offline) 423

The first stage is creating an exhaustive database containing solutions to the CS 424

placement problem for a set of basic shapes. Each basic shape is represented by a set of 425

CCSs. 426

◮ Normalization of the Latitude and Longitude Each of the CCS nodes in a shape is 427

denoted by a pair of latitude and longitude coordinates. Now, across cities, the constituent 428

topological shapes may remain the same, but their sizes may vary significantly. Since 429

Version November 13, 2023 submitted to Smart Cities 13

it is not possible to store the results for all potential basic shape sizes in a database, we 430

normalize the values of longitudes and the latitudes for different shapes. Normalizing the 431

geographical coordinates in a large urban city to store a scaled version of the geographical 432

information is a well known concept that is used in urban city planning [60–65]. It helps to 433

simplify and generalize the geographic data (nodes), making it more manageable. 434

To acheive this, we normalize the location of each node, i.e., the latitude and longitude 435

values such that they lie in the range of [0, 1]. This is done for a combined set of DPs and 436

CCSs (SCCS ∪ SDP) as normalization of each set individually would distort the locations of 437

the DPs. 438

We empirically estimated the size of the shapes in 50 of the largest cities in the world 439

and observed that the maximum area of a shape among all the five basic shapes is 8.5 km2, 440

while the minimum possible area is 1 m2. Our resolution is quite fine, even though such a 441

granularity is almost never required. Most of the time, we can cover a roughly 3km × 3km 442

section of the city in a single well-defined basic shape. 443

◮ Patterns of DP Distribution in a Shape DPs denote the points at which a demand for 444

charging exists. We place DPs manually based on the density of CCSs, presence of public 445

amenities like malls and hospitals and downtown areas. To characterize the location of 446

DPs, we subdivide all the normalized shapes into zones. If a DP falls in a zone, we assume 447

that it is in the centroid of the zone (refer to Figure 8). It means that there is some feature of 448

interest in the city and all the roads in the vicinity lead to it. 449

We ensure that our database captures all the possible locations of the DPs in a city. Let 450

us assume that the maximum possible number of DPs associated with a shape is d and the 451

total number of zones in a shape is z, then the total number of possible DP patterns that 452

should be present in the database is ∑
d
i=0

zCi. zCi is the number of ways in which we can 453

choose i elements out of z elements (number of combinations). 454

A cluster of
CCSs (circle)

The shape is divided
into multiple zones

 Actual position of a DP
Position of a DP
in the database
(center of the zone)

Any DP in a given zone is located
at the center of the zone.

Figure 8. Creation of zones for a cluster

After successfully estimating all the possible DP distribution patterns for a given shape, 455

we apply ILP to solve the CS placement problem for the shape and the corresponding DP 456

distribution patterns, given a budget and a reachability radius. This generates possible sets 457

of locations for the CSs. This procedure is conducted offline. We combine the locations 458

of the CSs with the shape (clsuter of CCSs) and the parameters (DP distribution pattern, 459

budget, reachability radius) into one single database entry. In addition, we also compute 460

ILP solutions for a given shape and DP distribution pattern for a range of budget and 461

reachability radii (the range is estimated empirically) and add all the computed solutions 462

to the database. 463

After creating the database, we estimate the solution for a new input map using the 464

precomputed database. The next series of steps are all performed online. 465

5.2.2. Locating Potential Charging Stations in the Input Map 466

The first task is to identify the prospective CCSs in the input map. To identify prospec- 467

tive CCSs in the cities, we identify the road network of the city and place CCSs along it. We 468

developed our in-house interactive tool MapperCS that enables the filtering of the street 469

data from a specific city map and also identifies the potential CCSs (see Section 6). 470

Version November 13, 2023 submitted to Smart Cities 14

Symbol Definition Symbol Definition

Nccs Number of CCSs D The distance matrix between
DPs and CCSs

Ndp Number of DPs M Mapping between cluster and
DPs

τ Reachability distance β Budget (max allowed CSs)
Ncs Total number of CSs S The supply matrix (DP-CS allo-

cation)
O[Nccs] Boolean array that indicates

whether a CCS is a CS
P A set of basic shapes and DP dis-

tribution
C A set of clusters DB Pre-computed database
S The shape of a cluster SimS A similar shape retrieved from

the database
|X| Size of the set X {x, y} Concatenate x and y

Table 3. A glossary of the symbols

Algorithm 1: PC-ILP (Online stage)

1 Input: Candidate charging stations CCS = (CCS1, CCS2...CCSNccs) ; Demand
points DP = (DP1, DP2...DPNdp

); Budget β; Reachability distance τ;
Precomputed Database DB; Threshold T

2 Output: Charging stations CS = (CS1, CS2..CSNCS
)

3 * Reduce the size of each CCS by a factor of x *\
4 CCSnew = ReducePoints(CCS, Nccs/x)

5 * Identify the clusters in CCSs *\
6 C = ToMATo(CCSnew)

7 * Assign each DP to its nearest cluster *\
8 M = Assign(C, DP)
9 Sort C in decreasing order of |C|

10 i← 1
11 while i ≤ |C| do

12 * Divide the budget among the clusters *\

13 b =
⌊ β

|C|

⌋

14 if i ≤ (β mod |C|) then
15 b← b + 1
16 end

17 * Identify the shape of the cluster Ci*\
18 S = IDShape(Ci)

19 * Find the most similar shape in the database for the cluster Ci*\
20 SimS = TraverseDB(S, Ci,M,DB, b)

21 * Apply the solution of SimS to cluster Ci*\
22 CSCi

= ApplySolution(SimS, Ci,M, T)

23 CS.append(CSCi
)

24 i← i + 1
25 end
26 return CS

5.2.3. Clustering Algorithm 471

Next, we perform clustering on the CCS set to isolate the basic clusters using a 472

topological clustering algorithm, ToMATo. It captures all the topological shapes present in a 473

city. The computation speed of the clustering algorithm is improved by randomly reducing 474

the number of points [53–55] in the CCSs using the ReducePoints function. 475

◮ Mapping DPs to clusters - In the next step, we map each DP (represented as DPi) to its 476

nearest cluster Ci ∈ C. A single cluster can be mapped to many DPs, creating a many-to-one 477

Version November 13, 2023 submitted to Smart Cities 15

mapping. To map DPs to a cluster, we first compute the convex hull for each cluster using 478

the QuickHull algorithm [66]. We categorize the DPs into two categories based on their 479

position relative to the convex hull 1 The DPs that are contained within the convex hull of 480

a cluster Ci are automatically mapped to Ci. 2 The DPs that fall outside the convex hull of 481

all clusters are mapped to the closest cluster Ci using the Assign function as described in 482

Algorithm 2. Basically, the clusters are characterized by their centroids. We find the cluster 483

closest to a DP by estimating the distance between the centroid of the cluster and the DP. 484

We map the DP to its nearest cluster based on the minimum distance to each centroid [67]. 485

Algorithm 2: Function Assign(C, DP)

1 Input: Demand points DP = (DP1, DP2...DPNdp
), Clusters C = (C1, C2...Ct)

2 Output: MappingM
3 for i = 0 to Ndp do

4 * Identify the closest cluster from the DP (DPi).*\
5 old = ∞

6 clust = C1
7 for j = 1 to t do
8 new = dist(DPi, centroid[Cj])

9 if new < old then
10 clust = Cj

11 end

12 end
13 M[clust].append(DPi)
14 end
15 returnM

Once we find the closest cluster (Cj) for a DP (DPi), we add the DP (DPi) toM[Cj] 486

where M is the Demand point-Cluster Mapping (DCM), which stores the details of the 487

mapping between DPs and clusters. This process is repeated until we find a mapping 488

for every DP. After the mapping procedure is complete, we divide the total budget in 489

proportion to the number of CCSs covered by each cluster. To acheive this, clusters (C) are 490

sorted in decreasing order of the cluster size. The clusters with more CCSs are allotted a 491

greater portion of the budget (β) as described. Subsequently, we iterate over the sorted 492

clusters C and process each cluster Ci individually. The next task is to identify the shape of 493

the cluster Ci. 494

5.2.4. Shape Identification using a Convolution Neural Network (CNN) 495

To determine the shape of a given cluster, we use a CNN model. We studied the 496

constituent shapes of the major urban agglomerations of the world to create a realistic 497

dataset for training and testing the CNN model. After extensive experimentation, we 498

designed a novel CNN architecture capable of identifying shapes. The architecture is 499

presented in Figure 9. 500

The input of the model is the point cloud and the PD of its MAT. The PD of the MAT 501

of the point cloud is generated by removing holes and connected components, which are 502

less persistent by introducing a threshold as illustrated in Figure 10. Figure 10a is a typical 503

PD and Figure 10b is the PD of the MAT (modified PD) after thresholding. Now, let us take 504

a deeper look at the architecture of the model. 505

◮ Model Architecture The proposed model architecture comprises two parallel CNN lay- 506

ers as depicted in Figure 9. Both layers consist of an identical three-layer CNN architecture. 507

In the three sequential convolution layers, the number of filters increases in the sequence of 508

(32, 64, 128). Each convolution layer is followed by a LeakyReLu activation function and a 509

MaxPooling layer with a pool factor of 2× 2. Finally, we employ a regularization technique 510

Version November 13, 2023 submitted to Smart Cities 16

3 2
3

2
3

33

23 2

Convolution
layer 1 +
LeakyRelu

Cluster
Image

Persistance
Diagram

Convolution
layer 2 +
LeakyRelu

Pooling
layer 2

Pooling
layer 3

Pooling
layer 1

Concatenate

Flatten

SoftMaxFully-connected+
LeakyRelu

Fully-connected

Convolution
layer 3 +
LeakyRelu

3 2
3

2
3

33

23 2

Convolution
layer 1 +
LeakyRelu

Convolution
layer 2 +
LeakyRelu

Pooling
layer 2

Pooling
layer 3

Pooling
layer 1

Convolution
layer 3 +
LeakyRelu

32

32

64

64

128

128

Figure 9. Proposed CNN architecture

Holes

(a) (b)

Figure 10. Model Input - A PD diagram with threshold and point reduction. The red crosses denote
the holes present in the point cloud, and the blue circles denote the connected components present in
the point cloud: (a) A typical PD diagram ; (b) The PD of the MAT. All points below the threshold are

removed

called Dropout, which involves randomly deactivating the neurons within a layer. The 511

respective dropout percentages for the three convolution layers are 25%, 25% and 40%. 512

The outputs of the two parallel convolution structures are combined using a Con- 513

catenate layer. Thereafter, the result of this layer is changed from a 2D matrix to a 1D 514

vector using a Flatten layer. This conversion enables the output to be processed by the fully 515

connected layers (Dense layer). 516

The Dense layer consists of 512 neurons and a LeakyReLU activation function, which is 517

followed by another Dropout layer that is configured to exclude 50% of the neurons. The 518

subsequent fully connected layer has five neurons for the five basic shapes. In the end, we 519

use the Softmax activation function to predict the class of the cluster. The above-described 520

model can identify an input shape quite accurately. 521

Now that we have successfully identified the shape of a cluster (IDShape function), 522

we must query our precomputed database to discover the closest matching solution for a 523

new input cluster. 524

5.2.5. Retreival of the Pre-computed Solution from the Database 525

The next step of PC-ILP is to identify the closest solution for a new cluster from 526

a database of precomputed solutions using the TraverseDB function. We need to first 527

normalize the input cluster to set it in the same scale as the clusters in the database (refer to 528

Section 5.2.1). For the solutions of any two clusters to be broadly similar, they must be 1 of 529

the same shape and 2 have similarly placed DPs with respect to the shape of the CCSs. 530

Version November 13, 2023 submitted to Smart Cities 17

The similarity in the DPs can be measured by finding out the zone of each demand point 531

with respect to the shape. If the DPs in both the clusters fall in the same zones, then we can 532

argue that the the DP distribution is similar. 533

Next, we determine whether the solutions presented in the closest matching shape(s) 534

are within the input budget. We choose the solution with the lowest budget (represented as 535

SimS). This enables us to maintain a contingency budget that can be utilized in the event of 536

constraint violations. A closest match will be always found in the database as we know 537

that the database is exhaustive (as described in Section 5.2.1). Algorithm 3 describes this 538

process in further detail. 539

Algorithm 3: Function TraverseDB(S, Ci,M,DB, b)

1 Input: Input cluster Ci, DCMM, Shape S of cluster Ci, Database DB, Budget β
2 Output: SimS, the closest match of Ci present in DB

3 * Normalize the input cluster Ci *\
4 CCS′Ci

, DP′Ci
= normalize({CCSCi

,M(Ci)})

5 old← ∞

6 for (Pj, shapej) ∈ DB do

7 * Match the shapes and the DPs. Pj = {CCSPj
, DPPj

, CSPj
} and shapej is the

shape of the cluster in the database. *\
8 if S == shapej and |M[Ci]| == |DPPj

| then

9 * Find the zones of DP′Ci
and compare them with the zones of DPPj

. *\
10 if zones(DP′Ci

) == zones(DPPj
) then

11 * Find the matching solution with least budget utilization. *\
12 if |CSPj

| < β and |CSPj
| < old then

13 SimS← Pj

14 old← |CSPj
|

15 end

16 end

17 end

18 end
19 return SimS

5.2.6. Mapping the Precomputed Solution 540

The database provided the positions for the optimal locations of the CSs for the closest 541

matching cluster (SimS) with the least possible budget. To apply the solution of SimS to the 542

input cluster Ci, we need to relocate the CS in SimS with respect to the CCSs in the input 543

cluster. To achieve this, we find a CCS in our input cluster for each CS in SimS, which is 544

within the distance threshold of T from the said CS. In the event that no such CCS satisfies 545

this constraint, we select the one which is closest to the CS. We have empirically estimated 546

that we can set T to be 0.1 units (where the points are normalized to the [0-1] range). Once 547

this is complete, we denormalize the CSs to get the final solution. Algorithm 4 describes 548

this process in detail. 549

Figure 11 shows a graphical illustration of the ApplySolution function. Figure 11a 550

represents the input cluster Ci, and its closest matching solution from our database SimS 551

is shown in Figure 11b. Next, we try to find the closest CCS (CCSCi
) in the input cluster 552

for each charging station (CSS) in SimS – this is shown in Figure 11c. The final solution is 553

presented in Figure 11d. 554

5.3. Repairing an Infeasible Solution 555

As with any other hierarchical solution, we must check that the assembled solution 556

satisfies all the constraints of the original problem [28]. We observe that three of our four 557

Version November 13, 2023 submitted to Smart Cities 18

Algorithm 4: Function ApplySolution(SimS, Ci,M, T)

1 Input: Input cluster Ci, with CCSC = CCSC1 , CCSC2 ...CCSCn
; Closest match

SimS = (CCSS, DPS, CSS) ; DP mappingM; Threshold T
2 Output: Final locations of charging stations CSopt = CS1, CS2...CSm

3 * Normalizing the input cluster. {X, Y} refers to the concatenation of the sets X
and Y *\

4 CCS′C , DP′C = normalize({CCSC ,M(Ci)})

5 * Find the closest CCS in the input cluster for each CS (CSS)*\
6 for CSj ∈ CSS do

7 old = ∞

8 c = 1
9 for k = 1 to n do

10 new = distance(CSj, CCS′Ck
)

11 if new < T then
12 break
13 end
14 else if new < old then
15 c = k
16 end

17 end
18 CS′C .append(CCS′Cc

)
19 end

20 * Denormalize CSn
Ci

to get original solution.*\
21 CSopt = denormalize(CS′C , {CCSC ,M(Ci)})
22 return CSopt

constraints cannot be violated due to the design of PC-ILP – each DP is associated with the 558

CS placed closest to it. So Constraint 1c is never violated. To ensure that Constraint 1d is 559

not violated, we make sure that when applying the solution of SimS to Ci, the CSs placed 560

for Ci are CCSs, as illustrated in Algorithm 4. We also divide the provided budget across 561

the various shapes in order to ensure that Constraint 1e is not violated. Subsequently, a 562

match for each cluster for a given budget is located in our database. 563

This leaves the reachability constraint, which may be violated, resulting in an infeasible 564

solution. The solution to the problem is to maintain a contingency budget for use in the 565

event of a constraint violation. This enables us to repair the infeasible solution by adding 566

additional CSs for the demand points where a constraint violation is detected, without 567

affecting the pre-existing locations of the CSs. This simplifies the problem, allowing for a 568

fast estimation of the feasible solution. 569

The initial phase is the verification step in which we determine whether or not a 570

constraint has been violated in the original solution. To determine this, we map all DPs 571

within a reachability distance from a CS. This is performed for all CSs. Next, we determine 572

if any DPs are left unmapped, which indicates that the reachability constraint has been 573

violated (refer to Algorithm 5). 574

To address this issue, we solve the original optimization problem with a 15% budget 575

reduction, allowing us to use the remaining budget to fix the possibly infeasible solution. 576

This is the surrogate optimization problem where we use the PC-ILP algorithm albeit with a 577

reduced budget. First, we query the database with the unmapped DPs and a portion of 578

the remaining budget (using the TraverseDB function). The function returns the closest 579

matching shape for the given set of unmapped DPs and CCSs (details in Section 5.2.5). 580

Then, we apply the solution to the matching shape using the ApplySolution function, 581

which returns the most optimal placement of the CSs for the given unmapped DPs. We 582

recheck whether or not all the DPs are mapped using the obtained solution within the given 583

Version November 13, 2023 submitted to Smart Cities 19

(a)

CS1

CS2

DP2

DP1

DP3

(b)

CS1

CS2

DP2

DP1

DP3

(c)

CS1

CS2

DP1

DP2

DP3

(d)

Figure 11. A pictorial representation of the ApplySolution function: (a) The input cluster Ci (query);
(b) Closest matching solution (SimS) from the database. CS1 is mapped to DP1 and DP2, CS2 is

mapped to DP3; (c) Finding the closest CCSCi
in the input cluster for each CS in SimS; (d) Applying

the closet matching solution (CSs) on the input cluster (query)

budget. If they are not mapped, the entire procedure is repeated with a slightly increased 584

budget. 585

If a feasible solution is found, to arrive at the final repaired solution, we combine 586

both the initial infeasible solution and the surrogate solution for the DPs with constraint 587

violations. The infeasible solution consists of the locations of CSs (old CSs) that served a 588

subset of DPs. Sadly, some DPs were left unmapped, and we used the surrogate function to 589

add new CSs to serve those DPs using the extra budget. The final solution is essentially a 590

union of the locations of both the sets of the charging stations (new CSs and old CSs). In 591

cases where the entire budget has been spent and no solution has been found, a solution to 592

the problem is deemed to be impossible. 593

5.4. Chargers at Each Charging Station (Additional Objective) 594

Once a solution for the primary objective is obtained from our database, we proceed 595

to solve an ILP problem in order to integrate the additional constraints into the estimated 596

solution. We have referred to this as Problem 2. Our experimental observations indicate that 597

the proposed approach has the capability to include a wide variety of additional constraints 598

and objective functions also. Nevertheless, the present version of the work presents a 599

proof-of-concept by considering only the additional electrical constraints, queuing time, 600

and traffic information. Equation 2 (see Section 3.1) introduces the concept of adding 601

multiple chargers at each charging station, which can easily be found out by solving an 602

ILP problem. Note that the size of this problem is much smaller than our original problem, 603

Version November 13, 2023 submitted to Smart Cities 20

Algorithm 5: Function Repair(CS ,DP , β0,M, Ci, S, b)

1 Input: CS locations CS , Demand points DP , Database DB, Remaining budget β0,
Shape S of the given cluster Ci, Budget ∆

2 Output: New optimally placed charging stations CS

3 * Check the constraint violation in the given solution*\
4 for CSo ∈ CS do
5 DPM ← Find DPs within the τ distance from CSo

6 end

7 * Handle the constraint violation *\
8 if DPM 6= DP then
9 for (DPi /∈ DPM)&(DPi ∈ DP) do

10 D.append(DPi)
11 end

12 * Repeat the process until a feasible solution is found or the budget is
exhausted *\

13 while b ≤ β0 do

14 * Search the database for the solution *\
15 SimS = TraverseDB(S,D,DB)
16 CS r = ApplySolution(SimS, Ci,D, b,DB)

17 * Check the constraint violation in the new solution *\
18 for CSo ∈ CS r do
19 DPM ← Find DPs within the τ distance from CSo

20 end
21 if DPM == D then

22 * No violation - Get the repaired solution *\
23 return CS

⋃

CS r

24 end
25 else

26 * Violation - Increase the budget *\
27 b← (b + ∆)
28 end

29 end
30 return No feasible solution
31 end
32 else
33 * No violation *\
34 return CS
35 end

where our solution space was much larger. Here, we just have to determine the capacity (in 604

terms of the number of chargers) of each CCS. 605

For our experiments, we formulate an ILP, which is in line with the equations shown 606

in Section 3.1. The ILP problem returns the optimal number of chargers at each location 607

(CS). We observe that the execution time for these ILPs is very small as compared to the 608

ILP for Problem 1, due to the fact that its search space is much lower. 609

6. Results and Discussion 610

In this section, we shall discuss the evaluation methodologies that are used to compare 611

PC-ILP to other state-of-the-art algorithms. In addition, we characterize the effect of 612

different shapes on the performance of the solution obtained by PC-ILP for various cities. 613

Version November 13, 2023 submitted to Smart Cities 21

6.1. Setup 614

The details of the system setup along with all the software and hardware configurations 615

are shown in Table 1. We have developed an in-house tool named MapperCS (MAP-based 616

tool using PERsistence homology for Charging Station placement), which is runs on MacOS, 617

Windows and Ubuntu. The tool has an interactive map in the center of the screen with 618

two side panes. MapperCS takes map data from OpenStreetMaps [35] using the overpass [68] 619

API, filters out many details and retains the street data, which are used to create the CCSs 620

via a manual annotation process. Figure 12 shows a screenshot of the MapperCS tool. This 621

highly interactive tool is designed to perform many operations on the city map using two 622

interactive side panes. The users can not only annotate the DPs and potential CSs, but they 623

can also perform more complex operations such as clustering the CCSs and run an ILP for 624

a given set of constraints. 625

Console
The console is where we observe

 the status of different operations. Navigation window
Using this window we can navigate

through the differnt clusters

and visualize them on the interactive map.
This window allows us to run various analyses

 such as ILP, SUMO, clustering, shape detection.

Analysis window

Interactive map

Figure 12. A screenshot of the MapperCS tool

◮ Benchmarks We consider the top 50 cities by population (source:[69]). We focus on the 626

areas that have a high population density in the cities (35-387 km2). The details are shown 627

in Table 4. We can make some broad observations based on the maps of the cities (also 628

visualized using our MapperCS tool). We observe that American cities have historically 629

been laid out as grids (meshes), whereas European towns have predominantly adopted a 630

radial organization (all the arterial roads are oriented towards the center of the city). We 631

show two examples in Figure 13 for a section of downtown Paris and New York. 632

◮ Dataset for the CNN-based Algorithm The shapes of the clusters of CCSs are identified 633

using a CNN model (see Section 5.2.4). The training dataset contains clusters that can 634

be classified into five basic shapes namely circle, mesh, star, line and concentric circle. Each 635

cluster is defined by its point cloud representation and the PD of its MAT. We trained our 636

model using synthetic data because in this case we can generate as much as synthetic data 637

as we want (we are not limited by the training set size or real-world constraints regarding 638

the availability of data). For instance, if we want to generate synthetic data for a star, then 639

we laid a random number of points out as a star, and then perturb them randomly. In this 640

way, we can generate a lot of training examples for a given topology. The same approach 641

can be repeated for other topologies and we can continue training our model. Note that 642

there is no need for manual annotation here because we already know which basic shape a 643

Version November 13, 2023 submitted to Smart Cities 22

A set of CCSs from OpenStreetMap

(a)

A set of CCSs from OpenStreetMap

(b)

Figure 13. A section of cities studied using MapperCS (a) Radial (Paris, France) (b) Mesh based (New
York City, USA)

City, Country Area (km2) City, Country Area (km2) City, Country Area (km2)

New York , USA 386.79 Lima , Peru 241.31 Lahore , Pakistan 160.17
Paris , France 102.34 Xian , China 220.28 Mumbai , India 291.42
Karachi , Pakistan 153.01 Beijing , China 207.69 Moscow , Russia 128.10
Rio de Janeiro , Brazil 171.39 Shanghai , China 157.75 Bangalore , India 125.20
Lagos , Nigeria 165.09 Seoul , South Korea 166.19 Ahmedabad , India 147.39
Hyderabad , India 276.80 Manila , Philippines 151.15 Chicago , USA 139.47
Bogota , Colombia 205.81 Chennai , India 127.07 Delhi , India 257.32
Tokyo , Japan 169.75 Sao Paulo , Brazil 240.79 Hangzhou , China 162.14
Tianjin , China 114.95 Istanbul , Turkey 270.62 Nanjing , China 300.42
Ho Chi Minh , Vietnam 179.39 Kinshasa , Congo 153.25 Cairo , Egypt 170.04
Madrid , Spain 173.26 Chongqing , China 352.70 Osaka , Japan 111.54
Jakarta , Indonesia 183.40 Kolkata , India 150.39 Chengdu , China 170.70
Buenos Aires , Ar-
gentina

158.54 Los Angeles , USA 177.53 Dhaka ,
Bangladesh

185.52

Luanda , Angola 216.53 Kuala Lumpur , Malaysia 287.39 Tehran , Iran 128.08
London , UK 106.80 Nagoya , Japan 103.43 Hong Kong , China 316.96
Shenzhen , China 140.79 Guangzhou , China 132.14 Mexico city , Mex-

ico
192.33

Wuhan , China 198.08 Bangkok , Thailand 183.51 Berlin , Germany 35.80

Table 4. The list of cities considered in our work

given point cloud corresponds to. We used the point clouds (CCS locations) in the 50 cities 644

as test cases. Table 5 shows the number of shapes found across our dataset of 50 cities. 645

Shapes Data points

Circle 3600
Line 2889
Star 2189

Concentric circle 1248
Mesh 203

Table 5. Shapes found in our dataset comprising 50 cities

6.2. Parameters for the Creation of the Precomputed Database 646

6.2.1. Number of Zones in each Shape 647

The number of zones within a shape affects the total number of DP distribution pat- 648

terns, which in turn influences the size of the database. We perform extensive experiments 649

to find the total number of zones in each basic shape. We estimate the cost (see Equation 1a) 650

using ILP for two scenarios: (a) when the DP is located in the centroid of the zone; and (b) 651

when the DP is located anywhere else in the zone. 652

We considered 250 randomly generated patterns for DPs (for a given number of 653

CCSs, budget and reachability radius) and computed the difference in the costs for the 654

Version November 13, 2023 submitted to Smart Cities 23

two scenarios for a given number of zones. This experiment is repeated by increasing the 655

number of zones in a shape. The results for the average cost difference for different shapes 656

are shown in Figure 14. We observe that after a certain limit, the difference in the cost 657

reduces and reaches a saturation point; the knee point is used to set the number of zones in 658

a shape. We conclude that we should divide the circles into 20 zones, whereas stars, meshes, 659

and lines should be divided into 16 zones, and finally concentric circles should be divided 660

into 24 zones. In our experiments, these were found to be the optimal values. 661

zones

(a) (b) (c)

(d) (e)

Figure 14. Number of zones versues the average difference in the cost for different shapes (arithmetic
mean): (a) Circle; (b) Concentric circle; (c) Mesh; (d) Star (e) Line

6.2.2. Reachability Distance (τ) 662

The reachability distance (τ) denotes the maximum distance that an EV user needs 663

to travel from its DP to the nearest CS to charge the EV. We performed exhaustive experi- 664

mentation to analyze the effect of the reachability distance on the cost of the solution. For 665

each shape, we first computed the ILP solution with τ = τinput, where τinput is the input 666

reachability distance. After this, we compute the ILP with τ ∈ [0.2τinput, 2τinput]. Figure 667

15 shows the variation in the cost function with the reachability distance for a circle with 668

a constant budget of 4 CSs, 117 CCSs and 3 DPs. We observe that after a certain value 669

of the reachability distance, the cost of the solution remains nearly constant. A similar 670

observation is highlighted by Gopalakrishnan et al. [70]. We ensure that the database has 671

solutions for all potential values of the reachability distance prior to the saturation point 672

for different combinations of the DP distribution and the budget. 673

(m
)

distance

Figure 15. Variation of the cost with respect to the reachability distance

Version November 13, 2023 submitted to Smart Cities 24

6.2.3. Budget (β) 674

We allocate a budget to a city that represents the total number of CSs that can be 675

placed in the city. However, we know that placing a CS without demand wastes resources. 676

Therefore, the budget and the demand points are directly related. In the worst-case scenario, 677

each DP will have its own CS. Therefore, the total number of CSs (or budget) can never 678

exceed the number of DPs. This establishes an upper limit on the budget. 679

Additionally, we observe that our clusters are created in such a way that a cluster 680

can have a maximum of three demand points. This is because big cities may consist 681

of many small sized clusters as the ToMATo clustering generates many small clusters as 682

shown in Section 5.2.3, and demand points will be divided across these small clusters. We 683

experimentally validated that a cluster with more than three DPs is quite unlikely. We 684

ensure that our database contains all possible solutions within the specified budget range 685

for each cluster. 686

6.3. Performance Analysis 687

In this section, we evaluate our schemes for a set of micro and macro benchmarks. We 688

consider two metrics for evaluation; 1 the execution time of each algorithm and 2 the cost 689

of the solution provided by the algorithm (see Equation 1a). 690

6.3.1. Microbenchmarks 691

To evaluate the efficiency of PC-ILP, we compare it against the standard ILP approach[47] 692

(timeout set to 1 hour), state-of-the-art Lazy Greedy with Efficient Gain (LGEG) algorithm [8] 693

and a fast meta-heuristic JAYA algorithm [5], which uses a genetic algorithm. As the ILP 694

algorithm is time and memory intensive, we compare the algorithms on a microbenchmark, 695

which is a section of Berlin, Germany. We select an area of 32.50 km2 which contains approx- 696

imately 4100 CCSs. We reduce the number of CCSs in this area to 2500 due to the memory 697

constraints of the ILP. We chose 30 DPs and a budget of 35 CS. The DPs are generated 698

uniformly at random, similar to Lam et al. [71]. Additionally, in order to run the ILP with 699

the given setup, we set an upper bound on the execution time to avoid memory overflow. 700

After exhaustive experimentation, we select an upper bound of 3600 seconds. 701

◮ Cost vs. Budget - We evaluate the performance of the algorithms by gradually increasing 702

the allocated budget while keeping the CCSs and DPs fixed. 703

(a) (b)

Figure 16. A comparison between PC-ILP, state-of-the-art LGEG, standard ILP, and JAYA against the
budget: (a) Cost; (b) Performance

Figure 16 compares the solutions provided by the various algorithms against the 704

allocated budget. Figure 16a shows that the cost of the solution provided by JAYA and 705

LGEG is worse than both ILP and PC-ILP. Specifically, PC-ILP outperforms LGEG by 706

38.87% and JAYA by 5.09× with respect to the solution cost, which is expected as LGEG is 707

Version November 13, 2023 submitted to Smart Cities 25

not operating exhaustively on the CCSs and DPs and genetic algorithms are known to scale 708

poorly against complexity due to the exponential increase in the size of the search space. 709

Upon closer inspection, we see that the solutions provided by PC-ILP are marginally 710

better than the ILP solutions. Figure 16b shows that PC-ILP and LGEG are faster than 711

standard ILP. This is expected the ILP is more time and memory intensive than both LGEG 712

and PC-ILP. We also observe that PC-ILP provides an average performance improvement 713

of 3.27× over LGEG and 289.37× speedup vis-a-vis JAYA. 714

◮ Cost vs. DPs - Next, we study the impact of gradually increasing the number of DPs 715

while keeping the CCSs and the budget constant. We evaluate the algorithms on the same 716

metrics as before. Figure 17 compares the three algorithms plotted against increasing DPs. 717

Figure 17a shows that PC-ILP performs better than the standard ILP, LGEG, and JAYA over 718

the entire range of DPs with respect to cost. We also observe that all costs rise with an 719

increase in the number of DPs. This is due to the budget being constant. 720

(a) (b)

Figure 17. A comparison between PC-ILP, state-of-the-art LGEG, standard ILP, and JAYA against the
number of DPs: (a) Cost; (b) Performance.

Figure 17b shows that the performance of PC-ILP is unaffected by the number of DPs, 721

as the execution time of PC-ILP is directly proportional to the number of clusters and the 722

time taken to process the DPs is minimal. On the other hand, the performance of LGEG 723

and JAYA deteriorate with a gradual increase in DPs since the execution time of LGEG 724

depends on the number of DPs and CCSs, while the execution time of JAYA depends on 725

the budget, CCSs, and DPs. 726

Summary: We have thus established that PC-ILP performs far better than LGEG, JAYA, and 727

standard ILP while providing marginally better solutions at the same time. Subsequently, 728

we focus on estimating the performance of all the algorithms on a set of macrobenchmarks. 729

6.3.2. Macrobenchmarks: 50 Cities 730

Next, we evaluate the performance of PC-ILP against ILP, LGEG and JAYA on a set of 731

macrobenchmarks with the same hardware configurations as mentioned in Table 1. We run 732

this code on our full set of 50 cities. Because of a lack of space, we shall only present the 733

results for 14 cities (representative ones). Figure 18 shows the costs of solutions provided 734

by PC-ILP, ILP, LGEG and JAYA along with their average performance. 735

We observe that, on average, PC-ILP provides a solution that is 36.62% better than 736

ILP under the same system configurations, while providing 21.09% better solutions than 737

LGEG and 30.34% better solutions than JAYA. Figure 19 shows the time taken to compute 738

the solution using PC-ILP and the ILP for some cities, along with the average execution 739

time for across all cities. We observe that PC-ILP is nearly 1.5× faster than LGEG, 1.78× 740

faster than JAYA and 30× faster than ILP. 741

Version November 13, 2023 submitted to Smart Cities 26

Figure 18. Comparison of the cost of the solution for different cities

Figure 19. Comparison of the performance for different cities

6.4. Scalability Analysis 742

In this section, we evaluate the scalability of the proposed scheme with an increasing 743

number of CCSs. We compute the execution time while increasing the total number of 744

CCSs linearly as shown in Figure 20. We observe that PC-ILP scales linearly with an increase 745

in CCSs and clusters, whereas the standard ILP is known to be an NP-hard problem and will not 746

scale in the same way. This means that the proposed scheme performs 30× better than the 747

standard ILP method for a large-area city maps under the given system configuration and 748

assumptions. The cost of the solutions in both the methods remain nearly the same. 749

Figure 20. Performance comparison of PC-ILP and standard ILP for different number of CCSs

6.5. Overheads of Fixing Violated Constraints 750

We note that when we repair the solution upon discovering the violation of any 751

constraint, an additional cost is borne. Constraints are violated in only 6 of the 50 actual 752

real-world cities (only 12% of cases). After repairing the solution and fixing the constraint 753

violation, we were able to get a solution for all the real-world use cases (real cities). For 754

reference, an average-sized cluster is approximately 250, 000 m2. Without corrections in 755

these cases, the average cost (i.e., cost for an average-sized cluster) is 44.94 m (average 756

distance from a DP to its mapped CS). Post corrections, an additional cost of 4.87 m is 757

borne, bringing the total cost to 49.81 m and only an additional 4% of the total execution 758

time is spend for repairing the solution. 759

6.6. Overheads of Adding Additional Constraints 760

We evaluated the proposed scheme with a set of additional constraints (detailed in 761

Section 3.1). For this evaluation, we consider the same section of Berlin, Germany, with 500 762

Version November 13, 2023 submitted to Smart Cities 27

CCSs, 10 DPs, a CSs’ budget (β) of 3, a chargers’ budget (βa) of 30, traffic monitoring time 763

(tc) of 24 hours and EV charging time (ts) as 30 minutes (same as [72]). We incorporate the 764

traffic information using the SUMO traffic simulator as shown in Figure 21. The simulator 765

provides us with the traffic estimate at each CS. Figure 21 depicts the total number of 766

chargers placed at each CS using the proposed algorithm. 767

We observe that the cost of the PC-ILP and ILP solutions are nearly the same as both 768

algorithms place their CSs in nearly the same locations. The time taken to generate a 769

solution using a combination of PC-ILP along with ILP (for additional constraints) is 34.6 770

seconds, while the time taken by standard ILP is 112.7 seconds, with nearly the same cost. 771

So, we conclude that the proposed technique can accommodate any extra constraints with 772

minimal performance loss. 773

1 Chargers

712

5

Figure 21. Experiment: Charging station placement with additional constraints. A section of Berlin,
Germany. The numeric digits represent the number of chargers placed in a charging station.

7. Related Work 774

We extensively analyzed prior work and classified the proposed solutions for solving 775

the EV charging placement problem into three main families of approaches 1 mathematical 776

programming based approaches [73,74]; 2 heuristic or meta-heuristic based approaches 777

[75–77]; and 3 hybrid approaches [13,78–81]. 778

7.1. Mathematical Programming based Approaches 779

The mathematical programming based approaches commonly define the task of deter- 780

mining the optimal placement of charging stations as an optimization problem, wherein 781

the objective functions are created based on different criteria such as the maximum dis- 782

tance between a DP and CS or the number of CSs. This family of approaches includes 783

several classical approaches such as ILP, quadratic programming, mixed integer nonlinear 784

programming (MINLP), etc. 785

Brandstatter et al. [73] propose utilizing ILP optimization models in order to find 786

the optimal location and sizes (number of chargers) of CSs by considering the expected 787

number of trips made by a shared EV based on the user demand and battery state. They 788

use the IBM ILOG CPLEX solver as a means of solving this problem and show that the 789

problem exhibits NP-hardness when either the budget or the battery capacity of EVs is 790

constrained. However, if we assume that both the budget and the battery capacity are not 791

constrained, the problem may be solved efficiently in polynomial time. Sadly, it is not a 792

realistic assumption. Similarly, Ullah et al. [2] employed multiple sets of constraints with a 793

classical ILP approach to ensure a good coverage by each CS, but this approach is extremely 794

time-consuming and memory-intensive. Furthermore, the authors fail to take into account 795

Version November 13, 2023 submitted to Smart Cities 28

the queuing time and traffic density in the given region, making the implementation of the 796

proposed strategy unfeasible for real-world settings. 797

Kockelman et al. [74] used mixed integer programming techniques to optimize the 798

problem of CS placement, taking into account the parking demand and the costs paid by 799

users in accessing the CS. The estimation of parking demand was conducted by consider- 800

ing the factors such as site accessibility, local employment opportunities, and population 801

densities. The approach only determines the ideal neighbourhoods for the placement of 802

CSs, it does not specify the exact location and size of the CSs. Additionally, the majority 803

of mathematical programming based solutions have the drawback of requiring substan- 804

tial computational and storage resources, which serves as the greatest barrier to their 805

deployment in real-world scenarios. 806

7.2. Heuristic based Approaches 807

Heuristic based approaches have been shown to effectively solve big and complex 808

optimization models in an efficient manner as compared to mathematical programming 809

based methods. 810

Lam et al. [76] propose and analyze multiple approaches to solve the CS placment 811

problem; they highlight the fact that a greedy approach is most helpful and proves to 812

be the most scalable if we want to solve the problem in polynomial time . However, the 813

authors only considered the reachability distance and the coverage by the CSs; they did not 814

account for the queuing time and traffic conditions, limiting the solution’s applicability in 815

real-world scenarios. Zhang et al. [8] present two heuristic-based approaches Lazy Greedy 816

with Direct Gain (LGDG) and Lazy Greedy with Effective Gain (LGEG) utilizing a greedy 817

algorithm to determine the ideal location of charging stations. They take into account 818

multiple constraints like the charging demand, budget and cruising range. They utilized 819

real-world GPS trajectory data spanning a duration of 87 days, obtained from taxi cabs in 820

Beijing, China to get an estimate of the high-demand trajectories. However, the authors 821

only considered parking lots to be potential CSs, which limits the applicability of their 822

scheme. Also, the application of such approaches in large-scale road networks presents 823

obstacles due to the computationally intensive nature of their algorithm. 824

Shaoyun et al. [75] proposed a method of finding the optimal locations and sizes of 825

the charging stations by dividing a given area into small identical partitions. The number 826

of initial partitions is estimated based on the charging demand of EVs as well as on the 827

maximum and minimum capacity of a charging station. The loss is estimated as the sum 828

of weighted distances from the CS to the demand points. A genetic algorithm is used to 829

provide the final number of charging stations by minimizing the loss and adjusting the 830

number and coverage of the partitions accordingly. Sadly, the queuing time and traffic 831

density of the roads are not considered during the formation of the initial partition, which 832

implies that the solution is scenario-specific and is not universal. Mohanty et al. [77] employ 833

another population-based meta-heuristic algorithm known as JAYA to determine the ideal 834

sites for charging stations (CSs) with an aim to reduce both the installation and operation 835

costs associated with the CSs. Our analyses show that PC-ILP is not only faster than the 836

JAYA algorithm but can generate 30% better solutions. 837

7.3. Hybrid Approaches 838

Hybrid approaches are techniques where a combination of multiple schemes (greedy 839

algorithm, genetic algorithm, ILP, MILNP, etc.) are used to solve the CS placement problem. 840

Awasthi et al. [78] employ a hybrid approach that combines a genetic algorithm with an 841

enhanced version of standard particle swarm optimization in order to determine the ideal 842

placement and size of the CSs. The particle swarm optimization method is capable of 843

optimizing the sub-optimal solution estimated using the genetic algorithm, resulting in 844

improved algorithm functionality and enhanced solution quality. 845

Kavianipour et al.[13] also estimate the locations for charging stations and the number 846

of chargers at each location by employing a decomposition-based strategy (similar to our 847

Version November 13, 2023 submitted to Smart Cities 29

hierarchical strategy) that minimizes the total system cost, which includes charging station 848

and charger installation costs. The initial subproblem uses commercially available solvers 849

and a meta-heuristic algorithm to determine the precise location of the charging stations. 850

This subproblem also generates the information about the traffic flow and energy demand 851

at each CS. This information is sent to the subsequent subproblem, which is a non-linear 852

mixed-integer mathematical model that determines the optimal number of chargers to be 853

installed at each of these stations in order to minimize both the charger installation cost 854

and the waiting time. 855

PC-ILP also employs a hybrid strategy in which we first estimate the location of 856

charging stations using a hierarchical decomposition framework that uses a topological 857

clustering algorithm to divide a large city area into clusters. Then, we estimate the location 858

of CSs in each cluster using a pre-computed database. In the second phase, we estimate the 859

optimal number of chargers in each location using ILP based on the traffic and electrical 860

constraints. The strategy enabled us to break down the large complex CS placement and 861

sizing problem into simpler components, thus enhancing the computational speed and 862

memory requirement while maintaining the quality of the solution. 863

8. Conclusion 864

The problem of EV charging station placement is a classical problem, which is both 865

old and new. There are no two opinions about the fact that it is an established problem and 866

there are numerous meta-heuristic algorithms and pseudo-polynomial time algorithms 867

that provide good solutions. However, the reason that this problem still represents an 868

active area of research is that humans are not in the loop and there is a lot of scope for 869

further improvement. We need to understand that any solution for a smart city will have 870

to take the unique design of the city, its history and the will of the residents into account. 871

Hence, there needs to be a way to have humans in the loop whenever there is some kind of 872

automated city planning. Often, it is hard to represent such desires mathematically and 873

any attempt to do so using standard metrics such as reducing traffic congestion or the 874

distance between DPs and its mapped CSs leads to either very complex solutions or very 875

time-consuming ones that are not intuitive. Hence, we opted for a very different line of 876

thinking in this paper. We relied on the fact that regardless of the city, it is always composed 877

of 5 basic primitives (with some variation). 878

Using these primitives as the basic design elements, we can create intuitive methods 879

to analyze the map of a city, partition it, propose bespoke solutions for each separate cluster 880

and pre-compute solutions for each cluster (based on the basic primitives). Pre-computation 881

leads to a large speedup and also leads to solutions that are explainable and carry a degree 882

of intuition. 883

The other major design decision that we used in this paper was the use of surrogate 884

functions and a subsequent repair-based methodology. This allowed us to hierarchically 885

decompose both the map of the city as well as the set of constraints. We were able to 886

compute small solutions and combine them. Whenever a constraint was violated, we were 887

able to quickly fix the violation using our repair function. Along with speed, the advantage 888

of this approach lies in the fact that we can accommodation an arbitrary number of complex 889

constraints and secondary objective functions that are based on variables like the queueing 890

time, traffic density, nature and amount of the electrical loading (discussed in Section 891

3.1), etc. We expect that this paper will illuminate the path of intuitive topology-driven 892

approaches for future work in this area. 893

Author Contributions: Conceptualization, Mehul Bose, Bivas Ranjan Dutta, Nivedita Shrivastava 894

and Smruti R. Sarangi; Methodology, Mehul Bose, Bivas Ranjan Dutta, Nivedita Shrivastava and 895

Smruti R. Sarangi; Software, Mehul Bose and Bivas Ranjan Dutta; Validation, Nivedita Shrivastava 896

and Smruti R. Sarangi; Formal analysis, Nivedita Shrivastava and Smruti R. Sarangi; Writing— 897

Original draft preparation, Mehul Bose and Bivas Ranjan Dutta; Writing—review and editing, 898

Nivedita Shrivastava and Smruti R. Sarangi; Supervision, Smruti R. Sarangi; Project administration, 899

Smruti R. Sarangi; All authors have read and agreed to the published version of the manuscript. 900

Version November 13, 2023 submitted to Smart Cities 30

Funding: This research received no external funding. 901

Conflicts of Interest: The authors declare no conflict of interest. 902

Abbreviations 903

The following abbreviations are used in this manuscript: 904

905

CNN Convolution Neural Network
EV Electric vehicle
CCS Candidate charging stations
CS Charging station
DP Demand point
ILP Integer Linear Programming
PC-ILP Persistence-based Clustering assisted Integer Linear Programming
MAT Medial Axis Transform
DBSCAN Density-Based Spatial Clustering of Applications with Noise
SUMO Simulation of Urban Mobility
PD Persistence Diagram
ToMATo Topological Mode Analysis Tool
LGEG Lazy Greedy with Effective Gain
LGDG Lazy Greedy with Direct Gain
MINLP Mixed integer nonlinear programming

906

References 907

1. Kapustin, N.O.; Grushevenko, D.A. Long-term electric vehicles outlook and their potential impact on electric grid. Energy Policy 908

2020, 137, 111103. https://doi.org/https://doi.org/10.1016/j.enpol.2019.111103. 909

2. Ullah, I.; Liu, K.; Layeb, S.B.; Severino, A.; Jamal, A. Optimal Deployment of Electric Vehicles’ Fast-Charging Stations. Journal of 910

Advanced Transportation 2023, 2023, 6103796. TY - JOUR, https://doi.org/10.1155/2023/6103796. 911

3. Zhong, P.; Xu, A.; Kang, Y.; Zhang, S.; Zhang, Y. An optimal deployment scheme for extremely fast charging stations. Peer-to-Peer 912

Networking and Applications 2022, 15, 1486–1504. TY - JOUR, https://doi.org/10.1007/s12083-022-01306-7. 913

4. Shafiei, M.; Ghasemi-Marzbali, A. Fast-charging station for electric vehicles, challenges and issues: A comprehensive review. 914

Journal of Energy Storage 2022, 49, 104136. https://doi.org/https://doi.org/10.1016/j.est.2022.104136. 915

5. Mohanty, A.K.; Babu, P.S. Optimal Placement of Electric Vehicle Charging Stations Using JAYA Algorithm. In Proceedings of the 916

Recent Advances in Power Systems; Gupta, O.H.; Sood, V.K., Eds.; Springer Singapore: Singapore, 2021; pp. 259–266. 917

6. Zafar, U.; Bayram, I.S.; Bayhan, S. A GIS-based Optimal Facility Location Framework for Fast Electric Vehicle Charging 918

Stations. In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), 2021, pp. 1–5. 919

https://doi.org/10.1109/ISIE45552.2021.9576448. 920

7. Wu, X.; Feng, Q.; Bai, C.; Lai, C.S.; Jia, Y.; Lai, L.L. A novel fast-charging stations locational planning model for electric bus transit 921

system. Energy 2021, 224, 120106. https://doi.org/https://doi.org/10.1016/j.energy.2021.120106. 922

8. Zhang, Y.; Wang, Y.; Li, F.; Wu, B.; Chiang, Y.Y.; Zhang, X. Efficient Deployment of Electric Vehicle Charging Infrastructure: 923

Simultaneous Optimization of Charging Station Placement and Charging Pile Assignment. IEEE Transactions on Intelligent 924

Transportation Systems 2021, 22, 6654–6659. https://doi.org/10.1109/TITS.2020.2990694. 925

9. Fang, C.; Lu, H.; Hong, Y.; Liu, S.; Chang, J. Dynamic Pricing for Electric Vehicle Extreme Fast Charging. Trans. Intell. Transport. 926

Syst. 2020, 22, 531–541. https://doi.org/10.1109/TITS.2020.2983385. 927

10. Bilal, M.; Rizwan, M.M. Electric vehicles in a smart grid: a comprehensive survey on optimal location of charging station. IET 928

Smart Grid 2020. 929

11. Vazifeh, M.M.; Zhang, H.; Santi, P.; Ratti, C. Optimizing the deployment of electric vehicle charging stations using pervasive 930

mobility data. Transportation Research Part A: Policy and Practice 2019, 121, 75–91. https://doi.org/https://doi.org/10.1016/j.tra. 931

2019.01.002. 932

12. Khan, W.; Ahmad, F.; Alam, M.S. Fast EV charging station integration with grid ensuring optimal and quality power exchange. 933

Engineering Science and Technology, an International Journal 2019, 22, 143–152. https://doi.org/https://doi.org/10.1016/j.jestch.20 934

18.08.005. 935

13. Kavianipour, M.; Fakhrmoosavi, F.; Singh, H.; Ghamami, M.; Zockaie, A.; Ouyang, Y.; Jackson, R. Electric vehicle fast charging 936

infrastructure planning in urban networks considering daily travel and charging behavior. Transportation Research Part D: Transport 937

and Environment 2021, 93, 102769. 938

14. Sachan, S.; Deb, S.; Singh, S.N.; Singh, P.P.; Sharma, D.D. Planning and operation of EV charging stations by chicken swarm 939

optimization driven heuristics. Energy Conversion and Economics 2021, 2, 91–99. 940

https://doi.org/https://doi.org/10.1016/j.enpol.2019.111103
https://doi.org/10.1155/2023/6103796
https://doi.org/10.1007/s12083-022-01306-7
https://doi.org/https://doi.org/10.1016/j.est.2022.104136
https://doi.org/10.1109/ISIE45552.2021.9576448
https://doi.org/https://doi.org/10.1016/j.energy.2021.120106
https://doi.org/10.1109/TITS.2020.2990694
https://doi.org/10.1109/TITS.2020.2983385
https://doi.org/https://doi.org/10.1016/j.tra.2019.01.002
https://doi.org/https://doi.org/10.1016/j.tra.2019.01.002
https://doi.org/https://doi.org/10.1016/j.tra.2019.01.002
https://doi.org/https://doi.org/10.1016/j.jestch.2018.08.005
https://doi.org/https://doi.org/10.1016/j.jestch.2018.08.005
https://doi.org/https://doi.org/10.1016/j.jestch.2018.08.005

Version November 13, 2023 submitted to Smart Cities 31

15. Wang, J. Optimization of Ev Charging Pile Layout on Account of Ant Colony Algorithm. In Proceedings of the Cyber Security 941

Intelligence and Analytics; Xu, Z.; Alrabaee, S.; Loyola-González, O.; Cahyani, N.D.W.; Ab Rahman, N.H., Eds.; Springer Nature 942

Switzerland: Cham, 2023; pp. 450–458. 943

16. Garcia Alvarez, J.; González, M.Á.; Rodriguez Vela, C.; Varela, R. Electric vehicle charging scheduling by an enhanced artificial 944

bee colony algorithm. Energies 2018, 11, 2752. 945

17. Yang, H.; Gao, Y.; Farley, K.B.; Jerue, M.; Perry, J.; Tse, Z. EV usage and city planning of charging station installations. In 946

Proceedings of the 2015 IEEE Wireless Power Transfer Conference (WPTC), 2015, pp. 1–4. https://doi.org/10.1109/WPT.2015.7 947

139139. 948

18. Mahadeva Iyer, V.; Gulur, S.; Gohil, G.; Bhattacharya, S. Extreme fast charging station architecture for electric vehicles with partial 949

power processing. 2018, pp. 659–665. https://doi.org/10.1109/APEC.2018.8341082. 950

19. Liu, Y.; Zhu, Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nature Energy 2019, 4, 540–550. 951

20. Chen, X.; Li, Z.; Dong, H.; Hu, Z.; Mi, C. Enabling Extreme Fast Charging Technology for Electric Vehicles. IEEE Transactions on 952

Intelligent Transportation Systems 2021, 22, 466–470. https://doi.org/10.1109/TITS.2020.3045241. 953

21. Ge, S.; Feng, L.; Liu, H. The planning of electric vehicle charging station based on Grid partition method. In Proceedings of the 954

2011 International Conference on Electrical and Control Engineering, 2011, pp. 2726–2730. https://doi.org/10.1109/ICECENG. 955

2011.6057636. 956

22. Du, B.; Tong, Y.; Zhou, Z.; Tao, Q.; Zhou, W. Demand-aware charger planning for electric vehicle sharing. In Proceedings of the 957

24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2018, pp. 1330–1338. https://doi.org/https: 958

//doi.org/10.1145/3219819.3220032. 959

23. Emelichev, V.; Girlich, E.; Nikulin, Y.; Podkopaev, D. Stability and Regularization of Vector Problems of Integer Linear Program- 960

ming. Optimization 2002, 51, 645–676. https://doi.org/10.1080/0233193021000030760. 961

24. Sriabisha, R.; Yuvaraj, T. Optimum placement of Electric Vehicle Charging Station using Particle Swarm Optimization Algorithm. 962

In Proceedings of the 2023 9th International Conference on Electrical Energy Systems (ICEES). IEEE, 2023, pp. 283–288. 963

25. Zhang, L.; Gao, T.; Cai, G.; Hai, K.L. Research on electric vehicle charging safety warning model based on back propagation 964

neural network optimized by improved gray wolf algorithm. Journal of Energy Storage 2022, 49, 104092. 965

26. Jordanov, I.; Jain, R. Knowledge-based and intelligent information and engineering systems; Springer, 2010. 966

27. Fredriksson, H.; Dahl, M.; Holmgren, J. Optimal placement of charging stations for electric vehicles in large-scale transportation 967

networks. Procedia computer science 2019, 160, 77–84. 968

28. Chaieb, M.; Jemai, J.; Mellouli, K. A hierarchical decomposition framework for modeling combinatorial optimization problems. 969

Procedia Computer Science 2015, 60, 478–487. 970

29. Koch, P.; Bagheri, S.; Konen, W.; Foussette, C.; Krause, P.; Bäck, T. A new repair method for constrained optimization. In 971

Proceedings of the Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 2015, pp. 273–280. 972

30. Bagheri, S.; Konen, W.; Emmerich, M.; Bäck, T. Self-adjusting parameter control for surrogate-assisted constrained optimization 973

under limited budgets. Applied Soft Computing 2017, 61, 377–393. 974

31. Batty, M.; Longley, P.A. Fractal cities: a geometry of form and function; Academic press, 1994. 975

32. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. 976

ISPRS Journal of Photogrammetry and Remote Sensing 2021, 173, 24–49. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.12. 977

010. 978

33. Amenta, N.; Choi, S.; Kolluri, R.K. The power crust, unions of balls, and the medial axis transform. Computational Geometry 2001, 979

19, 127–153. Combinatorial Curves and Surfaces, https://doi.org/https://doi.org/10.1016/S0925-7721(01)00017-7. 980

34. Patel, A. Generalized persistence diagrams. Journal of Applied and Computational Topology 2018, 1, 397–419. https://doi.org/10.1 981

007/s41468-018-0012-6. 982

35. OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https://www.openstreetmap.org, 2017. 983

36. MacQueen, J.; et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the Proceedings 984

of the fifth Berkeley symposium on mathematical statistics and probability. Oakland, CA, USA, 1967, number 14 in 1, pp. 281–297. 985

37. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with 986

Noise. In Proceedings of the Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. 987

AAAI Press, 1996, KDD’96, p. 226–231. 988

38. Ankerst, M.; Breunig, M.M.; Kriegel, H.P.; Sander, J. OPTICS: Ordering Points to Identify the Clustering Structure. SIGMOD Rec. 989

1999, 28, 49–60. https://doi.org/10.1145/304181.304187. 990

39. Chazal, F.; Guibas, L.J.; Oudot, S.Y.; Skraba, P. Persistence-Based Clustering in Riemannian Manifolds. J. ACM 2013, 60. 991

https://doi.org/10.1145/2535927. 992

40. Lee, D.T. Medial Axis Transformation of a Planar Shape. IEEE Transactions on Pattern Analysis and Machine Intelligence 1982, 993

PAMI-4, 363–369. https://doi.org/10.1109/TPAMI.1982.4767267. 994

41. Chazal, F.; Michel, B. An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists. 995

Frontiers in Artificial Intelligence 2021, 4. https://doi.org/10.3389/frai.2021.667963. 996

42. Maria, C.; Dlotko, P.; Rouvreau, V.; Glisse, M. Rips complex. In GUDHI User and Reference Manual, 3.8.0 ed.; GUDHI Editorial 997

Board, 2023. 998

43. Rouvreau, V.; Montassif, H. Čech complex. In GUDHI User and Reference Manual, 3.8.0 ed.; GUDHI Editorial Board, 2023. 999

https://doi.org/10.1109/WPT.2015.7139139
https://doi.org/10.1109/WPT.2015.7139139
https://doi.org/10.1109/WPT.2015.7139139
https://doi.org/10.1109/APEC.2018.8341082
https://doi.org/10.1109/TITS.2020.3045241
https://doi.org/10.1109/ICECENG.2011.6057636
https://doi.org/10.1109/ICECENG.2011.6057636
https://doi.org/10.1109/ICECENG.2011.6057636
https://doi.org/https://doi.org/10.1145/3219819.3220032
https://doi.org/https://doi.org/10.1145/3219819.3220032
https://doi.org/https://doi.org/10.1145/3219819.3220032
https://doi.org/10.1080/0233193021000030760
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/https://doi.org/10.1016/S0925-7721(01)00017-7
https://doi.org/10.1007/s41468-018-0012-6
https://doi.org/10.1007/s41468-018-0012-6
https://doi.org/10.1007/s41468-018-0012-6
 https://www.openstreetmap.org
https://doi.org/10.1145/304181.304187
https://doi.org/10.1145/2535927
https://doi.org/10.1109/TPAMI.1982.4767267
https://doi.org/10.3389/frai.2021.667963

Version November 13, 2023 submitted to Smart Cities 32

44. Goričan, P.; Žiga Virk. Critical edges in Rips complexes and persistence, 2023, [arXiv:math.AT/2304.05185]. 1000

45. Krajzewicz, D., Traffic Simulation with SUMO – Simulation of Urban Mobility. In Fundamentals of Traffic Simulation; Springer New 1001

York: New York, NY, 2010; pp. 269–293. https://doi.org/10.1007/978-1-4419-6142-6_7. 1002

46. Rao, R. Jaya: A Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems. 1003

International Journal of Industrial Engineering Computations 2016, 7, 19–34. 1004

47. Dilip, K.N. Optimal Placement of Electric Vehicle Charging Stations with Electricity Theft Control. Indian Institute of Technology 1005

Delhi 2020. 1006

48. Chen, H.; Hu, Z.; Luo, H.; Qin, J.; Rajagopal, R.; Zhang, H. Design and Planning of a Multiple-Charger Multiple-Port Charging 1007

System for PEV Charging Station. IEEE Transactions on Smart Grid 2019, 10, 173–183. https://doi.org/10.1109/TSG.2017.2735636. 1008

49. Zhang, H.; Hu, Z.; Xu, Z.; Song, Y. Optimal Planning of PEV Charging Station With Single Output Multiple Cables Charging 1009

Spots. IEEE Transactions on Smart Grid 2017, 8, 2119–2128. https://doi.org/10.1109/TSG.2016.2517026. 1010

50. Garwa, N.; Niazi, K.R. Impact of EV on integration with grid system–a review. In Proceedings of the 2019 8th international 1011

conference on power systems (ICPS). IEEE, 2019, pp. 1–6. 1012

51. Zhu, J.; Li, Y.; Yang, J.; Li, X.; Zeng, S.; Chen, Y. Planning of electric vehicle charging station based on queuing theory. The Journal 1013

of Engineering 2017, 2017, 1867–1871. 1014

52. Zhao, Z.; Li, X.; Zhou, X. Distribution route optimization for electric vehicles in urban cold chain logistics for fresh products 1015

under time-varying traffic conditions. Mathematical Problems in Engineering 2020, 2020, 1–17. 1016

53. Sester, M. Optimization approaches for generalization and data abstraction. International Journal of Geographical Information Science 1017

2005, 19, 871–897, [https://doi.org/10.1080/13658810500161179]. https://doi.org/10.1080/13658810500161179. 1018

54. Sakai, T.; Imiya, A. Fast spectral clustering with random projection and sampling. In Proceedings of the International Workshop 1019

on Machine Learning and Data Mining in Pattern Recognition. Springer, 2009, pp. 372–384. 1020

55. Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota) 1021

Metropolitan Area by multitemporal Landsat remote sensing. Remote sensing of Environment 2005, 98, 317–328. 1022

56. Zhang, H.; Hu, Z.; Xu, Z.; Song, Y. Optimal planning of PEV charging station with single output multiple cables charging spots. 1023

IEEE Transactions on Smart Grid 2016, 8, 2119–2128. 1024

57. Chen, H.; Hu, Z.; Luo, H.; Qin, J.; Rajagopal, R.; Zhang, H. Design and planning of a multiple-charger multiple-port charging 1025

system for PEV charging station. IEEE Transactions on Smart Grid 2017, 10, 173–183. 1026

58. Yang, Q.; Sun, S.; Deng, S.; Zhao, Q.; Zhou, M. Optimal sizing of PEV fast charging stations with Markovian demand 1027

characterization. IEEE Transactions on Smart Grid 2018, 10, 4457–4466. 1028

59. Sklansky, J.; Gonzalez, V. Fast polygonal approximation of digitized curves. Pattern Recognition 1980, 12, 327–331. https: 1029

//doi.org/https://doi.org/10.1016/0031-3203(80)90031-X. 1030

60. Ma, Q.; Wu, J.; He, C.; Hu, G. Spatial scaling of urban impervious surfaces across evolving landscapes: From cities to urban 1031

regions. Landscape and Urban Planning 2018, 175, 50–61. 1032

61. Sözen, A.; Arcaklıoğlu, E.; Özalp, M.; Çağlar, N. Forecasting based on neural network approach of solar potential in Turkey. 1033

Renewable Energy 2005, 30, 1075–1090. 1034

62. Jiang, B.; Liu, X. Scaling of geographic space from the perspective of city and field blocks and using volunteered geographic 1035

information. International Journal of Geographical Information Science 2012, 26, 215–229. 1036

63. Panakkat, A.; Adeli, H. Recurrent neural network for approximate earthquake time and location prediction using multiple 1037

seismicity indicators. Computer-Aided Civil and Infrastructure Engineering 2009, 24, 280–292. 1038

64. Panakkat, A.; Adeli, H. Recurrent neural network for approximate earthquake time and location prediction using multiple 1039

seismicity indicators. Computer-Aided Civil and Infrastructure Engineering 2009, 24, 280–292. 1040

65. Ouammi, A.; Zejli, D.; Dagdougui, H.; Benchrifa, R. Artificial neural network analysis of Moroccan solar potential. Renewable and 1041

Sustainable Energy Reviews 2012, 16, 4876–4889. 1042

66. Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The Quickhull Algorithm for Convex Hulls. ACM Trans. Math. Softw. 1996, 22, 469–483. 1043

https://doi.org/10.1145/235815.235821. 1044

67. Rezaei, M. Improving a Centroid-Based Clustering by Using Suitable Centroids from Another Clustering. Journal of Classification 1045

2020. https://doi.org/10.1007/s00357-018-9296-4. 1046

68. OpenStreetMap Wiki contributors. Overpass API/Overpass QL. OpenStreetMap Wiki, 2023. Page name: Overpass API/Overpass 1047

QL, Date retrieved: 4 July 2023 12:04 UTC, Page Version ID: 2550700. 1048

69. UN. World Urbanization Prospects, 2018. Accessed on October, 2023. 1049

70. Gopalakrishnan, R.; Biswas, A.; Lightwala, A.; Vasudevan, S.; Dutta, P.; Tripathi, A. Demand prediction and placement 1050

optimization for electric vehicle charging stations. arXiv preprint arXiv:1604.05472 2016. 1051

71. Lam, A.Y.; Leung, Y.W.; Chu, X. Electric vehicle charging station placement. In Proceedings of the 2013 IEEE International 1052

Conference on Smart Grid Communications (SmartGridComm), 2013, pp. 510–515. https://doi.org/10.1109/SmartGridComm. 1053

2013.6688009. 1054

72. Veneri, O.; Ferraro, L.; Capasso, C.; Iannuzzi, D. Charging infrastructures for EV: Overview of technologies and issues. In 1055

Proceedings of the 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion, 2012, pp. 1–6. https://doi.org/10.1109/ 1056

ESARS.2012.6387434. 1057

http://xxx.lanl.gov/abs/2304.05185
https://doi.org/10.1007/978-1-4419-6142-6_7
https://doi.org/10.1109/TSG.2017.2735636
https://doi.org/10.1109/TSG.2016.2517026
http://xxx.lanl.gov/abs/https://doi.org/10.1080/13658810500161179
https://doi.org/10.1080/13658810500161179
https://doi.org/https://doi.org/10.1016/0031-3203(80)90031-X
https://doi.org/https://doi.org/10.1016/0031-3203(80)90031-X
https://doi.org/https://doi.org/10.1016/0031-3203(80)90031-X
https://doi.org/10.1145/235815.235821
https://doi.org/10.1007/s00357-018-9296-4
https://doi.org/10.1109/SmartGridComm.2013.6688009
https://doi.org/10.1109/SmartGridComm.2013.6688009
https://doi.org/10.1109/SmartGridComm.2013.6688009
https://doi.org/10.1109/ESARS.2012.6387434
https://doi.org/10.1109/ESARS.2012.6387434
https://doi.org/10.1109/ESARS.2012.6387434

Version November 13, 2023 submitted to Smart Cities 33

73. Brandstätter, G.; Leitner, M.; Ljubić, I. Location of charging stations in electric car sharing systems. Transportation Science 2020, 1058

54, 1408–1438. 1059

74. Chen, T.D.; Kockelman, K.M.; Khan, M.; et al. The electric vehicle charging station location problem: a parking-based assignment 1060

method for Seattle. In Proceedings of the Transportation Research Board 92nd Annual Meeting, 2013, Vol. 340, pp. 13–1254. 1061

75. Ge, S.; Feng, L.; Liu, H. The planning of electric vehicle charging station based on grid partition method. In Proceedings of the 1062

2011 International Conference on Electrical and Control Engineering. IEEE, 2011, pp. 2726–2730. 1063

76. Lam, A.Y.S.; Leung, Y.W.; Chu, X. Electric Vehicle Charging Station Placement: Formulation, Complexity, and Solutions. IEEE 1064

Transactions on Smart Grid 2014, 5, 2846–2856. https://doi.org/10.1109/TSG.2014.2344684. 1065

77. Mohanty, A.K.; Babu, P.S. Optimal placement of electric vehicle charging stations using JAYA algorithm. In Proceedings of the 1066

Recent Advances in Power Systems: Select Proceedings of EPREC 2020. Springer, 2021, pp. 259–266. 1067

78. Awasthi, A.; Venkitusamy, K.; Padmanaban, S.; Selvamuthukumaran, R.; Blaabjerg, F.; Singh, A.K. Optimal planning of electric 1068

vehicle charging station at the distribution system using hybrid optimization algorithm. Energy 2017, 133, 70–78. 1069

79. Battapothula, G.; Yammani, C.; Maheswarapu, S. Multi-objective simultaneous optimal planning of electrical vehicle fast charging 1070

stations and DGs in distribution system. Journal of Modern Power Systems and Clean Energy 2019, 7, 923–934. 1071

80. Sadeghi-Barzani, P.; Rajabi-Ghahnavieh, A.; Kazemi-Karegar, H. Optimal fast charging station placing and sizing. Applied Energy 1072

2014, 125, 289–299. https://doi.org/https://doi.org/10.1016/j.apenergy.2014.03.077. 1073

81. Rajabi-Ghahnavieh, A.; Sadeghi-Barzani, P. Optimal Zonal Fast-Charging Station Placement Considering Urban Traffic Circulation. 1074

IEEE Transactions on Vehicular Technology 2017, 66, 45–56. https://doi.org/10.1109/TVT.2016.2555083. 1075

https://doi.org/10.1109/TSG.2014.2344684
https://doi.org/https://doi.org/10.1016/j.apenergy.2014.03.077
https://doi.org/10.1109/TVT.2016.2555083

	Introduction
	Salient Features of PC-ILP
	List of Contributions

	Background
	Mathematical Techniques
	Clustering
	Medial Axis Transform (MAT)
	Topological Data Analysis (TDA) and Persistence Homology

	Simulation of Urban Mobility (SUMO): Traffic Simulator
	JAYA algorithm

	Problem Formulation
	Additional Constraints

	Characterization
	Clustering Algorithm - Identification of the Clusters in a City

	Material and Methods
	Overview of the Scheme
	Placement of Charging Stations (Primary Objective)
	Create Database of Pre-Computed Solutions (Offline)
	Locating Potential Charging Stations in the Input Map
	Clustering Algorithm
	Shape Identification using a Convolution Neural Network (CNN)
	Retreival of the Pre-computed Solution from the Database
	Mapping the Precomputed Solution

	Repairing an Infeasible Solution
	Chargers at Each Charging Station (Additional Objective)

	Results and Discussion
	Setup
	Parameters for the Creation of the Precomputed Database
	Number of Zones in each Shape
	Reachability Distance ()
	Budget ()

	Performance Analysis
	Microbenchmarks
	Macrobenchmarks: 50 Cities

	Scalability Analysis
	Overheads of Fixing Violated Constraints
	Overheads of Adding Additional Constraints

	Related Work
	Mathematical Programming based Approaches
	Heuristic based Approaches
	Hybrid Approaches

	Conclusion
	References

