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ABSTRACT

KEYWORDS: Boltzmann transport equation, Nanoscale thermal simulation,
Green’s function, Hankel transform, Fourier equation

Temperature simulation is a classic problem in EDA, and researchers have been working
on it for at least the last 15 years. In this paper, we focus on fast Green’s function based
approaches, where computing the temperature profile is as simple as computing the convo-
lution of the power profile with the Green’s function. We observe that for many problems
of interest the process of computing the Green’s function is the most time consuming phase,
because we need to compute it with the slower finite difference or finite element based ap-
proaches. In this paper we propose a solution, NanoTherm, to compute the Green’s function
for an SoC very quickly using a fast analytical approach that exploits the symmetry in the
thermal distribution.

Secondly, conventional analyses based on the Fourier’s heat transfer equation fail to hold
at the nanometer level. To accurately compute the temperature at the level of a standard
cell, it is necessary to solve the Boltzmann transport equation (BTE) that accounts for
quantum mechanical effects. This research area is very sparse. Conventional approaches
ignore the quantum effects, which can result in a 25 to 60% error in temperature calculation.
Hence, we propose a fast analytical approach to solve the BTE and obtain an exact
solution in the Fourier transform space.

Using our fast analytical models, we demonstrate a speedup of 7-668X over state of the
art techniques with an error limited to 3% while computing the combined Green’s function
(that incorporates both Fourier and BTE models).
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Chapter 1

Introduction

For at least the last 15 years, the design community has viewed on-chip temperature as one of
the most important criteria while designing a new SoC. High temperatures result in several
adverse effects. The reliability of the device is negatively affected [4] and the carrier mobility
is degraded, resulting in poorer performance [4]. Moreover, the chip temperature determines
the leakage power. Finally, note that with increasing power and transistor densities, the
problem of high on-chip temperatures is expected to get worse [5].

Different stages of the design process have different levels of information available, and
the requirements for thermal optimization at each stage are different. For instance, at the ar-
chitecture level, standard cell information or package level information such as the properties
of the heat spreader and heat sink may not be available. Hence designers make assumptions
about the missing information, and evaluate the design space from a thermal point of view.
After synthesis and standard cell mapping, designers can conduct more accurate thermal
analyses to determine the nature of packaging and expected on-chip temperatures for differ-
ent workloads. The latter can be conveyed to software and systems designers such that they
can optimize the system at their end. Over the entire design cycle, thousands of candidate
designs have to be evaluated based on the information available at each stage to determine
the optimal configuration. In such a case the speed of the thermal simulation becomes a
bottleneck in the design process [6, 7]. As a result, fast thermal estimation at all stages
of the design is necessary.

Many thermal simulators [8, 9, 10, 11] which are based on the classical Fourier heat
transfer equation exist in this space. They can broadly be divided into three categories in
decreasing order of their computation time: finite element based (FEM), finite difference

Fourier 
solution

BTE 
solution

Green’s
function

Power *
Thermal Profile 

sub-function unit

Thermal profile of 
a chip

Detailed 
thermal profile Detailed thermal profile

+

Figure 1.1: Overview of our algorithm
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based (FDM), and Green’s function based. The Green’s function is defined as the impulse
response of a unit power source (Dirac delta function). Green’s function based temperature
estimators [9, 10, 1] are the fastest and their accuracy is broadly acceptable [10]. We shall
focus on such simulators in this paper. The main drawback of many of the Green’s function
based approaches is that they rely on a traditional finite element or finite difference based
simulator to compute the Green’s functions [9, 10, 12]. If the geometry of the chip or the
boundary conditions change, the Green’s function will have to be recomputed, making it a
very slow and time consuming process [7]. Moreover, as we move down to smaller dimensions,
at the nanometer scale, the quantum effects become significant. Conventional approaches
do not take the quantum effects into account, and do a regular analysis based on classical
Fourier’s heat transfer equations. It has been shown in [13, 14, 15] and in our analysis that
this leads to a 25 to 60% error in estimation.

Particularly, in the later stages of the design process, an accurate estimate of temperature
is needed at the nanometer scale for two reasons: 1) to optimize the design of standard cells
by taking thermal effects into account, and 2) to design mixed-signal blocks, where the
analog functional units are highly sensitive to temperature [2].

We address both of these drawbacks of existing works by proposing a new simulator,
NanoTherm. Figure 1.1 provides an overview of our algorithm.

1. First, we propose a very fast analytical method to compute the transient and steady
state Green’s functions for a conventional chip using traditional heat transfer mechanisms.
Unlike prior work [1, 2] we use the notion of symmetry to reduce an O(N2) problem to an
O(N) problem, and then use a Hankel transform based approach.

Sadly, this is not enough to model modern SoCs, where the feature size is approaching the
ballistic limit (mean free path of phonons, approximately 40 nm [15]) and quantum effects
such as phonon propagation and scattering dominate at the nanoscale level. These phonon
effects need to be modeled in addition to the Fourier heat equation, by solving the Boltzmann
transport equation (BTE). Other than a few proposals such as ThermalScope [16, 13], there
is very little work in this area.

2. The second part of our model proposes a new way of computing the temperature
profile at the nanometer level using the BTE. Instead of using the finite element method
as used by ThermalScope [16, 13], we derive the Green’s function incorporating phonon
effects by using a fast analytical approach, and finally combine the results of both Fourier
and BTE based analysis. Using this approach we can derive the Green’s function and the
resultant temperature profile for the entire system. To the best of our knowledge, this is the
first fully analytical approach to generate such a combined Green’s function. Our approach,
NanoTherm, is 7-688 times faster than the state of the art.

In Chapter 2 we introduce the relevant background and related work. Then we discuss
our methodology in Chapter 3. We proceed to Chapter 4 to present the evaluation of our
proposed approach and the results obtained, and finally conclude in Chapter 5.

© 2019, Indian Institute of Technology Delhi



Chapter 2

Background and Related Work

2.1 Background of Heat Transfer

The classical Fourier equation is used to solve heat transfer problems in solids. It does not
model quantum effects and is meant to be used in scenarios where the geometry is orders of
magnitude larger than the mean free path of phonons. It is given by:

ρc
∂T

∂t
− k∇2T = qvol, (2.1)

where, k is the thermal conductivity, ρ is the density, c is the specific heat, and qvol is the
volumetric heat. The temperature field is represented by T , and time is represented by t.

This equation is typically solved using either finite element (FEM) or finite difference
methods (FDM). In the FEM technique, we divide a 3D region into small blocks, and solve
the heat transfer equation for each small block by either finding an analytical solution,
or by choosing a function from a set of many trial functions that minimize the residual
error. These equations are then combined into a global system of equations, which are
solved using regular matrix methods. In the case of the finite difference method, we replace
the differential equations with a set of algebraic equations. They are similar to recurrence
relations, and are solved using linear algebra techniques. For example, we replace df(x)/dt

with (f(x + h) − f(x))/∆t, where ∆t and h tend to 0. A very important offshoot of finite
difference methods comprise techniques that model a temperature estimation problem as an
analogous electrical circuit simulation problem (HotSpot [8] and 3D-ICE [11]).

2.1.1 Green’s Function based Techniques

Both the finite difference and finite element methods require matrix inversion, which has
a time complexity of O(N2.37), making it a slow process.A faster way of computing the
thermal profile is the Green’s function based technique [9, 10, 1, 2]. A Green’s function is
defined as the impulse response of a unit power function. This can be obtained by applying
1 W of power to a very small area (approximating the Dirac delta function). The resultant
temperature distribution is the Green’s function, G. The advantage of this approach is that
we can pre-compute and store the Green’s functions, and then quickly use them at runtime
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to compute the temperature profile for a given power profile. This can be done as follows:

T = P ~G, (2.2)

where, P is the power field, and ~ is the convolution operator. There are many proposals [10,
9] that use Green’s functions to speed up power estimation. However, these techniques still
rely on traditional FEM and FDM based techniques to compute the Green’s function in the
first place. This is a very slow process. In situations where thousands of geometries have
to be evaluated, the time taken in computing the Green’s function will dominate the total
modeling time. Hence, the main aim in this paper is to very quickly compute the Green’s
function for a given geometry.

2.1.2 Geometry of the Chip

Let us now look at the geometry of a typical chip (shown in Figure 3.1a).

Silicon chip

PCB

Heat spreader

Heat sink

(a)

δ

z

q0

b

heat flux

silicon

heat spreader

ambient

(b)

Figure 2.1: (a) Layout of a package (b) Approximated model [1]

We have a layer of silicon that contains all the transistors. Over that, we have a heat
spreader, which is made of a high thermal conductivity material. This helps spread the heat
and reduce the formation of thermal hot spots. Above the heat spreader, we have a heat
sink that has multiple fins to increase the surface area. We can use an approximate model
where we remove the heat sink and substitute an iso-thermal layer in its place; this is a
standard approximation made by other authors as well [1, 2]. In any case, extending our
model to include the heat sink is trivial.

2.2 Boltzmann Transport Equation (BTE)

Atoms in a silicon substrate are arranged as a lattice. Synchronized perturbation of groups
of atoms from their equilibrium positions is known as a vibration. The propagation of this
vibration is known as a lattice wave (also known as phonons). This vibrational wave has
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2.3 Related Work 5

a wavelength and a velocity. From wave-particle duality, phonons also behave as particles
in the quantum mechanical sense. At the nanometer scale, phonons play an important role
in determining the temperature distribution. Phonons are created because of thermal fluc-
tuations, and can be absorbed, or can get dispersed while propagating through the silicon
lattice. Hence, modeling phonon creation and dispersion is crucial to estimate the temper-
ature at the nanometer scale. The distance that phonons travel before losing their energy
is of the order of several mean free paths (∼40–300 nm) [15]. When the dimensions under
consideration are smaller than the mean free path, the phonon effects become significant.
Hence, in modern day devices, where the device feature size is lower than the mean free
path of phonons, modeling these effects is necessary to estimate temperature accurately.

To model the nanometer scale phonon effects, we typically use the molecular dynamics
method, ballistic-diffusive method, or the Boltzmann transport equation. We shall focus
on the Boltzmann transport equation (BTE) because it is relatively less computationally
intensive and more accurate than other methods [17]. They model the heat transfer by
modeling the scattering of phonons [18, 14, 19]. Specifically, we consider the gray BTE
model that assumes a single mean frequency of phonons (refer to [20]):

∂ew
∂t

+ ~vg.∇ew −
Q

4π
=
(∂ew
∂t

)
collision

, (2.3)

where, ew is the energy density function per unit solid angle, ~vg is the group velocity of
phonons, t is the time, and Q is the volumetric heat generation. The term on the RHS
models the scattering of phonons [20, 18].

2.3 Related Work

2.3.1 Green’s Functions

The most influential work in analytically computing the Green’s function has been done by
Zhan et al. [1, 2]. They compute the Green’s function by dividing a chip into multiple layers
and solving the Fourier equation. They assume that the Green’s function consists of a sum
of cosine based basis functions. Then they find the parameters of these basis functions for
different settings. This takes O(N2log(N)) time primarily because the representation of the
Green’s function is generic, and the isotropic nature of heat spreading is not exploited. Also,
they have not modeled the transient temperature profile. NanoTherm instead uses the Han-
kel transform to solve the Fourier equation. This reduces the complexity under consideration
to O(N) by leveraging the symmetry of the heat distribution. Our technique is also capable
of modeling the transient temperature distribution. Other analytical Green’s function based
techniques [21] are not capable of computing the transient temperature profile.

© 2019, Indian Institute of Technology Delhi



2.3 Related Work 6

2.3.2 Fourier Analysis

In HotSpot [8], the authors divide the volume into small blocks and create an equivalent
electrical circuit, and then solve it using matrix solvers. Coşkun et al. [22] use a similar
method to solve the Fourier equation and model liquid cooling. 3DICE [11] implements
a similar approach; and also models microchannels. All of these popular tools solve the
Fourier equation only.

2.3.3 Solutions of the BTE

Hua et al. [14] solve a different variant of the BTE equation analytically, where they assume
that the relaxation time and the specific heat are dependent on the frequency of phonons. We
did not use this approach because this increases the simulation time significantly, and does
not have commensurate gains in accuracy. Zahiri et al. [20] solve the gray BTE model by
transforming the BTE equation into a set of ordinary differential equations. Our approach
gives an exact solution in the Fourier transform space, and thus is more efficient than solving
a system of differential equations. ThermalScope [16, 13] is the most related work because it
takes into account both the Fourier and BTE models. It solves the gray BTE model (similar
to NanoTherm) at the nanometer scale, and solves the Fourier equation at the level of the
chip. They solve the gray BTE model using FEM and the discrete ordinate method (DOM).
The slowest part of the algorithm is the FEM-based analysis, and this makes it orders of
magnitude slower than our approach.

© 2019, Indian Institute of Technology Delhi



Chapter 3

Methodology

3.1 Fourier Analysis

Consider the basic system layout of an air-cooled processor, as shown in Figure 1a. We
have a silicon layer that contains all the transistors. Over that we have a thermal insulating
material (TIM) which fills the air gap between the silicon die and the heat spreader and helps
in better heat conduction. Above that, a heat spreader (made of high conductivity Copper-
Nickel alloy) is present which distributes the heat uniformly and alleviates the formation of
hotspots. Over the heat spreader, we have a heat ex-changer, also known as a heat sink,
which has multiple fins to increase the surface area. We can use an approximated model
for simplification, where we replace the heat sink with an isothermal layer (maintained at
the ambient temperature (Ta)) placed at the top of heat spreader (see Figure 3.1b); this is
a standard approximation used by other authors as well [1, 2, 12].

Silicon chip

PCB

Heat spreader

Heat sink

(a)

δ

z

q0

b

heat flux

silicon

heat spreader

ambient

(b)

Figure 3.1: (a) Layout of a package (b) Approximated model [1, 2, 3]

Table 3.1 lists all the abbreviations used.

All the architectural simulators solve the classical Fourier heat equation given by:

ρlcl
∂Tl
∂t

+∇.(−kl∇Tl) = qvol, (3.1)

where Tl is the temperature field, kl is the thermal conductivity, ρl is the density, cl is the
heat capacity, ∇2 is the Laplacian operator, qvol is the volumetric heat generation, and the
subscript l represents the layer number of the model. In our model we have two layers: 1)
silicon die (l = 1) 2) heat spreader (l = 2). Let us expand Equation 3.1 using cylindrical
co-ordinates. We will get:
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Table 3.1: Glossary

Symbol Full Form Meaning

b Thickness of the heat spreader
δ Thickness of the silicon die
k Thermal Conductivity
σ Hankel domain
s Laplace domain
x Boldface Laplace Transform
¯ Overline Hankel Transform
∼ Tilde Fourier Transform

− ρlcl
(
∂Tl
∂t

)
+

1

r

∂

∂r

(
r.kl

∂Tl
∂r

)
+

∂

∂θ

(
kl
∂Tl
∂θ

)
+

∂

∂z

(
kl
∂Tl
∂z

)
+ qvol = 0. (3.2)

The popular architectural thermal simulators like HotSpot [8], 3D-ICE [11], LightSim [10]
and others [13, 16, 9, 23] model the transistors as heat sources placed at the bottom of the
silicon die. The term volumetric heat generation (qvol) in Equation 3.2 will be zero since the
heat generation inside the silicon die is zero.

− ρlcl
(
∂Tl
∂t

)
+

1

r

∂

∂r

(
r.kl

∂Tl
∂r

)
+

∂

∂θ

(
kl
∂Tl
∂θ

)
+

∂

∂z

(
kl
∂Tl
∂z

)
= 0. (3.3)

The thermal conductivity of the silicon die and the heat spreader is uniform in all directions.
For any lth layer of the model (see Figure 3.1b) Equation 3.3 will transform into Equation 3.4.

− ρlcl
kl

(
∂Tl
∂t

)
+

1

r

∂

∂r

(
r
∂Tl
∂r

)
+

∂

∂θ

(
∂Tl
∂θ

)
+

∂

∂z

(
∂Tl
∂z

)
= 0. (3.4)

Since we are solving for a small circular source placed at the center of the chip, the resulting
temperature distribution function will be radially symmetric (see Figure 3.2). Hence the
third term on the RHS will be zero. Equation 3.4 will reduce to Equation 3.5.

− ρlcl
kl

(
∂Tl
∂t

)
+

1

r

∂

∂r

(
r
∂Tl
∂r

)
+

∂

∂z

(
∂Tl
∂z

)
= 0. (3.5)

Applying the product rule to the second term, Equation 3.5 will become:

− ρlcl
kl

(
∂Tl
∂t

)
+
∂2Tl
∂r2

+
1

r

∂Tl
∂r

+
∂2Tl
∂z2

= 0. (3.6)

© 2019, Indian Institute of Technology Delhi



3.1 Fourier Analysis 9

(a) (b)

Figure 3.2: (a) Circular source (b) Temperature distribution

− ρlcl
kl

(
∂Tl
∂t

)
+

(
∂2

∂r2
+

1

r

∂

∂r

)
︸ ︷︷ ︸
Zero order Bessel

differential operator

Tl +
∂2Tl
∂z2

= 0. (3.7)

The second term on the left hand side of Equation 3.7 is the zero order Bessel differential
operator and it is given in Equation 3.8 [24].

∇o ≡
∂2

∂r2
+

1

r

∂

∂r
. (3.8)

Thus, Equation 3.7 will become:

−ρlcl
kl

(
∂Tl
∂t

)
+∇oTl +

∂2Tl
∂z2

= 0. (3.9)

3.1.1 Boundary conditions:

For the system layout shown in Figure 3.1b the boundary conditions are as follows:

1. For a circular source of radius ro, the heat flux for |r| ≤ ro is qo, and for |r| > ro the
heat flux is zero.

− k1
∂T1

∂z

∣∣∣
z=0

=

{
qo, for |r| ≤ ro,

0, otherwise.
(3.10)

2. Heat flux at the interface of the silicon die and the heat spreader is equal.

− k1
∂T1

∂z

∣∣∣
z=δ

= −k2
∂T2

∂z

∣∣∣
z=δ

. (3.11)

© 2019, Indian Institute of Technology Delhi



3.1 Fourier Analysis 10

3. The temperature at the interface of the silicon die and the heat spreader is equal.

T1(r, z)
∣∣∣
z=δ

= T2(r, z)
∣∣∣
z=δ

. (3.12)

4. The temperature at the top of the heat spreader is uniformly distributed, and it is
maintained at the ambient temperature, Ta.

T2(r, z)
∣∣∣
z=δ+b

= Ta. (3.13)

5. Thermal symmetry is present at r = 0, as shown in Figure 3.3. Thus we can write:

− k1
∂Tl
∂r

∣∣∣
r=0

= 0. (3.14)

Center line

Temperature 
distribution

0 r

Zero slope

Figure 3.3: Thermal symmetry

6. For very large r, the temperature rise will be infinitesimally small and so we can take
it to be zero.

Tl(r, z)
∣∣∣
r→∞

− Ta = 0. (3.15)

3.1.2 Steady state analysis

Consider Equation 3.9, at steady state. The term ∂T/∂t will be zero and Equation 3.9 will
reduce to Equation 3.16.

∇oTl +
∂2Tl
∂z2

= 0. (3.16)

We will be using the novel Hankel transform to solve the partial differential equation (PDE).

Hankel Transform

Hankel transform is an integral transform analogous to a 2D Fourier transform of radially
symmetric functions. It is also known as Fourier-Bessel transform [24, 25]. The zero order
Hankel transform is given in Equation 3.17.

f(σ) = Ho{f(r)} =

∫ ∞
0

rf(r)Jo(σr)dr, (3.17)

© 2019, Indian Institute of Technology Delhi



3.1 Fourier Analysis 11

where Ho represents the zero order Hankel transform, Jo is the zero order Bessel function
of the first kind, r is in cylindrical co-ordinates, and σ is the Hankel domain variable.

Inverse Hankel transform is given by Equation 3.18

f(r) = H −1
o {f(σ)} =

∫ ∞
0

σf(σ)Jo(σr)dσ. (3.18)

Properties of Hankel transform used:

1. Property 1: For an arbitrary function f(r) if lim
r→∞

f(r) = 0, the zero order Hankel
transform of ∇of(r) is given by:

Ho {∇of(r)} = −σ2Ho {f(r)} = −σ2f(σ), (3.19)

where ∇o is the zero order Bessel differential operator defined in Equation 3.8

2. Property 2: The zero order Hankel transform of a step function G(r) is given by
Equation 3.21, where function G(r) is given in Equation 3.20.

G(r) =

{
1, for |r| ≤ ro,

0, otherwise.
(3.20)

Zero order Hankel transform of Equation 3.20 is given in Equation 3.21.

Ho {G(r)} =
roJ1(roσ)

σ
. (3.21)

Solution

We are interested in the temperature rise with respect to the ambient temperature (Ta). So
let us subtract the ambient temperature from Tl(r, z) and set it up equal to φl(r, z).

φl(r, z) = Tl(r, z)− Ta. (3.22)

Putting φl(r, z) into Equation 3.16, we will get:

∇oφl(r, z) +
∂2

∂z2
φl(r, z) = 0. (3.23)

We compute the Hankel transform of both side of Equation 3.23, we will get:

Ho {∇oφl(r, z)}+
∂2

∂z2
Ho{φl(r, z)} = 0. (3.24)

Using the property of the Hankel transform given in Equation 3.19, we will get:
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− σ2Ho {φl(r, z)}+
∂2

∂z2
Ho{φl(r, z)} = 0, (3.25)

∂2φl
∂z2

= σ2φl. (3.26)

where ¯̄ ¯ represents the Hankel transform. Equation 3.26 is an ordinary differential equation
(ODE), whose general solution for the:

1. Temperature profile of the silicon die is:

φ1 = C1e
σz + C2e

−σz. (3.27)

2. Temperature profile of the heat spreader is:

φ2 = C3e
σz + C4e

−σz. (3.28)

Hankel transform of boundary conditions We compute the zero order Hankel trans-
form of the boundary conditions and apply them to Equation 3.27 and Equation 3.28.

1. First boundary condition:

− k1
∂T1

∂z

∣∣∣∣∣
z=0

=

{
qo, for |r| ≤ ro,

0, otherwise.
(3.29)

Putting φl(r, z) into Equation 3.29, we will get:

− k1
∂φ1(r, z)

∂z

∣∣∣∣∣
z=0

=

{
qo, for |r| ≤ ro,

0, otherwise.
(3.30)

Taking the Hankel transform of both side of Equation 3.30 and using the property of
the Hankel transform given in Equation 3.21

− k1
∂φ1

∂z

∣∣∣∣∣
z=0

= qoro
J1(roσ)

σ
. (3.31)

Putting Equation 3.27 into Equation 3.31 and solving, we will get:

− k1
∂

∂z

(
C1e

σz + C2e
−σz
)∣∣∣∣∣

z=0

= qoro
J1(roσ)

σ
, (3.32)

− k1σ
(
C1e

σz − C2e
−σz
)∣∣∣∣∣

z=0

= qoro
J1(roσ)

σ
, (3.33)

C2 − C1 =
qoro
k1

J1(roσ)

σ2
. (3.34)
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2. Second boundary condition:

− k1
∂T1

∂z

∣∣∣
z=δ

= −k2
∂T2

∂z

∣∣∣
z=δ

. (3.35)

Putting φl(r, z) into Equation 3.35, we will get:

− k1
∂φ1

∂z

∣∣∣
z=δ

= −k2
∂φ2

∂z

∣∣∣
z=δ

. (3.36)

Taking the Hankel tranform of both sides, we will get:

− k1
∂φ1

∂z

∣∣∣
z=δ

= −k2
∂φ2

∂z

∣∣∣
z=δ

. (3.37)

Putting Equation 3.28 and Equation 3.27 into Equation 3.37, we will get:

− k1
∂

∂z

(
C1e

σz + C2e
−σz
)∣∣∣∣∣

z=δ

= −k2
∂

∂z

(
C3e

σz + C4e
−σz
)∣∣∣∣∣

z=δ

, (3.38)

σk1

(
C1e

σz − C2e
−σz
)∣∣∣∣∣

z=δ

= σk2

(
C3e

σz − C4e
−σz
)∣∣∣∣∣

z=δ

, (3.39)

k1

k2

(
C1e

σδ − C2e
−σδ

)
− C3e

σδ + C4e
−σδ = 0. (3.40)

3. Third boundary condition:

T1(r, z)
∣∣∣
z=δ

= T2(r, z)
∣∣∣
z=δ

. (3.41)

Putting φl(r, z) into Equation 3.41, we will get:

φ1(r, z)
∣∣∣
z=δ

= φ2(r, z)
∣∣∣
z=δ

. (3.42)

Taking the Hankel tranform of both sides, we will get:

φ1(σ, z)
∣∣∣
z=δ

= φ2(σ, z)
∣∣∣
z=δ

. (3.43)

Putting Equation 3.28 and Equation 3.27 into Equation 3.44, we will get:

(
C1e

σz + C2e
−σz
)∣∣∣∣∣

z=δ

=
(
C3e

σz + C4e
−σz
)∣∣∣∣∣

z=δ

. (3.44)

C1e
σδ + C2e

−σδ − C3e
σδ − C4e

−σδ = 0. (3.45)

4. Fourth boundary condition:
T2(r, z)

∣∣∣
z=δ+b

= Ta. (3.46)

Putting φl(r, z) into Equation 3.46, we will get:
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3.1 Fourier Analysis 14

φ2(r, z)
∣∣∣
z=δ+b

= 0. (3.47)

Taking the Hankel tranform of both sides, we will get:

φ2(σ, z)
∣∣∣
z=δ+b

= 0. (3.48)

Putting Equation 3.28 and Equation 3.27 into Equation 3.49, we will get:

(
C3e

σz + C4e
−σz
)∣∣∣∣∣

z=δ+b

= 0. (3.49)

C3 = −C4e
−2σ(δ+b). (3.50)

Putting the value of C3 in Equation 3.40, we will get:

k1

k2

(
C1e

σδ − C2e
−σδ

)
+ C4

(
e−σδ + e−σδ−2bσ

)
= 0, (3.51)

Putting the value of C3 in Equation 3.45, we will get:

C1e
σδ + C2e

−σδ = C4

(
e−σδ − e−σδ−2bσ

)
. (3.52)

C4 =
C1e

σδ + C2e
−σδ

e−σδ − e−σδ−2bσ
. (3.53)

Putting the value of C4 in Equation 3.51, we will get:

k1

k2

(
C1e

σδ − C2e
−σδ

)
= −e

−σδ + e−σδ−2bσ

e−σδ − e−σδ−2bσ

(
C1e

σδ + C2e
−σδ
)
, (3.54)

C2e
−σδ + C1e

σδ

C2e−σδ − C1eσδ
=
k1

k2

(
e−σδ − e−σδ−2bσ

e−σδ + e−σδ−2bσ

)
, (3.55)

C2e
−σδ + C1e

σδ

C2e−σδ − C1eσδ
=
k1

k2

(
ebσ − e−bσ

ebσ + e−bσ

)
︸ ︷︷ ︸

tanh(bσ)

, (3.56)

C2

C1

e−2σδ =
k1 tanh(bσ) + k2

k1 tanh(bσ)− k2

, (3.57)
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C1 = C2 e
−2σδ

(
k1 tanh(bσ)− k2

k1 tanh(bσ) + k2

)
︸ ︷︷ ︸

f(σ)

, (3.58)

C1 = C2f(σ). (3.59)

Putting the value of C1 into Equation 3.34. We will get the value of desired constants C1

and C2.

C1 =
qoro
k1

J1(roσ)

σ2

f(σ)

1− f(σ)
, (3.60)

C2 =
qoro
k1

J1(roσ)

σ2

1

1− f(σ)
, (3.61)

where f(σ) is defined in Equation 3.62

f(σ) = e−2σδ k1 tanh(bσ)− k2

k1 tanh(bσ) + k2

. (3.62)

Putting the value of constants C1 and C2 into Equation 3.27. We will get the equation of
the desired temperature profile in Hankel domain i.e. Temperature distributing function of
the silicon die in Hankel domain.

φ1(σ, z) =
qoro
k1

J1(roσ)

σ2

1

1− f(σ)

(
e−σz + f(σ)eσz

)
. (3.63)

Temperature profile of the silicon die in cylindrical co-ordinates is given in Equation 3.64.

T1(r, z)− Ta =
qoro
k1

∫ ∞
0

J1(roσ)

σ

(e−σz + f(σ)eσz)

1− f(σ)
Jo(σr)dσ (3.64)

Analytical verification

Let us verify the obtained solution using the fifth and sixth boundary conditions (see Equa-
tion 3.14 and 3.15).

1. Fifth boundary condition: We will only verify for the temperature distribution of
the silicon die (T1(r, z)). For the silicon die the fifth boundary is given in Equation 3.65

− k1
∂T1

∂r

∣∣∣
r=0

= 0. (3.65)
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Putting the obtained result (Equation 3.64) into Equation 3.65. We will get:

− k1
∂T1

∂r

∣∣∣
r=0

= −k1
∂

∂r

(
qoro
k1

∫ ∞
0

J1(roσ)

σ

(e−σz + f(σ)eσz)

1− f(σ)
Jo(σr)dσ

) ∣∣∣
r=0

. (3.66)

Using the Leibniz integral rule [26] to solve Equation 3.66. The Leibniz integral rule
is given in Equation 3.67.

d

dx

∫ b(x)

a(x)

f(x, t)dt = f(x, b(x)).b′(x)− f(x, a(x)).a′(x) +

∫ b(x)

a(x)

d

dx
f(x, t)dt. (3.67)

Equation 3.66 will reduce to Equation 3.68.

=
qoro
k1

∫ ∞
0

J1(roσ)

σ

(e−σz + f(σ)eσz)

1− f(σ)
J1(σr)dσ

∣∣∣
r=0

, (3.68)

=
qoro
k1

∫ ∞
0

J1(roσ)

σ

(e−σz + f(σ)eσz)

1− f(σ)
J1(0)dσ (3.69)

Hence, we will get:

− k1
∂T1

∂r

∣∣∣
r=0

= 0. (3.70)

2. Sixth boundary condition: Let us re-write Equation 3.15, we will get Equation
3.71

lim
r→∞

(
T (r, z)− Ta

)
= lim

r→∞
φ(r, z) = 0. (3.71)

Putting the obtained result (Equation 3.64) into Equation 3.71. We will get:

lim
r→∞

(
T1(r, z)− Ta

)
= lim

r→∞
φ(r, z)

= lim
r→∞

qoro
k1

∫ ∞
0

J1(roσ)

σ

(e−σz + f(σ)eσz)

1− f(σ)
Jo(σr)dσ,

(3.72)

=
qoro
k1

∫ ∞
0

J1(roσ)

σ

(e−σz + f(σ)eσz)

1− f(σ)
lim
r→∞

(Jo(σr)) dσ, (3.73)

=
qoro
k1

∫ ∞
0

J1(roσ)

σ

(e−σz + f(σ)eσz)

1− f(σ)
Jo(∞)dσ, (3.74)

Hence, we will get:
lim
r→∞

T (r, z)− Ta = 0. (3.75)

3.1.3 Transient analysis

Consider the transient Fourier heat equation given in Equation 3.9.

− ρlcl
kl

(
∂Tl
∂t

)
+∇oTl +

∂2Tl
∂z2

= 0. (3.76)
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We will be using the Laplace transform to remove the time derivative and after that the
Hankel transform similar to the Fourier steady state analysis (see section 3.1.2).

Laplace Transform

Laplace transform is an integral transform, it is a very useful tool for solving differential
equations. Unlike Fourier transform which is a complex function of a real variable (fre-
quency), Laplace transform is a complex function of a complex variable [24]. The Laplace
transform is given in Equation 3.77.

L {f(t)} = F (s) =

∫ ∞
−∞

f(t)e−stdt, (3.77)

where s is a complex Laplace domain variable.

Inverse Laplace transform also known as the Mellin’s inverse, Fourier-Mellin integral, or
Bromwich integral is given in Equation 3.78 [24, 27].

f(t) = L −1{F (s)} =
1

2πi

∫ γ+i∞

γ−i∞
estF (s)ds, (3.78)

where Re(s) = γ is a vertical contour in the complex plain such the all the singularities of
F (s) are to the left of it.

Property of the Laplace transform used:

1. Property 1: Laplace transform of a derivative of a function f(t) is given by:

L

{
d

dt
f(t)

}
= sF (s). (3.79)

Solution

We are interested in the temperature rise with respect to the ambient temperature (Ta). So
let us subtract the ambient temperature from Tl(t, r, z) and set it up equal to φl(t, r, z).

φl(r, z, t) = Tl(r, z, t)− Ta. (3.80)

Putting the value of φl into Equation 3.76

− ρlcl
kl

(
∂

∂t
φl(r, z, t)

)
+∇oφl(r, z, t) +

∂2

∂z2
φl(r, z, t) = 0. (3.81)
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Compute the Laplace transform of both side of the Equation 3.81 such that the system was
at rest for t ≤ 0 and using the property of the Laplace transform given in Equation 3.79,
we will get Equation 3.82.

− sρlcl
kl
φl +∇oφl +

∂2

∂z2
φl = 0. (3.82)

Here, φ represents the Laplace transform. Compute the Hankel transform similar to
steady state analysis (see section 3.1.2).

− sρlcl
kl

Ho{φl}+ Ho{∇oφl}+
∂2

∂z2
Ho{φl} = 0. (3.83)

− sρlcl
kl
φl − σ2φl +

∂2

∂z2
φl = 0. (3.84)

After re-arrangement, we will get Equation 3.85.

∂2

∂z2
φl =

(
σ2 + s

ρlcl
kl

)
φl. (3.85)

Equation 3.85 is an ODE, whose general solution for the:

1. Temperature profile of the silicon die is:

φ1 = C5e
p1(s,σ)z + C6e

−p1(s,σ)z. (3.86)

2. Temperature profile of the heat spreader is:

φ2 = C7e
p2(s,σ)z + C8e

−p2(s,σ)z, (3.87)

where pl(s, z) is given in Equation 3.88.

pl(s, σ) =

√
σ2 +

ρlcl
kl
s. (3.88)

Hankel transform and Laplace of boundary conditions We compute the Laplace and
zero order Hankel transform of the boundary conditions and apply them to Equation 3.27
and Equation 3.28.

1. First boundary condition:

− k1
∂T1

∂z

∣∣∣∣∣
z=0

=

{
qou(t), for |r| ≤ ro,

0, otherwise.
(3.89)
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where u(t) is the unit step response. Putting φl(t, r, z) into Equation 3.89, we will get:

− k1
∂φ1(t, r, z)

∂z

∣∣∣∣∣
z=0

=

{
qou(t), for |r| ≤ ro,

0, otherwise.
(3.90)

Taking the Laplace transform of both side of Equation 3.90, we will get:

− k1
∂φ1

∂z

∣∣∣∣∣
z=0

=

{
qo
s
, for |r| ≤ ro,

0, otherwise.
(3.91)

Taking the Hankel transform of both side of Equation 3.91 and using the property of
the Hankel transform given in Equation 3.21

− k1
∂φ1

∂z

∣∣∣∣∣
z=0

= qoro
J1(roσ)

sσ
. (3.92)

Putting Equation 3.86 into Equation 3.92 and solving, we will get:

− k1
∂

∂z

(
C5e

p1(s,σ)z + C6e
−p1(s,σ)z

)∣∣∣∣∣
z=0

= qoro
J1(roσ)

sσ
, (3.93)

− k1p1(s, σ)
(
C5e

p1(s,σ)z − C6e
−p1(s,σ)z

)∣∣∣∣∣
z=0

= qoro
J1(roσ)

sσ
, (3.94)

C6 − C5 =
qoro
k1

J1(roσ)

p1(s, σ)sσ
. (3.95)

2. Second boundary condition:

− k1
∂T1

∂z

∣∣∣
z=δ

= −k2
∂T2

∂z

∣∣∣
z=δ

. (3.96)

Putting φl(t, r, z) into Equation 3.35, we will get:

− k1
∂φ1

∂z

∣∣∣
z=δ

= −k2
∂φ2

∂z

∣∣∣
z=δ

. (3.97)

Taking the Laplace and Hankel tranform of both side, we will get:

− k1
∂φ1

∂z

∣∣∣
z=δ

= −k2
∂φ1

∂z

∣∣∣
z=δ

. (3.98)

Putting Equation 3.87 and Equation 3.86 into Equation 3.98, we will get:

−k1
∂

∂z

(
C5e

p1(s,σ)z+C6e
−p1(s,σ)z

)∣∣∣∣∣
z=δ

= −k2
∂

∂z

(
C7e

p2(s,σ)z+C8e
−p2(s,σ)z

)∣∣∣∣∣
z=δ

, (3.99)
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p1(s, σ)k1

(
C5e

p1(s,σ)z − C6e
−p1(s,σ)z

)∣∣∣∣∣
z=δ

= p2(s, σ)k2

(
C7e

p2(s,σ)z − C8e
−p2(s,σ)z

)∣∣∣∣∣
z=δ

,

(3.100)
k1p1(s, σ)

k2p2(s, σ)

(
C5e

p1(s,σ)δ − C6e
−p1(s,σ)δ

)
− C7e

p2(s,σ)δ + C8e
−p2(s,σ)δ = 0. (3.101)

3. Third boundary condition:

T1(t, r, z)
∣∣∣
z=δ

= T2(t, r, z)
∣∣∣
z=δ

. (3.102)

Putting φl(t, r, z) into Equation 3.102, we will get:

φ1(t, r, z)
∣∣∣
z=δ

= φ2(t, r, z)
∣∣∣
z=δ

. (3.103)

Taking the Laplace and Hankel tranform on both side, we will get:

φ1(s, σ, z)
∣∣∣
z=δ

= φ2(s, σ, z)
∣∣∣
z=δ

. (3.104)

Putting Equation 3.87 and Equation 3.86 into Equation 3.104, we will get:

(
C5e

p1(s,σ)z − C6e
−p1(s,σ)z

)∣∣∣∣∣
z=δ

=
(
C7e

p2(s,σ)z − C8e
−p2(s,σ)z

)∣∣∣∣∣
z=δ

. (3.105)

C5e
p1(s,σ)δ + C6e

−p1(s,σ)δ − C7e
p2(s,σ)δ − C8e

−p2(s,σ)δ = 0. (3.106)

4. Fourth boundary condition:

T2(t, r, z)
∣∣∣
z=δ+b

= Ta. (3.107)

Putting φl(r, z) into Equation 3.107, we will get:

φ2(t, r, z)
∣∣∣
z=δ+b

= 0. (3.108)

Taking the Laplace and Hankel transform of both side, we will get:

φ2(s, σ, z)
∣∣∣
z=δ+b

= 0. (3.109)

Putting Equation 3.87 and Equation 3.86 into Equation 3.109, we will get:

(
C7e

p2(s,σ)z + C8e
−p2(s,σ)z

)∣∣∣∣∣
z=δ+b

= 0. (3.110)

C7 = −C8e
−2p2(s,σ)(δ+b). (3.111)

On solving using elimination method, we will get the desired value of constants C5 and
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C6.

C5 =
qoro
k1

J1(roσ)

p1(s, σ)sσ

f(s, σ)

1− f(s, σ)
, (3.112)

C6 =
qoro
k1

J1(roσ)

p1(s, σ)sσ

1

1− f(s, σ)
, (3.113)

where f(s, σ) is given in Equation 3.114

f(s, σ) = e−2p1(s,σ)δ k1p1(s, σ) tanh(p2(s, σ)b)− k2p2(s, σ)

k1p1(s, σ) tanh(p2(s, σ)b) + k2p2(s, σ)
. (3.114)

Putting the value of constant C5 and C6 into Equation 3.86. We will get the Equation of
desired temperature profile in Laplace and Hankel domain i.e. Temperature distribution
function of the silicon die in Laplace and Hankel domain.

φ1(σ, z, s) =
qoro
k1

J1(roσ)

p1(s, σ)sσ

1

1− f(s, σ)

(
e−p1(s,σ)z + f(s, σ)ep1(s,σ)z

)
(3.115)

The temperature of the silicon die in time domain and cylindrical co-ordinates can be cal-
culated using the simple inverse Laplace and Hankel transforms respectively.

T1(r, z, t)− Ta = H −1{L −1{φ1(σ, z, s)}}. (3.116)

Analytical verification

Let us verify the obtained solution using the final value theorem and see if it converges to
steady state solution. Final value theorem is defined in Equation 3.117.

lim
t→∞

f(t) = lim
s→0

sF (s). (3.117)

The relation given in Equation 3.117 is valid such that the f(t) is bounded on (0,∞). F (s)

is an unilateral Laplace transform of f(t).

From the steady state solution we know:

lim
t→∞

f(t) =
qoro
k1

J1(roσ)

σ2

1

1− f(σ)

(
e−σz + f(σ)eσz

)
. (3.118)

Let us compute lims→0 sF (s) by putting Equation 3.115 into 3.117.

lim
s→0

sF (s) = lim
s→0

s
qoro
k1

J1(roσ)

p1(s, σ)sσ

1

1− f(s, σ)

(
e−p1(s,σ)z + f(s, σ)ep1(s,σ)z

)
(3.119)

= lim
s→0

qoro
k1

J1(roσ)

p1(s, σ)σ

1

1− f(s, σ)

(
e−p1(s,σ)z + f(s, σ)ep1(s,σ)z

)
(3.120)
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=
qoro
k1

J1(roσ)

p1(0, σ)σ

1

1− f(0, σ)

(
e−p1(0,σ)z + f(0, σ)ep1(0,σ)z

)
(3.121)

=
qoro
k1

J1(roσ)

σ2

1

1− f(σ)

(
e−σz + f(σ)eσz

)
(3.122)

= lim
t→∞

f(t) (3.123)

Transient Fourier solution converges to steady state Fourier solution.

3.1.4 Correction for Edges and Corners

The size of the chip is finite; however, for simplicity, we assume it to be infinite. This
assumption results in an error in the calculation of the Green’s function at the edges and the
corners. To overcome this problem, we calculate the Green’s function beyond the boundary
of the chip (extended Green’s function). This extended Green’s function is then convolved
with the power profile to obtain an extended thermal profile. The profile is then folded
across the corners and edges to get the corrected thermal profile, since the boundaries are
adiabatic.

3.2 Boltzmann transport equation

The classical continuum Fourier heat equation fails to predict the temperature profile when
the device characteristic length is comparable to mean free path of heat carriers as the
Fourier heat equation does not take into account the effects of phonon scattering [13, 20,
14, 15]. Different models have been developed to model heat transport at the nanoscale
level like Molecular dynamics method, Ballistic method, and Boltzmann transport equation.
Molecular dynamics model is a computationally intensive method, and it can not be applied
to a very large system like a FET, Ballistic equation is computationally less intensive,
but it does not provide an adequate accuracy. BTE is computationally less intensive and
provides acceptable accuracy [13, 16]. The mathematical formulation of BTE is given in
Equation 3.124 [13, 14].

∂eω
∂t

+∇.~svgeω −
Qω

4π
= Sscattering, (3.124)

where eω(ω, r,~s, t) is the energy density per unit solid angle and it is a function of ω, r,~s
and t. The space vector r has three components (x,y and z are in cartesian co-ordinates),
the direction of momentum ~s has two components, the oplar angle θ and azimulthal angle φ,
ω is the phonon frequency, and t is the time. The subscript ω represents dependence on the
frequency. vg is the phonon group velocity [13, 14, 28, 29], and the term on the right-hand
side of Equation 3.124 is the scattering term. It models the phonon scattering, collision
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with other phonons, and impurities. This term makes the solution of the BTE complex, for
simplification we will use the Bhatnagar–Gross–Krook model [? 13, 14, 28, 29].

∂eω
∂t

+∇.~svgeω −
Qω

4π
= −ew − eo(T )

τ
, (3.125)

where eo(T ) is the equilibrium energy density, τ is the phonon relaxation time, and Qω is

Table 3.2: Glossary

Symbol Full Form Meaning

eω eω(ω, r,~s, t) Energy density per unit solid angle
e e(r,~s, t) Frequency independent energy density per unit solid angle
eo e(T ) Equilibrium energy density
vg Group velocity
ω Frequency
Ω Solid angle
~s Direction vector
∼ overtilde Fourier Transform

the volumetric heat generation. The term ∇.~svgew will expand into Equation 3.126 [20, 28,
14, 13].

∇.~svg = vg cos θ
∂eω
∂z

+ vg sin θ cosφ
∂eω
∂x

+ vg sin θ sinφ
∂eω
∂y

, (3.126)

where θ and φ are polar and azimuthal angles respectively. To further simplify the BTE
(Equation 3.125), we will use the gray model of BTE. Gray BTE assumes that all phonons
are tied to a single mode, means all phonons have the same group velocity and the relaxation
time. This approach is faster than the frequency dependent (multi-mode) BTE and gives
reasonable accuracy [15]. Gray BTE is given in Equation 3.129.

∂e

∂t
+∇.~svge−

Q

4π
= −e− eo(T )

τ
. (3.127)

For a small temperature rise, ∆T = T − Tref . The relation between T and eo(T ) is given in
Equation 3.128 [20, 14, 13].

eo(T ) =
1

4π
C∆T, (3.128)

where C is the specific heat at the reference temperature, Tref is the reference temperature
(computed by Fourier analysis), and T is the lattice temperature.

We are interested in computing the temperature rise (∆T ) but we have two unknowns
terms in the gray BTE: 1) Temperature rise (∆T ) 2) Energy density per unit solid angle
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(e). To find a closed form solution, we need a relation between the temperature rise and the
energy density per unit solid angle. Let us integrate the gray BTE over the solid angle (Ω)
of both sides of Equation 3.129. We will get:

∂

∂t

∫
e dΩ︸ ︷︷ ︸

System
energy per
unit volme

+∇.
∫
~svge dΩ︸ ︷︷ ︸
Heat flux

−
∫

Q

4π
dΩ︸ ︷︷ ︸

Heat
generation

= −
∫
e− eo(T )

τ
dΩ (3.129)

The left hand side of Equation 3.129 will convert to a well known form given in Equa-
tion 3.130 [30].

∂E

∂t
+∇.q −Q, (3.130)

where E =
∫
e dΩ is the system energy per unit volume, q =

∫
~svge dΩ is the heat flux, and

Q =
∫
Q/4π dΩ is the volumetric heat generation. Equation 3.130 is the energy conservation

equation, which will be equal to zero. Hence, the right hand side of Equation 3.129 (after
integration) has to be zero. We will have:

∫
Ω

[
e− eo(T )

τ

]
dΩ = 0 (3.131)

Putting the value of equilibrium energy density (eo(T )). We thus have the desired relation:

∫
Ω

[
e

τ
− 1

4π

C

τ
∆T

]
dΩ = 0 (3.132)

3.2.1 Steady state analysis

Consider the gray BTE (Equation 3.129), at steady state the term ∂e/∂t will be zero and
Equation 3.129 will reduce to Equation 3.141.

∇.~svge−
Q

4π
= −e− eo(T )

τ
(3.133)

We will use the Fourier transform to solve the integro-differential equation.

Fourier Transform

Fourier transform is an integral transform. It decomposes a bounded function f(x) defined
over the infinite limits (−∞,∞) into superimposition of sinusoid. One-dimensional Fourier
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transform for a function f(x) is given Equation 3.134

F (ξ) = F{f(x)} =

∫ ∞
−∞

f(x)eixξdx, (3.134)

where F represents the Fourier transform, ξ is the Fourier domain variable (frequency), and
i is equal to

√
−1.

Inverse Fourier transform is given in Equation 3.135

f(x) = F−1{F (ξ)} =
1

2π

∫ ∞
−∞

F (ξ)eixξdξ. (3.135)

N -Dimensions Fourier Transform N−dimensional Fourier transform of a real or com-
plex valued function f(~x) of a vector variable ~x = x1, x2, x3, ....., xN is given by:

F (~ξ) = F{f(~x)} =

∫
RN

f(~x)e−i~x.
~ξdN~x, (3.136)

where ∫
RN

dN~x =

∫ ∞
−∞

dx1.

∫ ∞
−∞

dx2............

∫ ∞
−∞

dxN , (3.137)

~x and ~ξ are vectors, RN represents N−dimensional space. The term in the exponential is
the dot product of ~x and ~ξ in RN and it is given in Equation 3.138.

~x.~ξ = x1ξ1 + x2ξ2 + x3ξ3 + .........+ xn−1ξn−1 + xnξN . (3.138)

Inverse Fourier transform is given in Equation 3.139.

f(~x) = F−1{F (~ξ)} =
1

(2π)N

∫
Rn

F (~ξ)ei~x.
~ξdN~ξ, (3.139)

where ∫
RN

dN~ξ =

∫ ∞
−∞

dξ1.

∫ ∞
−∞

dξ2............

∫ ∞
−∞

dξN (3.140)

Solution

Putting Equation 3.126 and 3.128 into the gray BTE (Equation 3.141). We will get:

vg cos θ
∂eω
∂z

+ vg sin θ cosφ
∂eω
∂x

+ vg sin θ sinφ
∂eω
∂y
− Q

4π
= − e

τ
+

1

4πτ
C∆T (3.141)

Computing the Fourier transform of both sides. We will get:
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(vg cos θiξz + vg sin θ cosφiξx + vg sin θ sinφiξy)ẽ = − ẽ
τ

+
C

4πτ
∆T̃ +

Q̃

4π
, (3.142)

where ∼ represents the Fourier transform, i is equal to
√
−1 and ξx, ξy and ξz are spatial

frequency of x, y and z. Rearranging Equation 3.142, we will have:

ẽ =
C

4π

∆T̃ + Q̃τ/C

1 + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy
, (3.143)

where Λ is the mean free path and it is equal to vg × τ . Let us take the Fourier transform
on both sides of Equation 3.144. We will get:

∫
Ω

[
ẽ

τ
− 1

4π

C

τ
∆T̃

]
dΩ = 0 (3.144)

Putting Equation 3.143 into Equation 3.132 and after rearranging we will get:

∆T̃ =
1

4π

∫
4π

∆T̃ + Q̃τ/C

1 + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy
dΩ (3.145)

We convert the solid angel Ω into polar (θ) and azimuthal (φ) angle. For a very small solid
angle dΩ.

dΩ = sin θdθdφ (3.146)

Putting Equation 3.146 into Equation 3.145. We will get:

∆T̃ =
1

4π

∫ 2π

0

∫ π

0

∆T̃ + Q̃τ/C

1 + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy
sin θdθdφ (3.147)

To convert the integral of Equation 3.147 into an integratable form, we will use substitution
method. Let us assume µ = cos θ. The integral in Equation 3.147 will convert to:

∆T̃ =
−1

4π

∫ 2π

0

∫ −1

1

∆T̃ + Q̃τ/C

1 + Λµiξz + Λ
√

1− µ2 cosφiξx + Λ
√

1− µ2 sinφiξy
dµdφ (3.148)

∆T̃ =
1

4π

∫ 2π

0

∫ 1

−1

∆T̃ + Q̃τ/C

1 + Λµiξz + Λ
√

1− µ2 cosφiξx + Λ
√

1− µ2 sinφiξy
dµdφ (3.149)
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Solving the integral of Equation 3.149 using the identity given in Equation 3.150. We will
get Equation 3.156

∫
1

a+ b cosx+ c sinx
dx =

2√
a2 − b2 − c2

tan−1

(
(a− b) tan x

2
+ c

√
a2 − b2 − c2

)
(3.150)

Table 3.3: Coefficients of first integral

Coefficient Value

a 1 + Λµiξz
b iΛξx

√
1− µ2

c iΛξy
√

1− µ2

∆T̃ =
1

4π

∫ 1

−1

[
2(∆T̃ + Q̃τ/C)√

(1 + Λµiξz)2 − (iΛξx
√

1− µ2)2 − (iΛξy
√

1− µ2)2

× tan−1

(
(1 + Λµiξz − iΛξx

√
1− µ2) tan φ

2
+ iΛξy

√
1− µ2√

(1 + Λµiξz)2 − (iΛξx
√

1− µ2)2 − (iΛξy
√

1− µ2)2

)]2π

0

dµ

(3.151)

=
1

4π

∫ 1

−1

2(∆T̃ + Q̃τ/C)√
1 + Λ2(ξ2

x + ξ2
y) + 2iξzΛµ− Λ2ξ2µ2

×

[
tan−1

(
(1 + Λµiξz − iΛξx

√
1− µ2) tan φ

2
+ iΛξy

√
1− µ2√

1 + Λ2(ξ2
x + ξ2

y) + 2iξzΛµ− Λ2ξ2µ2

)]2π

0

dµ

(3.152)

=
1

4π

∫ 1

−1

2(∆T̃ + Q̃τ/C)√
1 + Λ2(ξ2

x + ξ2
y) + 2iξzΛµ− Λ2ξ2µ2

×

[
tan−1

(
(1 + Λµiξz − iΛξx

√
1− µ2) tan φ

2
+ iΛξy

√
1− µ2√

1 + Λ2(ξ2
x + ξ2

y) + 2iξzΛµ− Λ2ξ2µ2

)∣∣∣∣∣
π−

0

+ tan−1

(
(1 + Λµiξz − iΛξx

√
1− µ2) tan φ

2
+ iΛξy

√
1− µ2√

1 + Λ2(ξ2
x + ξ2

y) + 2iξzΛµ− Λ2ξ2µ2

)∣∣∣∣∣
2π

π+

]
dµ

(3.153)

© 2019, Indian Institute of Technology Delhi



3.2 Boltzmann transport equation 28

=
1

4π

∫ 1

−1

2(∆T̃ + Q̃τ/C)√
1 + Λ2(ξ2

x + ξ2
y) + 2iξzΛµ− Λ2ξ2µ2

×

[
tan−1

(
(1 + Λµiξz − iΛξx

√
1− µ2) tan(π

−

2
) + iΛξy

√
1− µ2√

1 + Λ2(ξ2
x + ξ2

y) + 2iξzΛµ− Λ2ξ2µ2

)

− tan−1

(
(1 + Λµiξz − iΛξx

√
1− µ2) tan(0) + iΛξy

√
1− µ2√

1 + Λ2(ξ2
x + ξ2

y) + 2iξzΛµ− Λ2ξ2µ2

)

+ tan−1

(
(1 + Λµiξz − iΛξx

√
1− µ2) tan(π) + iΛξy

√
1− µ2√

1 + Λ2(ξ2
x + ξ2

y) + 2iξzΛµ− Λ2ξ2µ2

)

− tan−1

(
(1 + Λµiξz − iΛξx

√
1− µ2) tan(π

+

2
) + iΛξy

√
1− µ2√

1 + Λ2(ξ2
x + ξ2

y) + 2iξzΛµ− Λ2ξ2µ2

)]
dµ

(3.154)

∆T̃ =
1

4π

∫ 1

−1

2(∆T̃ + Q̃τ/C)√
1 + Λ2(ξ2

x + ξ2
y) + 2iξzΛµ− Λ2ξ2µ2

[
π

2
+
π

2

]
dµ (3.155)

∆T̃ =
1

2

∫ 1

−1

∆T̃ + Q̃τ/C√
1 + Λ2(ξ2

x + ξ2
y) + 2iξzΛµ− Λ2ξ2µ2

dµ, (3.156)

where ξ =
√
ξ2
x + ξ2

y + ξ2
z . Let us solve the integral of Equation 3.156.

I =
1

2

1√
1 + Λ2(ξ2

x + ξ2
y) + 2iξzΛµ− Λ2ξ2µ2

dµ, (3.157)

∫
1√

a+ bx+ cx2
dx =

−1√
−c

sin−1 2cx+ b√
b2 − 4ac

(3.158)

Solving integral (Equation 3.157) using the identity given in Equation 3.158. We will get:

Table 3.4: Coefficients of second integral

Coefficient Value

a 1 + Λ2(ξx + ξy)
b 2iξzΛµ
c −Λ2ξ2µ2

=
−1

2
√

Λ2ξ2
sin−1 −2Λ2ξ2µ+ 2iξz√

(2iξzΛ)2 − 4((1 + Λ2(ξ2
x + ξ2

y))(−Λ2ξ2))

∣∣∣∣∣
µ=1

µ=−1

(3.159)
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=
−1

2
√

Λ2ξ2
sin−1 −2Λ2ξ2µ+ 2iξz√

4Λ2ξ2 + 4Λ4ξ2(ξ2
x + ξ2

y)− 4ξ2
zΛ

2

∣∣∣∣∣
µ=1

µ=−1

(3.160)

=
−1

2
√

Λ2ξ2
sin−1 −Λξ2µ+ iξz√

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

∣∣∣∣∣
µ=1

µ=−1

(3.161)

=
1

2
√

Λ2ξ2
sin−1 Λξ2 + iξz√

(ξ2
x + ξ2

y)(1 + Λ2ξ2)
− 1

2
√

Λ2ξ2
sin−1 −Λξ2 + iξz√

(ξ2
x + ξ2

y)(1 + Λ2ξ2)
(3.162)

=
1

2
√

Λ2ξ2

[
sin−1 Λξ2 + iξz√

(ξ2
x + ξ2

y)(1 + Λ2ξ2)
− sin−1 −Λξ2 + iξz√

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

]
(3.163)

Ler us simplify Equation 3.163 using identity given in Equation 3.164.

sin−1 x− sin−1 y = sin−1 x
√

1− y2 − y
√

1− x2 (3.164)

=
1

2Λξ
sin−1

[
Λξ2 + iξz√

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

√
1− (−Λξ2 + iξz)2

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

− −Λξ2 + iξz√
(ξ2
x + ξ2

y)(1 + Λ2ξ2)

√
1− (Λξ2 + iξz)2

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

] (3.165)

=
1

2Λξ
sin−1

[
Λξ2 + iξz√

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

√
(ξ2
x + ξ2

y)(1 + Λ2ξ2)− (−Λξ2 + iξz)2

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

− −Λξ2 + iξz√
(ξ2
x + ξ2

y)(1 + Λ2ξ2)

√
(ξ2
x + ξ2

y)(1 + Λ2ξ2)− (Λξ2 + iξz)2

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

] (3.166)
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=
1

2Λξ
sin−1

[
Λξ2 + iξz√

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

√
ξ2 + Λ2ξ2(ξ2

x + ξ2
y)− Λ2ξ4 + 2iξzΛξ2

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

− −Λξ2 + iξz√
(ξ2
x + ξ2

y)(1 + Λ2ξ2)

√
ξ2 + Λ2ξ2(ξ2

x + ξ2
y)− Λ2ξ4 − 2iξzΛξ2

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

] (3.167)

=
1

2Λξ
sin−1

[
Λξ2 + iξz√

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

√
ξ2(1 + Λ2(ξ2

x + ξ2
y)− Λ2ξ2 + 2iξzΛ)

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

− −Λξ2 + iξz√
(ξ2
x + ξ2

y)(1 + Λ2ξ2)

√
ξ2(1 + Λ2ξ2(ξ2

x + ξ2
y)− Λ2ξ2 − 2iξzΛ)

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

] (3.168)

=
1

2Λξ
sin−1

[
Λξ2 + iξz√

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

√
ξ2(1 + Λξzi)2

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

− −Λξ2 + iξz√
(ξ2
x + ξ2

y)(1 + Λ2ξ2)

√
ξ2(1− Λξzi)2

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

] (3.169)

=
1

2Λξ
sin−1

[
ξ(Λξ2 + iξz)(1 + iΛξz)− ξ(−Λξ2 + iξz)(1− iΛξx)

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

]
(3.170)

=
1

2Λξ
sin−1

[
ξ(iξz + Λξ2 − Λξ2

z + iΛ2ξzξ
2 − iξz + Λξ2 − Λξ2

z − iΛ2ξzξ
2)

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

]
(3.171)

=
1

2Λξ
sin−1

[
2ξ(Λξ2 − Λξ2

z )

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

]
(3.172)

=
1

2Λξ
sin−1

[
2Λξ(ξ2

x + ξ2
y)

(ξ2
x + ξ2

y)(1 + Λ2ξ2)

]
(3.173)

=
1

2Λξ
sin−1

[
2Λξ

1 + Λ2ξ2

]
(3.174)
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=
1

Λξ

1

2
sin−1

[
2Λξ√

1 + Λ2ξ2

√√√√1−

(
Λξ√

1 + Λ2ξ2

)2 ]
(3.175)

Ler us simplify Equation 3.175 using identity given in Equation 3.176.

2 sin−1 x = sin−1 2x
√

1− x2 (3.176)

=
1

Λξ
sin−1

[
Λξ√

1 + Λ2ξ2

]
(3.177)

I =
1

Λξ
tan−1 Λξ (3.178)

Putting value of integral (Equation 3.157) into Equation 3.158 and after rearranging, we
will get the desired Green’s function for steady state gray BTE.

∆T̃ =
Q̃τ

C

1
Λξ

tan−1(Λξ)

1− 1
Λξ

tan−1(Λξ)
(3.179)

Analytical verification

Let us verify the obtained solution of gray BTE analytically by putting it back into the
original Equation. For isotropical crystal the expanded steady state gray BTE is given in
Equation 3.180.

vg cos θ
∂eω
∂z

+ vg sin θ cosφ
∂eω
∂x

+ vg sin θ sinφ
∂eω
∂y
− Q

4π
= −e− eo(T )

τ
(3.180)

Computing the Fourier transform of both side of Equation 3.180. After re-arranging the
terms, we will get:

vg(cos θiξz + sin θ cosφiξx + sin θ sinφiξy)ẽ = − ẽ− ẽo(T )

τ
+
Q̃

4π
(3.181)

Integrating Equation 3.181 on both side over the solid angle Ω from 0 to 4π.

∫
4π

vg(cos θiξz + sin θ cosφiξx + sin θ sinφiξy)ẽdΩ =

∫
4π

[
− ẽ− ẽo(T )

τ
+
Q̃

4π

]
dΩ (3.182)

Putting the value of energy density distribution function (e) given in Equation 3.143 and
equilibrium energy density distribution function (eo) given in Equation 3.128 into Equa-

© 2019, Indian Institute of Technology Delhi



3.2 Boltzmann transport equation 32

tion 3.182. Solving for L.H.S, we will get:

∫
4π

C

4π

vg(cos θiξz + sin θ cosφiξx + sin θ sinφiξy)

1 + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy

(
∆T̃ +

Q̃τ

C

)
dΩ (3.183)

∫
4π

C

4πτ

1 + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy − 1

1 + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy

(
∆T̃ +

Q̃τ

C

)
dΩ (3.184)

∫
4π

C

4πτ

(
1− 1

1 + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy

)(
∆T̃ +

Q̃τ

C

)
dΩ (3.185)

C

4πτ

(
4π − 4π

Λξ
tan−1(Λξ)

)(
∆T̃ +

Q̃τ

C

)
(3.186)

Putting the value of ∆T̃ (Equation 3.179) into Equation 3.185. We have:

C

τ

(
1− 1

Λξ
tan−1(Λξ)

)(Q̃τ
C

1
Λξ

tan−1(Λξ)

1− 1
Λξ

tan−1(Λξ)
+ Q̃τ/C

)
(3.187)

Q̃
1

Λξ
tan−1(Λξ) + Q̃− Q̃ 1

Λξ
tan−1(Λξ)

= Q̃

(3.188)

Let us now compute the integral of R.H.S of Equation 3.182.

∫
4π

[
− ẽ− ẽo(T )

τ
+
Q̃

4π

]
dΩ (3.189)

∫
4π

[
− ẽ− ẽo(T )

τ

]
dΩ +

∫
4π

Q̃

4π
dΩ (3.190)

Putting the value of equilibrium energy density distribution (Equation 3.128) into Equa-
tion 3.190. We will get:

−
∫

Ω

[
ẽ

τ
− 1

4π

C

τ
∆T̃

]
dΩ + Q̃ (3.191)

First term of Equation 3.191 is same as Equation 3.132 which is zero. We will get:

= Q̃

The R.H.S and L.H.S are equal so the gray BTE for steady state is verified.
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3.2.2 Transient Analysis

Consider the gray BTE Equation 3.129, at transient the term ∂e/∂t will not be zero.

∂e

∂t
+ ~vg.∇e−

Q

4π
= −e− eo(T )

τ
(3.192)

Solution

Putting Equation 3.126 and 3.128 into gray BTE Equation 3.192 and computing the Fourier
transform of both side. We will get:

(iη + vg cos θiξz + vg sin θ cosφiξx + vg sin θ sinφiξy)ẽ = − ẽ
τ

+
C

4πτ
∆T̃ +

Q̃

4π
, (3.193)

where ∼ represents the Fourier transform, i is equal to
√
−1, and η is the temporal frequency.

Rearranging Equation 3.193, we will have:

ẽ =
C

4π

∆T̃ + Q̃τ/C

1 + iητ + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy
. (3.194)

Putting Equation 3.194 into Equation 3.132 and after rearranging we will get:

∆T̃ =
1

4π

∫
4π

∆T̃ + Q̃τ/C

1 + iητ + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy
dΩ (3.195)

We convert the solid angel Ω into polar(θ) and azimuthal(φ) angle. For a very small solid
angle dΩ.

dΩ = sin θdθdφ (3.196)

Putting Equation 3.146 into Equation 3.197. We will get:

T̃ =
1

4π

∫ 2π

0

∫ π

0

∆T̃ + Q̃τ/C

1 + iητ + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy
sin θdθdφ (3.197)

To convert the integral of Equation 3.197 into an integrable form, we will use substitution
method. Let us assume µ = cos θ. The integral in Equation 3.197 will convert to:

∆T̃ =
−1

4π

∫ 2π

0

∫ −1

1

∆T̃ + Q̃τ/C

1 + iητ + Λµiξz + Λ
√

1− µ2 cosφiξx + Λ
√

1− µ2 sinφiξy
dµdφ

(3.198)

∆T̃ =
1

4π

∫ 2π

0

∫ 1

−1

∆T̃ + Q̃τ/C

1 + iητ + Λµiξz + Λ
√

1− µ2 cosφiξx + Λ
√

1− µ2 sinφiξy
dµdφ (3.199)
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Solving the integral of Equation 3.199 using the identity given in the Equation 3.150. We
will get the Equation 3.200

∆T̃ =
1

2

∫ 1

−1

∆T̃ + Q̃τ/C√
1− η2τ 2 + 2iητ + 2iΛξzµ− 2ηξzτΛµ+ Λ2(ξ2

x + ξ2
y)− Λ2ξ2µ2

dµ, (3.200)

where ξ =
√
ξ2
x + ξ2

y + ξ2
z . Solving the integral of Equation 3.200 using the identity given in

Equation 3.158. We will get the desired Green’s function for transient gray BTE.

∆T̃ =
Q̃τ

C

1
Λξ

tan−1
(

Λξ
1+iητ

)
1− 1

Λξ
tan−1

(
Λξ

1+iητ

) (3.201)

Analytical verification

Let us verify the obtained solution of gray BTE analytically by putting it back into the
original Equation. For isotropical crystal the expanded steady state gray BTE is given in
Equation 3.202.

∂e

∂t
+ vg cos θ

∂eω
∂z

+ vg sin θ cosφ
∂eω
∂x

+ vg sin θ sinφ
∂eω
∂y
− Q

4π
= −e− eo(T )

τ
(3.202)

Computing the Fourier transform of both side of Equation 3.202. After re-arranging the
terms, we will get:

(iη + vg(cos θiξz + sin θ cosφiξx + sin θ sinφiξy)) ẽ = − ẽ− ẽo(T )

τ
+
Q̃

4π
(3.203)

Integrating the Equation 3.203 on both side over the solid angle Ω form 0 to 4π.

∫
4π

(iη + vg(cos θiξz + sin θ cosφiξx + sin θ sinφiξy)) ẽdΩ =

∫
4π

[
− ẽ− ẽo(T )

τ
+
Q̃

4π

]
dΩ

(3.204)
Putting the value of energy density distribution (e) given in Equation 3.194 and equilibrium
energy density distribution function(eo) given in Equation 3.128 into Equation 3.204. Solving
for L.H.S, we will get:

∫
4π

C

4π

iη + vg(cos θiξz + sin θ cosφiξx + sin θ sinφiξy)

1 + iητ + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy

(
∆T̃ +

Q̃τ

C

)
dΩ (3.205)

∫
4π

C

4πτ

1 + iητ + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy − 1

1 + iητ + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy

(
∆T̃ +

Q̃τ

C

)
dΩ

(3.206)
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∫
4π

C

4πτ

(
1− 1

1 + iητ + Λ cos θiξz + Λ sin θ cosφiξx + Λ sin θ sinφiξy

)(
∆T̃ +

Q̃τ

C

)
dΩ

(3.207)
C

τ

(
4π − 4π

Λξ
tan−1

(
Λξ

1 + iητ

))(
∆T̃ +

Q̃τ

C

)
(3.208)

C

τ

(
1− 1

Λξ
tan−1

(
Λξ

1 + iητ

))(Q̃τ
C

1
Λξ

tan−1
(

Λξ
1+iητ

)
1− 1

Λξ
tan−1

(
Λξ

1+iητ

) + Q̃τ/C
)

(3.209)

Q̃
1

Λξ
tan−1

(
Λξ

1 + iητ

)
+ Q̃− Q̃ 1

Λξ
tan−1

(
Λξ

1 + iητ

)
= Q̃

(3.210)

Let now compute the integral of R.H.S of Equation 3.204.

∫
4π

[
− ẽ− ẽo(T )

τ
+
Q̃

4π

]
dΩ (3.211)

∫
4π

[
− ẽ− ẽo(T )

τ

]
dΩ +

∫
4π

Q̃

4π
dΩ (3.212)

Putting the value of equilibrium energy density distribution function (Equation 3.128) into
Equation 3.190. We will get:

−
∫

Ω

[
ẽ

τ
− 1

4π

C

τ
∆T̃

]
dΩ + Q̃ (3.213)

First term of the Equation 3.213 is same as Equation 3.132 which is zero. We will get:

= Q̃

The R.H.S and L.H.S are equal so the gray BTE for transient is verified.
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3.3 Combined Solution

We compute the base temperature profile of the chip by convolving the Fourier Green’s
function with the power profile of the chip, and then we use this thermal profile to compute
the temperature of 1000 × 1000 nm2 blocks using the BTE based Green’s function (see
Figure 3.4). This gives us the temperature profile of regions of interest: standard cells, and
small functional units.

Fouier heat equation
solution of a chip 
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Figure 3.4: Fourier-Boltzmann framework
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Chapter 4

Evaluation

4.1 Setup

We run the simulations on an Intel i7 3rdgeneration processor based desktop with 8GB RAM
running Ubuntu 18.04. For validating our Fourier analysis results, we used a commercial
CFD simulator COMSOL (Version 5.3b) [31], and we compare our BTE solution against
ThermalScope (available as ISAC2 ). The Fourier solution was done in R (version 3.5.1),
and the BTE solution was done on Matlab 17b.

Error Metric: We have reported the root mean square (RMS) value of the error for
all the test cases. Where percentage errors are reported, these are relative to the maximum
temperature rise (similar to [11]). In ThermalScope the authors report the average error
(average error is always less than the RMS error).

4.2 Fourier Analysis

We run the Fourier steady-state simulation for a chip with a heat spreader on top of it. The
chip and heat spreader dimensions are 10 mm× 10 mm× 0.15 mm and 10 mm× 10 mm×
3.52 mm [12, 4] respectively. The conductivity of silicon and the heat spreader is 150 W/mK

and 256 W/mK respectively (it is the effective conductivity of the heat spreader and the
TIM).

4.2.1 Steady State

Green’s function based full chip temperature calculation can be broken down into two parts
[2, 10, 12]:

1. Green’s function computation (offline)

2. Full chip thermal profile computation (online)

Green’s function: We have calculated the Green’s function assuming the source to be
a circle of finite radius applied at the center of the chip (to exploit the symmetry of the
thermal distribution).
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Figure 4.1: (a) Circular source (b) Square source

However, the floorplan elements in a real chip are rectangular; they can only be dis-
cretized into small square grid points. Thus we need a way of mapping these square grid
points to circular sources (for which we calculate the Green’s function). For this, we take
a circular source of equal area as the square source. We sample the continuous Green’s
function at the centers of the grid points determined by discretizing the chip into a grid.
We have found that a grid size of 0.2 mm provides sufficient accuracy for a chip of area
100 mm2 or more (Figure 4.1). Similar discretizations were found to be sufficient in [4].
The RMS error obtained by this approximation is 0.023◦C, which is small enough compared
to the maximum temperature rise of 17◦C (maximum error of 1.7%). Figure 4.2 shows the
comparison of the calculated Green’s function (using the circular source) against the Green’s
function obtained in COMSOL (using a square source of equal area).

Our implementation takes 0.082 s to compute the Green’s function for a 10 × 10 mm2

chip. We also calculated the Green’s function using COMSOL for the same configuration,
and observed a simulation time of 305 s. Other Green’s function based simulators such as
LightSim [10, 12] and PowerBlurring [4] depend on FEM based simulators for the calculation
of the Green’s function. If the geometry of the chip or the boundary conditions change, the
Green’s function will have to be recomputed. In our work, since we analytically obtain the
Green’s function, our approach gives designers the flexibility to experiment with the package,
as there is no dependence on any external tool.

Full Chip Thermal Profile: We computed the thermal profile for four test cases
(Figure 4.3 and 4.4). In the first two test cases we discretized a 10 × 10 mm2 chip into a
50 × 50 grid. Test cases 3 and 4 have been implemented to evaluate our algorithm on two
real floorplans.

Test Case 1: In this case, we have applied power sources at the center and all corners
of the chip. This represents one of the worst case power profiles possible, since the corners
and edges contribute to a large part of the error in Green’s function based approaches [4].
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Figure 4.2: Comparison of NanoTherm and COMSOL (Fourier, steady state Green’s func-
tion)

We obtained an RMS error of 0.046◦C (maximum error 1.57%) compared to COMSOL
(Figure 4.3b). This verifies our corners and edge correction approach.

Test Case 2: This test case is similar to Test case 1, except that the power densities are
much higher here (2500 W/cm2). We have used a very high power density figure to evaluate
our algorithm for extreme cases anticipated in next generation processors [32]. An RMS
error of 0.169◦C (maximum error 2.88%) was observed in comparison to COMSOL.

Test Case 3: We have further evaluated our algorithm using the floorplan of a processor
containing a single core of Alpha21264 and an L2 cache. The dimensions of the processor
are 16 mm×16 mm×0.15 mm. The core has 15 functional units. The power density of each
functional unit is shown in Figure 4.4a (obtained from HotSpot). The calculated thermal
profile of the chip is shown in Figure 4.4b. An RMS error of 0.047◦C (maximum error 3.2%)
was observed against the COMSOL model. This error is greater than that of test cases 1
and 2, since all the major sources have been placed along an edge of the processor.

Test Case 4: We have also implemented a dual-core processor in 45 nm technology based
on the Intel Gainestown architecture [33]. Each core is divided into six sub-units, and all
cores share an L3 cache. The power density of each block is shown in Figure 4.4c. The size
of the processor is 11.2 mm× 11.2 mm× 0.15 mm. The calculated thermal profile is shown
in Figure 4.4d. An RMS error of 0.099◦C (maximum error 1.9%) was observed against the
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COMSOL model.

Runtime: The total runtime of the algorithm was 83.5 ms for all the test cases (including
the Green’s function computation time). We need only 1.5 ms in the online stage to compute
the full chip temperature profile, by taking the FFT of the Green’s function and the power
profile and computing the inverse transform of the product. To compute the same steady
state thermal profile, COMSOL requires 305 s. Thus NanoTherm provides a speedup of
3652X over COMSOL.
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(c) Power distribution (d) Thermal profile

Figure 4.3: Power and thermal profiles for test cases 1 and 2

Transient:

For transient analysis, we use the same setup. The density of silicon and the heat spreader
are 2330 kg/m3 and 8960 kg/m3 respectively, and the specific heat values are 700 J/kg.K
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Figure 4.4: Evaluation for Alpha21264 and Gainestown architectures
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Figure 4.5: Comparison of NanoTherm and ThermalScope (BTE, steady state)

and 390 J/kg.K respectively.

Step response: We start with applying a 1 W step source at the center of the chip. We
calculated the step response of the chip for 100 radial points and 40-time steps. The runtime
of the algorithm was 4.15 s (Note: 25% of the time is going in the slow inverse Laplace
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Figure 4.9: Power distribu-
tion

Figure 4.10: ∆T at t =
0.01 ms

Figure 4.11: ∆T at t =
2 ms

Figure 4.12: ∆T at t =
4 ms

transform routine of R). Also, NanoTherm has been implemented in R whereas HotSpot
and 3DICE have been implemented in C++. R is several times slower than C++ [34],
and hence, the implementation of NanoTherm in C++ or any other similar language would
be faster. In comparison, for calculating the same step response, COMSOL took 3005 s

(NanoTherm is faster by roughly 724X). Figure 4.6 compares the accuracy of our transient
simulation against COMSOL, where the error is limited to 1%.

Full Chip Thermal Profile: We compute the transient thermal profile of a 10×10 mm2

chip for the power profile given in Figure 4.9. The calculated thermal profiles at time instants
t = 0.01 ms, 2ms, and 4ms are shown in Figure 4.10, 4.11, and 4.12 respectively. An RMS
error of 0.057◦C was observed for t = 4 ms. A total simulation time of 4.2 s was observed.
To compute the same transient thermal profile COMSOL took 3005 s (speedup of 715X).

4.2.2 BTE Analysis:

We compare the BTE steady state solution against the Fourier steady state solution for
a 60 nm × 45 nm × 20nm channel FET. Solving the Fourier equation only results in a
maximum error of 1.59◦C or 53% (Figure 4.8), similar to [16].
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Steady State

We run the simulation for steady state BTE with a 60 nm×45 nm×20nm channel FET [13,
15]. A simulation time of 3.3 s was observed for 400× 400× 200 grid points. In comparison
the steady state simulation in ThermalScope takes 36.76 min (speedup of 641X). An RMS
error of 0.06◦C was observed against the ThermalScope. Figure 4.5 compares the results of
NanoTherm and ThermalScope.

Transient

We used the same steady state configuration for the transient simulation as well. A sim-
ulation time of 39.5 s was observed for 200 time steps. We run the same simulation with
ThermalScope with the same meshing (as we had for steady state) and the simulation time
observed was 48.1 min. An RMS error of 0.087◦C was observed. Figure 4.7 compares the
result of NanoTherm and ThermalScope.

4.2.3 Simulation Speed

Table 4.1 summarizes the time needed to compute the temperature profile for all cases
(chip level and nanometer level, steady state and transient) by popular commercial and
open source tools. The time taken by COMSOL to obtain the steady state thermal profile
was 305 s. Therefore our algorithm is 3652X faster than COMSOL. We are 7X faster
than ThermalScope in calculating the transient Fourier solution. For BTE solution, we are
668X faster than ThermalScope while calculating the steady state profile and 73X faster in
computing the transient thermal profile.

Table 4.1: Speed of popular simulators

Simulator Fourier heat eq BTE
Steady Transient Steady Transient

Hotspot1 1 s 36 s - -
3DICE 1.36 s 1.77 s - -
COMSOL 305 s 3005 s - -
ThermalScope 11.1 s 32.55 s 2206 s 2888 s
NanoTherm 0.083s 4.2s 3.3s 39.5s
1 For an acceptable accuracy in Hotspot and 3DICE, a grid size of
∼ 128× 128 is used.

2 HotSpot, 3D-ICE and COMSOL do not solve the BTE.
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Chapter 5

Conclusion

State of the art thermal estimation techniques either do not take the nanoscale quantum
effects into account, or solve for these effects using the slower finite element method. In
this paper, we propose a fast and analytical thermal estimation technique that incorporates
nanoscale quantum effects as well. We solve the Fourier equation analytically using a Green’s
function based approach and speed up the process by exploiting the symmetry of the heat
distribution. Further, we solve the Boltzmann transport equation analytically and combine
it with the Fourier solution to propose an analytical full chip thermal estimation framework.
Our results show that we are 7-668X faster than the state of the art tool, ThermalScope,
with an error limited to 3%.
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