Phoenix: Detecting and Recovering from Permanent Processor Design Bugs with Programmable Hardware

> Smruti R. Sarangi Abhishek Tiwari Josep Torrellas

University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu

Can a Processor have a Design Defect ?

http://iacoma.cs.uiuc.edu

2

A Major Challenge ???

50-70% effort spent on debugging

1-2 year verification times

Massive computational resources

Defects slip through ???

- 1999 Defect leads to stoppage in shipping Pentium III servers
- 2004 AMD Opteron defect leads to data loss
- 2005 A version of Itanium 2 recalled

Does not look like it will stop

Increasing features on chip

Conventional approaches are ineffective

- Micro-code patching
 - Compiler workarounds
- OS hacks
- Firmware

http://iacoma.cs.uiuc.edu

Vision

Additional Advantage: Reduced Time to Market

Pentium-M, Silas et al., 2003

Reduced time to market → Vital ingredient of profitability

Outline

Analysis and Characterization Architecture for Hardware Patching Evaluation

- We studied public domain errata documents for 10 current processors
 - Intel Pentium III, IV, M, and Itanium I and II
 - AMD K6, Athlon, Athlon 64
 - IBM G3 (PPC 750 FX), MOT G4 (MPC 7457)

Dissecting a Defect – from Errata doc.

When can the defects be detected ?

Outline

Analysis and Characterization

Architecture for Hardware Patching

Evaluation

Phoenix Conceptual Design

Distributed Design of Phoenix

http://iacoma.cs.uiuc.edu

Overall Design

Chip Boundary

Software Recovery Handler

17

Designing Phoenix for a New Processor

Designing Phoenix for a New Proc. – II

http://iacoma.cs.uiuc.edu

Outline

Analysis and Characterization Architecture for Hardware Patching

Evaluation

Signals Tapped

Defect Coverage Results

Train set only needs to have 7 processors
Coverage in new processors is very high

Conclusion

- We analyzed the defects in 10 processors
- Phoenix novel on-chip programmable HW
- Evaluated impact:
 - 150 270 signals tapped
 - Negligible area, wiring, and performance overhead
 - Defect coverage: 69% detected, 63% recovered
 - Algorithm to automatically size Phoenix for new procs
- We can now live with defects !!!

Phoenix: Detecting and Recovering from Permanent Processor Design Bugs with Programmable Hardware

> Smruti R. Sarangi Abhishek Tiwari Josep Torrellas

University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu

Backup

http://iacoma.cs.uiuc.edu

27

Phoenix Algorithm for New Processors

Defect Coverage for New Processors

Similar results obtained for 9 Sun processors – UltraSparc III, III+, III++, IIIi, IIIe, IV, IV+, Niagara I and II

28

Where are the Critical defects ?

