Phoenix: Detecting and Recovering from Permanent Processor Design Bugs with Programmable Hardware

Smruti R. Sarangi
Abhishek Tiwari
Josep Torrellas

University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu

Can a Processor have a Design Defect?

Yes, it is a major challenge.
http://iacoma.cs.uiuc.edu

A Major Challenge ???

50-70\% effort spent on debugging

1-2 year verification times

Massive computational resources

Some defects still slip through to production silicon
http://iacoma.cs.uiuc.edu

Defects slip through ???

Does not look like it will stop

Vision

Processors include programmable HW for patching design defects

Vendor discovers a new defect I
Vendor characterizes the conditions that exercise the defect 1
Vendor sends a defect signature to processors in the field 1

Customers patch the HW defect

Additional Advantage: Reduced Time to Market
 Pentium-M, Silas et al., 2003

- Reduced time to market \rightarrow Vital ingredient of profitability

Outline

- Analysis and Characterization

- Architecture for Hardware Patching

- Evaluation

Defects in Deployed Systems

- We studied public domain errata documents for 10 current processors
Intel Pentium III, IV, M, and Itanium I and II
AMD K6, Athlon, Athlon 64
- IBM G3 (PPC 750 FX), MOT G4 (MPC 7457)

Dissecting a Defect - from Errata doc.

Types of Defects

Characterization

84

\square NonCritical \square Critical-Concurrent \square Critical-Complex

When can the defects be detected ?

http://iacoma.cs.uiuc.edu

Outline

- Analysis and Characterization
 - Architecture for Hardware Patching

- Evaluation

Phoenix Conceptual Design

\square Store defect signatures obtained from vendor
\square Program the on-chip reconfigurable logic
\square Tap signals from units
\square Select a subset
\square Collect signals from SSUs
\square Compute defect conditions
\square Initiate recovery if a defect condition is true

Distributed Design of Phoenix

Neighborhood

Overall Design

Chip Boundary

Software Recovery Handler

Designing Phoenix for a New Processor

\square Processor data sheets

\square Scatter plot of sizes vs. \# of signals in unit
\square Derive rules of thumb
Data

Designing Phoenix for a New Proc. - II

Outline

- Analysis and Characterization
 - Architecture for Hardware Patching

- Evaluation

Signals Tapped

Generic+Specific

Generic Signals
\square L2 hit, low power mode
\square ALU access, etc.

Specific Signals

\square A20 pin set in Pentium 4
\square BAT mode in IBM 750FX

Defect Coverage Results

Overheads

\square Programmable logic (PLA \& interconnect)
\square Estimated using PLA layouts (Khatri et al.)
0.05\%

Impact of Training Set Size

- Train set only needs to have 7 processors
- Coverage in new processors is very high

Conclusion

We analyzed the defects in 10 processors

- Phoenix novel on-chip programmable HW
- Evaluated impact:
- 150 - 270 signals tapped

Negligible area, wiring, and performance overhead
Defect coverage: 69\% detected, 63\% recovered
Algorithm to automatically size Phoenix for new procs

- We can now live with defects !!!

Phoenix: Detecting and Recovering from Permanent Processor Design Bugs with Programmable Hardware

Smruti R. Sarangi
Abhishek Tiwari Josep Torrellas

University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu

Backup

group

Phoenix Algorithm for New Processors

Similar results obtained for 9 Sun processors UltraSparc III, III+, III++, IIII, IIIe, IV, IV+, Niagara I and II

Defect Coverage for New Processors

Route all signals and realize the logic function

Where are the Critical defects ?

- The core is well debugged
- Most of the defects are in the mem. system

