
Phoenix: Detecting and Recovering from
Permanent Processor Design Bugs

with Programmable Hardware

Smruti R. Sarangi
Abhishek Tiwari
Josep Torrellas

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

http://iacoma.cs.uiuc.edu
2

Can a Processor have a Design Defect ?

No Way !!!

Yes, it is a major
challenge.

http://iacoma.cs.uiuc.edu
3

A Major Challenge ???

50-70% effort spent on debugging

1-2 year verification times

Massive computational resources

Some defects still slip through
to production silicon

http://iacoma.cs.uiuc.edu
4

Defects slip through ???

1994 Pentium defect costs Intel $475 million

1999 Defect leads to stoppage in shipping Pentium III servers

2004 AMD Opteron defect leads to data loss

2005 A version of Itanium 2 recalled

Does not look like it will stop

Increasing features on chip

Conventional approaches are ineffective

Micro-code patching
Compiler workarounds
OS hacks
Firmware

http://iacoma.cs.uiuc.edu
5

Vision
Processors include programmable

HW for patching design defects

Vendor discovers a new defect

Vendor sends a defect signature
to processors in the field

Vendor characterizes the conditions
that exercise the defect

Customers patch the HW defect

http://iacoma.cs.uiuc.edu
6

Additional Advantage: Reduced Time to
Market

8 weeks

%
 o

f d
ef

ec
ts

 d
et

ec
te

d

Reduced time to market Vital ingredient of
profitability

Pentium-M, Silas et al., 2003

http://iacoma.cs.uiuc.edu
7

Outline

Analysis and Characterization
Architecture for Hardware Patching
Evaluation

http://iacoma.cs.uiuc.edu
8

Defects in Deployed Systems

We studied public domain errata documents for
10 current processors

Intel Pentium III, IV, M, and Itanium I and II
AMD K6, Athlon, Athlon 64
IBM G3 (PPC 750 FX), MOT G4 (MPC 7457)

%
 o

f d
ef

ec
ts

 d
et

ec
te

d

50
100%

http://iacoma.cs.uiuc.edu
9

Dissecting a Defect – from Errata doc.

Defect

Module

Type of Error

Condition

L1, ALU, Memory, etc.

Hang, data corruption
IO failure, wrong data

A ∪ (B∩C∩D)

Signal
Snoop
L1 hit
IO request
Low power mode

http://iacoma.cs.uiuc.edu
10

Types of Defects

Design Defect

Non-Critical Critical

Performance counters
Error reporting registers
Breakpoint support

Defects in memory, IO, etc.

Concurrent Complex

All signals – same time Different times

http://iacoma.cs.uiuc.edu
11

31%

69%

Characterization

http://iacoma.cs.uiuc.edu
12

ALU

Memory, IO

When can the defects be detected ?

Condition
Detector

Signals

Pre Defect (63%)

Post Defect (37%)

Local Pipeline Other

Defect

time

http://iacoma.cs.uiuc.edu
13

Outline

Analysis and Characterization
Architecture for Hardware Patching
Evaluation

http://iacoma.cs.uiuc.edu
14

Phoenix Conceptual Design

Signature Buffer

Bug Detection Unit
(BDU)

Global Recovery Unit

Signal Selection Unit
(SSU)Reconfigurable

Logic

Store defect signatures
obtained from vendor
Program the on-chip
reconfigurable logic

Tap signals from units
Select a subset

Collect signals from SSUs
Compute defect conditions

Initiate recovery if a
defect condition is true

http://iacoma.cs.uiuc.edu
15

Distributed Design of Phoenix

Subsystem

SSUBDU

Subsystem

BDUSSUHUB

Neighborhood

To Recovery
Unit

IO Cntrl. L1 CacheFetch Unit
Virtual Mem.FP ALUInst. Cache

Examples of Subsystems

To Recovery
Unit

http://iacoma.cs.uiuc.edu
16

Overall Design

HUB

HUB HUB

HUB

Neighborhood

Neighborhood Neighborhood

Neighborhood

Global Recovery
Unit

Chip Boundary

http://iacoma.cs.uiuc.edu
17

Software Recovery Handler

Pipeline Post

Flush Pipeline

Type of
Defect

Pre
Reset Module

Local Post Checkpointing
Support

Rollback
Interrupt to

OS

Rest of Post

Yes No

Turn condition off

continue

+

http://iacoma.cs.uiuc.edu
18

Training
Data

Designing Phoenix for a New Processor

New Processor

Sizes of StructuresList of Signals

Generic Specific

Learn from other
processors

Processor
data sheets Scatter plot of sizes

vs. # of signals in unit
Derive rules of thumbTraining

Data

http://iacoma.cs.uiuc.edu
19

Designing Phoenix for a New Proc. – II

Generate list of signals to tap

Decide on breakdown of
subsystems and neighborhoods

Place BDUs, SSUs, and HUBs

Size structures using the
rules of thumb

Route all signals and realize
the logic function of defects

http://iacoma.cs.uiuc.edu
20

Outline

Analysis and Characterization
Architecture for Hardware Patching
Evaluation

http://iacoma.cs.uiuc.edu
21

Signals Tapped

Generic Signals Specific Signals

L2 hit, low power mode
ALU access, etc.

A20 pin set in Pentium 4
BAT mode in IBM 750FX

Generic+Specific

150-270

http://iacoma.cs.uiuc.edu
22

Defect Coverage Results

All DefectsConcurrent

C
om

pl
ex

69% 31%

Pre Post

63%

37%
Detect

Recover
Training Set:
Intel P3, P4, P-M
Itanium I & II
AMD K6, K7
AMD Opteron
IBM G3
Motorola G4

Test Set:
UltraSparc II
Intel IXP 1200
Intel PXA 270
PPC 970
Pentium D

Test Processors
Detection Coverage

Recovery Coverage

65%

60%

http://iacoma.cs.uiuc.edu
23

Overheads

Overheads

Area TimingWiring

Programmable logic
(PLA & interconnect)
Estimated using PLA
layouts (Khatri et al.)

0.05%

Wires to route signals
Estimated using Rent’s rule

0.48%

None

http://iacoma.cs.uiuc.edu
24

Impact of Training Set Size

Train set only needs to have 7 processors
Coverage in new processors is very high

http://iacoma.cs.uiuc.edu
25

Conclusion

We analyzed the defects in 10 processors
Phoenix novel on-chip programmable HW
Evaluated impact:

150 – 270 signals tapped
Negligible area, wiring, and performance overhead
Defect coverage: 69% detected, 63% recovered
Algorithm to automatically size Phoenix for new procs

We can now live with defects !!!

Phoenix: Detecting and Recovering from
Permanent Processor Design Bugs

with Programmable Hardware

Smruti R. Sarangi
Abhishek Tiwari
Josep Torrellas

University of Illinois at Urbana-Champaign
http://iacoma.cs.uiuc.edu

http://iacoma.cs.uiuc.edu
27

Backup

http://iacoma.cs.uiuc.edu
28

Phoenix Algorithm for New Processors
Generate Signal List

Place a SSU-BDU pair
in each subsystem

Use k-means clustering to
group subsystems in nbrhoods

Size hardware using the
thumb-rules

Map signals in errata to
signals in the list

Route all signals and realize
the logic function

Similar results obtained for
9 Sun processors –
UltraSparc III, III+, III++, IIIi,
IIIe, IV, IV+, Niagara I and II

Defect Coverage for New Processors

http://iacoma.cs.uiuc.edu
29

Where are the Critical defects ?

The core is well debugged
Most of the defects are in the mem. system

