
Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Checker Processors

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology

New Delhi, India

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Outline

1 Introduction

2 Checker Processors
Checker Pipeline
Checking Mechanism

3 Advanced Checker Processors
Issues with DIVA
Reducing the Loss of Performance in DIVA

Core
Checker
L1 Failure

4 Design and Implementation

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

The Pentium Bug

Example
Story of the pentium bug: There was an error in the 9th digit
for floating point division. The bug typically showed up in large
financial and scientific calculations. Intel recalled all the Pentium
chips and replaced them. It had lost about 500 million dollars,
20 years ago.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Stories of Some More Bugs

A bug in AMD Opteron forced the designers to turn off prefetch-
ing. This had a massive performance impact.
Bugs in IBM’s G3 processor forced the designers to turn off
power management.
Due to soft errors, IBM stopped shipping its servers. Cus-
tomers turned to Sun servers.
Many more such bugs have been reported, resulting in mas-
sive losses to companies.
Is there a way to stop faults from becoming failures?

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Sources of Faults

Hard Errors: Permanent defects in wires or transistors that
typically manifest over time.
Soft Errors: Transient faults caused by current pulses gen-
erated by alpha particles and neutrons.
Design Bugs: Errors in cpu design.
Process Variation related Faults: Faults due to problems
introduced by the fabrication process.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Checker Pipeline
Checking Mechanism

Idea of a Checker Processor

Have a checker processor that can check the results of the
main processor.

Has significantly simpler logic. The checker is very extensi-
bly verified. Hence, it has a low chance of having a design
fault.
The transistors are bigger in size. This reduces the chances
of soft errors.
The frequency is lower. This along with the fact that the
design is simpler, ensure that the temperature is significantly
lower. Low temperature⇒ less hard errors

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Checker Pipeline
Checking Mechanism

Outline

1 Introduction

2 Checker Processors
Checker Pipeline
Checking Mechanism

3 Advanced Checker Processors
Issues with DIVA
Reducing the Loss of Performance in DIVA

Core
Checker
L1 Failure

4 Design and Implementation

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Checker Pipeline
Checking Mechanism

Processor Pipeline

IF ID REN
Instruction
 Queue

EX

ROB
in order
retirement

CT
commit

Figure 1: Regular processor pipeline

Instructions are executed out of order.
The reorder buffer(ROB) aggregates them, and commits
their state in order. (Why ???)

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Checker Pipeline
Checking Mechanism

DIVA Pipeline

IF ID REN
Instruction
 Queue

EX

ROB
in order
retirement

checker
 core

watchdog
 timer

CT

Processor

Diva core

commit

Figure 2: DIVA pipeline

The DIVA pipeline adds a few extra stages.
The output from the reorder buffer is sent to the checker core.
The checker core commits the instruction after execution.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Checker Pipeline
Checking Mechanism

Outline

1 Introduction

2 Checker Processors
Checker Pipeline
Checking Mechanism

3 Advanced Checker Processors
Issues with DIVA
Reducing the Loss of Performance in DIVA

Core
Checker
L1 Failure

4 Design and Implementation

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Checker Pipeline
Checking Mechanism

Passing Instructions to the Checker

Every cycle the core pipeline sends an instruction packet to
the checker pipeline.
instruction packet =⇒<program counter, opcode, operands,
operand values, result, memory address accessed >

Example
Inst 20: add r3,r1,r2 (r3 = r1 + r2)
r3 = 5, r1 = 2, r2 = 3
The instruction packet will have the following elements

Program Counter→ 20
opcode→ add
operands→ r3, r1, and r2

operand values→ 2,3
result→ 5
mem. address→ none

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Checker Pipeline
Checking Mechanism

The Process of Checking

Computation : We need to check if the computation is correct
Communication : We need to check if the correct operand
values have been read and the correct result has been written.

ChkComp Pipeline
Re-execute the instructions
Verify that the result is cor-
rect

ChkComm Pipeline
Read the operands from
the register file
Re-execute loads from
memory
Verify that the register and
memory values are correct

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Checker Pipeline
Checking Mechanism

The Process of Checking

Computation : We need to check if the computation is correct
Communication : We need to check if the correct operand
values have been read and the correct result has been written.

ChkComp Pipeline
Re-execute the instructions
Verify that the result is cor-
rect

ChkComm Pipeline
Read the operands from
the register file
Re-execute loads from
memory
Verify that the register and
memory values are correct

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Checker Pipeline
Checking Mechanism

The Checker Core Pipeline

Commit

check
exec.

check

compute
address

re-execute ld

check
read operand
registers

success

success

success

instruction
 packet

ChkComp ChkComm

Figure 3: Checker core pipelines

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Checker Pipeline
Checking Mechanism

What Happens when an Error is Detected

1 The checker sends a “flush pipeline” message to the core
2 The core flushes its pipeline
3 The checker commits the correct results to the architectural

state
Core’s register file
Checker’s register file
Caches

4 The core resumes execution from the next instruction (one
instruction after the erroneous instruction in program order)

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Outline

1 Introduction

2 Checker Processors
Checker Pipeline
Checking Mechanism

3 Advanced Checker Processors
Issues with DIVA
Reducing the Loss of Performance in DIVA

Core
Checker
L1 Failure

4 Design and Implementation

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Problems with DIVA

What can be the problems with DIVA?

Performance = Frequency ∗ IPC

The checker is typically running at a slower frequency. Hence,
its IPC needs to be higher.
Why should the checker’s IPC be higher

There are fewer dependencies between instructions in the
checker (why not zero ???)
The core prefetches memory values for the checker
To summarize: A checker has higher ILP (Instruction Level
Parallelism)

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Problems with DIVA-II

Why should the checker’s IPC be lower
The core typically has a higher peak issue rate than the
checker.

Example

For a core that can issue upto four instructions per cycle, it might reach
a peak IPC of 1.5. It is sufficient for the checker to have an IPC of 2 in
this case.

In this case, we can have a checker with a smaller area.

What if the core has an IPC that is greater than the checker?

While designing the checker, we need to ensure that this case
does not arise very frequently
However, there might be some benchmarks or instances within
a benchmark that exhibit this behaviour

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Problems with DIVA-III

Core Checker
queue

Definition
ILP Instruction Level Parallelism : The average number of in-
structions that can be executed in parallel in one cycle

For codes with high ILP, the core will outrun the checker
In this case the checker pipeline will stall.
This will lead to core stalls, and the overall performance will
reduce.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Outline

1 Introduction

2 Checker Processors
Checker Pipeline
Checking Mechanism

3 Advanced Checker Processors
Issues with DIVA
Reducing the Loss of Performance in DIVA

Core
Checker
L1 Failure

4 Design and Implementation

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Argument from an IPC Perspective

The overall of IPC in the system can decrease because of the:

core
Resource contention

Register File
Ld/St Queue
L1 Cache

Lack of entries in
Reorder Buffer
Ld/St Queue

checker
Very high ILP
Data dependences
Cache misses

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Register File Contention

Every cycle the core accesses its register file for read and
write accesses.
The checker needs to access the register file to ensure that
the correct values are read, and the correct values are writ-
ten.

Replicate the register file. Have a dedicated checker RF
The checker needs only architectural registers.
The checker populates the register file of the core after a
fault is detected.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Register File Contention

Every cycle the core accesses its register file for read and
write accesses.
The checker needs to access the register file to ensure that
the correct values are read, and the correct values are writ-
ten.

Replicate the register file. Have a dedicated checker RF

The checker needs only architectural registers.
The checker populates the register file of the core after a
fault is detected.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Register File Contention

Every cycle the core accesses its register file for read and
write accesses.
The checker needs to access the register file to ensure that
the correct values are read, and the correct values are writ-
ten.

Replicate the register file. Have a dedicated checker RF
The checker needs only architectural registers.
The checker populates the register file of the core after a
fault is detected.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Register File Contention - II

Core

Checker

L1 Cache

Checker
 Core

RF

Figure 4: DIVA with a dedicated checker register file

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Load-Store Queue Contention

Definition
Load-Store Queue: It is a FIFO queue of load and store entries.
Each entry stores the ld/st address and in the case of a store,
the value.

Ld St Ld Ld Ld StSt

Rules for using the LSQ

For any load find the first matching store (if any) and forward
the value.
All stores happen after the instruction commits.
A LSQ entry is allotted at the time of instruction decode.
The entry is populated with the ld/st address after it is gen-
erated.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Load-Store Queue Contention-II

When loads in the checker execute, they need to check the
ld/st queue of the core for any pending stores.
They will collide with loads from the core, and this will result
in contention.

Solution:
Replicate just the store queue in the checker.
This will eliminate some of the accesses to the ld/st queue
in the core. Not all.
When a store instruction commits in the checker, the corre-
sponding entries in the core and checker store queues are
removed

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Load-Store Queue Contention-II

Core

Checker

L1 Cache

Checker
 Core

RF StQ

lsq

Figure 5: Addition of a store queue to the checker

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Eliminating Cache Conention

The core accesses the L1 cache for loads and stores.
The checker also needs to do the same.
Hence, the bandwidth requirement of the L1 cache will dou-
ble.

Idea: Create a small L0 cache for the checker. Any data that is
touched by the core will automatically be forwarded to the L0
cache.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Eliminating Cache Conention

The core accesses the L1 cache for loads and stores.
The checker also needs to do the same.
Hence, the bandwidth requirement of the L1 cache will dou-
ble.

Idea: Create a small L0 cache for the checker. Any data that is
touched by the core will automatically be forwarded to the L0
cache.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Core

Checker

L1 Cache

Checker
 Core

RF StQ

lsq L0

Figure 6: Checker with L0 cache

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Lack of Entries

With a checker in place, speculative entries remain within the
pipeline for a longer time. This puts pressure on resources.

Lack of entries in the reorder buffer(ROB)
Increase the size of the ROB.

Lack of entries in the Ld/St queue
Once a ld/st instruction moves to the checker, which has a
store queue, remove the entry.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Very High ILP

Example
Consider a program that is adding two arrays:
c[1. . . n] = a[1. . .n] + b[1. . .n] There are potentially n parallel op-
erations.

With properly written code, we potentially have an IPC of n
The core will clearly outperform the checker

Solutions
Only Divine intervention can help you !!!

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Very High ILP

Example
Consider a program that is adding two arrays:
c[1. . . n] = a[1. . .n] + b[1. . .n] There are potentially n parallel op-
erations.

With properly written code, we potentially have an IPC of n
The core will clearly outperform the checker

Solutions
Only Divine intervention can help you !!!

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Data Dependences

Example
Dependent Instructions
Inst1: r1 = ld r2
Inst2: r3 = r1 + r4
Inst1 and Inst2 are dependent through register, r1

The ChkComm pipeline for Inst2 will stall. It will not be able
to check that r1 is read correctly, because of Inst1.
Inst1 and Inst2 cannot be checked parallely.
If Inst2 can be checked just one cycle after Inst1, then we
are fine. (Can be achieved through bypass paths)
If there is a longer latency, between these dependent in-
struction, then we are limiting the IPC

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Cache Misses in the Checker

Solutions
The store queue will reduce write misses.
The L0 cache will reduce cache misses to almost zero.

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Example
Nowadays, the L1 cache, and even sometimes the L2 cache is
part of the core. What if there is a problem in the caches that
ECC cannot fix?

Bugs in the cache access logic
Bugs in the cache coherence protocol
The clock cycle is too fast, and there are timing errors.

Idea: Have a separate L1 cache for the checker.
The core’s L1 cache only holds speculative state.
The checker’s L1 cache is the real L1.
Once a fault is detected : flush the pipeline and clean up
the core’s L1

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

Issues with DIVA
Reducing the Loss of Performance in DIVA

Diva with Split L1

Core

Checker

L1 Cache

Checker
 Core

RFL1RFL1

Figure 7: DIVA with a split L1 cache

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

DIVA was designed and fabricated by Todd Austin and group
in 2001.
Experiment configuration

Base Processor : Alpha 21264, four issue, seven stage pipeline
Four wide, three stage checker
Synthesized with Synopsys 250 nm library

Conclusions
1.5% power overhead
6% area overhead
Timing overhead limited to 3%

Smruti R. Sarangi Checker Processors

Introduction
Checker Processors

Advanced Checker Processors
Design and Implementation

DIVA: a reliable substrate for deep submicron microarchitecture de-
sign, Todd Austin, Micro, 2000 http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.17.5782&rep=rep1&type=pdf

Efficient Checker Processor Design, Saugata Chatterjee, Chris Weaver,
Todd Austin, MICRO-33, 2000
http://www.eecs.umich.edu/~taustin/papers/
MICRO33-divadesign.pdf

Fault Tolerant Approach to MicroProcessor Design, Chris Weaver, Todd
Austin, DSN 2001.

Smruti R. Sarangi Checker Processors

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.5782&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.5782&rep=rep1&type=pdf
http://www.eecs.umich.edu/~taustin/papers/MICRO33-divadesign.pdf
http://www.eecs.umich.edu/~taustin/papers/MICRO33-divadesign.pdf

	Introduction
	Checker Processors
	Checker Pipeline
	Checking Mechanism

	Advanced Checker Processors
	Issues with DIVA
	Reducing the Loss of Performance in DIVA

	Design and Implementation

