## COL866: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation: Factoring

#### Factoring

Given a positive composite integer N, output a non-trivial factor of N.

- We will solve the factoring problem by reduction to the order finding problem.
- Theorem 1: Suppose N is an L bit composite number, and x is a non-trivial solution to the equation  $x^2 = 1 \pmod{N}$  in the range  $1 \le x \le N$ , that is, neither  $x = 1 \pmod{N}$  nor  $x = -1 \pmod{N}$ . Then at least one of  $\gcd(x-1,N)$  and  $\gcd(x+1,N)$  is a non-trivial factor of N that can be computed using  $O(L^3)$  operations.
- Theorem 2: Suppose  $N=p_1^{\alpha_1}...p_m^{\alpha_m}$  is the prime factorisation of an odd composite positive integer. Let x be an integer chosen uniformly at random, subject to the requirement that  $1 \le x \le N-1$  and x is co-prime to N. Let r be the order of x modulo N. Then

$$\Pr[r \text{ is even and } x^{r/2} \neq -1 \pmod{N}] \geq 1 - \frac{1}{2^m}.$$



Phase estimation  $\rightarrow$  Order finding  $\rightarrow$  Factoring

#### Factoring

Given a positive composite integer N, output a non-trivial factor of N.

## Quantum Factoring Algorithm

- 1. If N is even, return 2 as a factor.
- 2. Determine if  $N = a^b$  for integers  $a, b \ge 2$  and if so, return a.
- 3. Randomly choose  $1 \le x \le N-1$ . If gcd(x, N) > 1, then return gcd(x, N).
- 4. Use the Quantum order-finding algorithm to find the order r of x modulo N.
- 5. If r is even and  $x^{r/2} \neq -1 \pmod{N}$ , then compute  $p = \gcd(x^{r/2} 1, N)$  and  $q = \gcd(x^{r/2} + 1, N)$ . If either p or q is a non-trivial factor of N, then return that factor else return "Failure".

Quantum Computation: Period finding

# Quantum Computation

 ${\sf Phase \ estimation} \to {\sf Period \ finding}$ 

### Period finding problem

Given a boolean function f such that f(x) = f(x+r) for some unknown  $0 < r < 2^L$ , where  $x, r = \{0, 1, 2, ...\}$  and given a unitary transform  $U_f$  that performs the transformation  $U|x\rangle |y\rangle \rightarrow |x\rangle |y \oplus f(x)\rangle$ , determine the least such r > 0.

## Period-finding algorithm

1. 
$$|0\rangle |0\rangle$$
 (Initial state)

2. 
$$\rightarrow \frac{1}{2^{t/2}} \sum_{x=0}^{2^t-1} |x\rangle |0\rangle$$
 (Create superposition)

3. 
$$\rightarrow \frac{1}{2^{t/2}} \sum_{x=0}^{2^t - 1} |x\rangle |f(x)\rangle$$
 (Apply  $U$ )
$$\approx \frac{1}{\sqrt{r} 2^{t/2}} \sum_{\ell=0}^{r-1} \sum_{x=0}^{2^t - 1} e^{(2\pi i)\frac{\ell x}{r}} |x\rangle |\hat{f}(\ell)\rangle$$

4. 
$$\rightarrow \frac{1}{\sqrt{r}} \sum_{\ell=0}^{r-1} \left| \widetilde{(\ell/r)} \right\rangle \left| \widehat{f}(\ell) \right\rangle$$
 (Apply inverse FT to  $1^{st}$  register)

5. 
$$\rightarrow (\ell/r)$$
 (Measure first register)  
6.  $\rightarrow r$  (Use continued fractions algorithm)

## Quantum Computation

Phase estimation  $\rightarrow$  Period finding

#### Period finding problem

Given a boolean function f such that f(x) = f(x+r) for some unknown  $0 < r < 2^L$ , where  $x, r = \{0, 1, 2, ...\}$  and given a unitary transform  $U_f$  that performs the transformation  $U|x\rangle |y\rangle \rightarrow |x\rangle |y \oplus f(x)\rangle$ , determine the least such r>0.

#### Period-finding algorithm

1. 
$$|0\rangle |0\rangle$$
 (Initial state)  
2.  $\rightarrow \frac{1}{2t/2} \sum_{x=0}^{2^t-1} |x\rangle |0\rangle$  (Create superposition)

3. 
$$\rightarrow \frac{1}{2^{t/2}} \sum_{x=0}^{2^{t}-1} |x\rangle |f(x)\rangle$$
 (Apply *U*)  
=  $\frac{1}{\sqrt{r}2^{t/2}} \sum_{\ell=0}^{r-1} \sum_{x=0}^{2^{t}-1} e^{(2\pi i)\frac{\ell x}{r}} |x\rangle |\hat{f}(\ell)\rangle$ 

$$4. \, \to \frac{1}{\sqrt{r}} \sum_{\ell=0}^{r-1} \left| \widetilde{(\ell/r)} \right\rangle \left| \widehat{f}(\ell) \right\rangle \qquad \text{(Apply inverse FT to $1^{st}$ register)}$$

5. 
$$\rightarrow \widetilde{(\ell/r)}$$
 (Measure first register)

6. 
$$\rightarrow$$
  $r$  (Use continued fractions algorithm)

• Claim 1: Let 
$$\left| \hat{f}(\ell) \right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{x=0}^{r-1} e^{-(2\pi i)\frac{\ell x}{r}} \left| f(x) \right\rangle$$
. Then  $\left| f(x) \right\rangle = \frac{1}{\sqrt{r}} \sum_{\ell=0}^{r-1} e^{(2\pi i)\frac{\ell x}{r}} \left| \hat{f}(\ell) \right\rangle$ .

- The basic ideas involved in order finding and period finding seems to be the same.
- Question: Can we generalise the core ideas and design a canonical algorithm for a very general problem so that order finding, factoring, period finding etc. are just special cases of this general problem?
  - Yes. The general problem is called the Hidden Subgroup Problem.
- Before we see the hidden subgroup problem, we will see another special case: Discrete Logarithm.

Quantum Computation: Discrete logarithm

## Quantum Computation

Phase estimation  $\rightarrow$  Discrete logarithm

## Discrete logarithm problem

Given positive integers a, b, N such that  $b = a^s \pmod{N}$  for some unknown s, find s.

 Question: What is the running time of the naive classical algorithm?

## Quantum Computation

Phase estimation  $\rightarrow$  Discrete logarithm

## Discrete logarithm problem

Given positive integers a, b, N such that  $b = a^s \pmod{N}$  for some unknown s, find s.

• Question: What is the running time of the naive classical algorithm?  $\Omega(N)$ 

## Phase estimation → Discrete logarithm

## Discrete logarithm problem

Given positive integers a, b, N such that  $b = a^s \pmod{N}$  for some unknown s, find s.

- Consider a bi-variate function  $f(x_1, x_2) = a^{sx_1+x_2} \pmod{N}$ .
- Claim 1: f is a periodic function with period  $(\ell, -\ell s)$  for any integer  $\ell$ .
  - So it may be possible for us to pull out s using some of the previous ideas developed.
- Question: How does discovering s for the above function help us in solving the discrete logarithm problem?

## Discrete logarithm problem

Given positive integers a, b, N such that  $b = a^s \pmod{N}$  for some unknown s, find s.

- Consider a bi-variate function  $f(x_1, x_2) = a^{sx_1+x_2} \pmod{N}$ .
- Claim 1: f is a periodic function with period  $(\ell, -\ell s)$  for any integer  $\ell$ .
  - So it may be possible for us to pull out s using some of the previous ideas developed.
- Question: How does discovering *s* for the above function help us in solving the discrete logarithm problem?
  - Main idea:  $f(x_1, x_2) \equiv b^{x_1} a^{x_2} \pmod{N}$ .

## Quantum Computation

Phase estimation → Discrete logarithm

#### Bi-variate period

Let f be a function such that  $f(x_1,x_2)=a^{sx_1+x_2}\ (mod\ N)$  and let r be the order of a modulo N. Let U be a unitary operator that performs the transformation:  $U(x_1)\ |x_2\rangle\ |y\rangle \to |x_1\rangle\ |x_2\rangle\ |y\oplus f(x_1,x_2)\rangle$ . Find s.

#### Discrete logarithm

• Claim: Let 
$$\left|\hat{f}(\ell_1,\ell_2)\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} \mathrm{e}^{-(2\pi i) \frac{\ell_2 j}{r}} \left|f(0,j)\right\rangle$$
. Then

$$|f(x_1,x_2)\rangle = \frac{1}{\sqrt{r}} \sum_{\ell_2=0}^{r-1} e^{(2\pi i)\frac{s\ell_2x_1+\ell_2x_2}{r}} \left| \hat{f}(s\ell_2,\ell_2) \right\rangle.$$



Quantum Computation: Hidden Subgroup Problem (HSG)

# Quantum Computation Hidden Subgroup Problem (HSG)

- The algorithms for order-finding, factoring, discrete logarithm, period-finding follow the same general pattern.
- It would be useful if we could extract the main essence and define a general problem that can be solved using these ideas.

### Hidden Subgroup Problem (HSG)

Given a group G and a function  $f:G\to X$  with the promise that there is a subgroup  $H\subseteq G$  such that f assigns a unique value to each coset of H. Find H.

# Quantum Computation Hidden Subgroup Problem (HSG)

- The algorithms for order-finding, factoring, discrete logarithm, period-finding follow the same general pattern.
- It would be useful if we could extract the main essence and define a general problem that can be solved using these ideas.

### Hidden Subgroup Problem (HSG)

Given a group G and a function  $f:G\to X$  with the promise that there is a subgroup  $H\subseteq G$  such that f assigns a unique value to each coset of H. Find H.

 Question: Can order-finding, period finding etc. be seen as just a special case of the HSG problem?

### Hidden Subgroup Problem (HSG)

Given a group G and a function  $f:G\to X$  with the promise that there is a subgroup  $H\subseteq G$  such that f assigns a unique value to each coset of H. Find H.

 Question: Can order-finding, period finding etc. be seen as just a special case of the HSG problem?

| Name    | G                    | X                  | Н               | f                   |
|---------|----------------------|--------------------|-----------------|---------------------|
| Simon   | $(\{0,1\}^n,\oplus)$ | $\{0,1\}^n$        | $\{0, s\}$      | $f(x\oplus s)=f(x)$ |
| Order   | $(\mathbb{Z}_N,+)$   | a <sup>j</sup>     | $\{0, r, 2r,\}$ | $f(x) = a^x$        |
| finding |                      | $j\in\mathbb{Z}_r$ | $r \in G$       | f(x+r)=f(x)         |
|         |                      | $a^r=1$            |                 |                     |

# Quantum Computation Hidden Subgroup Problem (HSG)

### Hidden Subgroup Problem (HSG)

Given a group G and a function  $f:G\to X$  with the promise that there is a subgroup  $H\subseteq G$  such that f assigns a unique value to each coset of H. Find H.

 Question: How does a Quantum computer solve the hidden subgroup problem?

### Quantum algorithm for HSG

- Create uniform superposition  $\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle |f(g)\rangle$ .
- Measure the second register to create a uniform superposition over a coset of H:  $\frac{1}{\sqrt{H}} \sum_{h \in H} |h + k\rangle$ .
- Apply Fourier transform
- Measure and extract generating set of the subgroup *H*.



# Quantum Computation

Hidden Subgroup Problem (HSG)

#### Hidden Subgroup Problem (HSG)

Given a group G and a function  $f:G\to X$  with the promise that there is a subgroup  $H\subseteq G$  such that f assigns a unique value to each coset of H. Find H.

 Question: How does a Quantum computer solve the hidden subgroup problem?

#### Quantum algorithm for HSG

- Create uniform superposition  $\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle |f(g)\rangle$ .
- Measure the second register to create a uniform superposition over a coset of H:  $\frac{1}{\sqrt{H}} \sum_{h \in H} |h + k\rangle$ .
- Apply Fourier transform
- Measure and extract generating set of the subgroup *H*.
- Question: How does Fourier transform help?
  - Shift-invariance property: If  $\sum_{h\in H} \alpha_h |h\rangle \to \sum_{g\in G} \tilde{\alpha}_g |g\rangle$ , then  $\sum_{h\in H} \alpha_h |h+k\rangle \to \sum_{g\in G} \mathrm{e}^{(2\pi i)\frac{gk}{|G|}} \tilde{\alpha}_g |g\rangle$ .

# Quantum Search Algorithms The oracle

### Search problem

Let  $N = 2^n$  and let  $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$  be a function that has  $1 \le M \le N$  solutions. That is, there are M values for which f evaluates to 1. Find one of the solutions.

• Question: What is the running time for the classical solution?

# Quantum Search Algorithms The oracle

### Search problem

Let  $N = 2^n$  and let  $f : \{0, ..., N - 1\} \rightarrow \{0, 1\}$  be a function that has  $1 \le M \le N$  solutions. That is, there are M values for which f evaluates to 1. Find one of the solutions.

• Question: What is the running time for the classical solution? O(N)

#### Search problem

Let  $N=2^n$  and let  $f:\{0,...,N-1\} \to \{0,1\}$  be a function that has  $1 \leq M \leq N$  solutions. That is, there are M values for which f evaluates to 1. Find one of the solutions.

ullet Let  ${\mathcal O}$  be a quantum oracle with the following behaviour:

$$|x\rangle |q\rangle \stackrel{\mathcal{O}}{\rightarrow} |x\rangle |q \oplus f(x)\rangle$$
.

- Claim 1:  $|x\rangle \left(\frac{|0\rangle |1\rangle}{\sqrt{2}}\right) \xrightarrow{\mathcal{O}} (-1)^{f(x)} |x\rangle \left(\frac{|0\rangle |1\rangle}{\sqrt{2}}\right)$
- We will always use the state  $|-\rangle$  as the second register in the discussion. So, we may as well describe the behaviour of the oracle  $\mathcal O$  in short as:

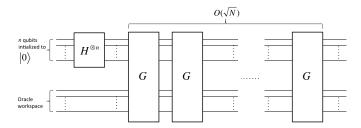
$$|x\rangle \stackrel{\mathcal{O}}{\longrightarrow} (-1)^{f(x)} |x\rangle$$
.

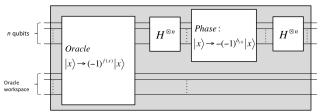
• Claim 2: There is a quantum algorithm that applies the search oracle  $\mathcal{O}$ ,  $O(\sqrt{\frac{N}{M}})$  times in order to obtain a solution.



# Quantum Search Algorithms The Grover operator

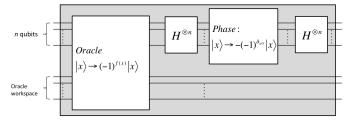
• Here is the schematic circuit for quantum search:





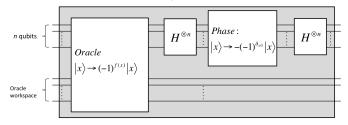
# Quantum Search Algorithms The Grover operator

• Where G, called the Grover operator or Grover iteration, is:



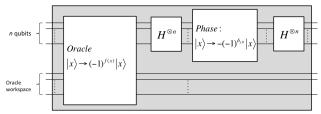
• Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is  $(2|0\rangle\langle 0|-I)$ .

#### The Grover operator



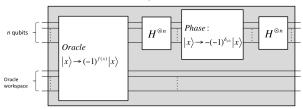
- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is  $(2|0\rangle\langle 0|-I)$ .
- Let  $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$ .
- Exercise: The operation after the oracle call in the Grover operator, that is  $H^{\oplus n}(2|0\rangle\langle 0|-I)H^{\oplus n}$ , may be written as  $2|\psi\rangle\langle\psi|-I$ .

#### The Grover operator



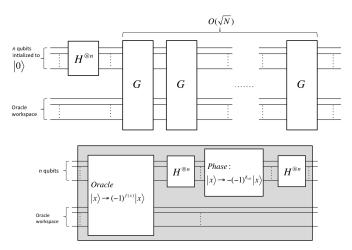
- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is  $(2|0\rangle\langle 0|-I)$ .
- Let  $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$ .
- Exercise: The operation after the oracle call in the Grover operator, that is  $H^{\oplus n}(2|0\rangle\langle 0|-I)H^{\oplus n}$ , may be written as  $2|\psi\rangle\langle\psi|-I$ .
- The Grover operator G can then be written as  $G = (2 | \psi \rangle \langle \psi | I) \mathcal{O}$ .

#### The Grover operator



- Exercise: Show that the unitary operator corresponding to the phase shift in the Grover iteration is  $(2|0\rangle\langle 0|-I)$ .
- Let  $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$ .
- Exercise: The operation after the oracle call in the Grover operator, that is  $H^{\oplus n}(2|0\rangle\langle 0|-I)H^{\oplus n}$ , may be written as  $2|\psi\rangle\langle\psi|-I$ .
- The Grover operator G can then be written as  $G = (2 |\psi\rangle \langle \psi| I)\mathcal{O}$ .
- Exercise: Show that the operation  $(2 | \psi \rangle \langle \psi | I)$  applied to a general state  $\sum_{k} \alpha_{k} | k \rangle$  gives  $\sum_{k} (-\alpha_{k} + 2 \langle \alpha \rangle) | k \rangle$ .

# Quantum Search Algorithms The Grover operator



• Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why  $O(\sqrt{N})$  repetitions?

- Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why  $O(\sqrt{N})$  repetitions?
- Let

$$|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle,$$

$$|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle.$$

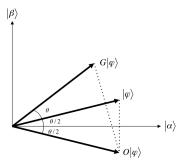
- Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why  $O(\sqrt{N})$  repetitions?
- Let

$$|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle,$$

$$|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle.$$

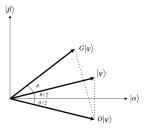
- Observation:  $|\psi\rangle = \sqrt{\frac{N-M}{N}} \, |\alpha\rangle + \sqrt{\frac{M}{N}} \, |\beta\rangle$ .
- Consider the plane defined by the vectors  $|\alpha\rangle$  and  $|\beta\rangle$ .
- Claim 1: The effect of  $\mathcal{O}$  on a vector on the plane is reflection about the vector  $|\alpha\rangle$ .
- Claim 2 The effect of  $(2|\psi\rangle\langle\psi|-I)$  on a vector on the plane is reflection about the vector  $|\psi\rangle$ .

- Question: Intuitively, what is going on in this circuit? How does this circuit help in pulling out a solution? Why  $O(\sqrt{N})$  repetitions?
- Let  $|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle$ , and  $|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle$ .
- Observation:  $|\psi\rangle = \sqrt{\frac{N-M}{N}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle$ .
- $\bullet$  Consider the plane defined by the vectors  $|\alpha\rangle$  and  $|\beta\rangle.$
- Claim 1: The effect of O on a vector on the plane is reflection about the vector |α⟩.
- Claim 2 The effect of  $(2|\psi\rangle\langle\psi|-I)$  on a vector on the plane is reflection about the vector  $|\psi\rangle$ .



#### Geometric visualization

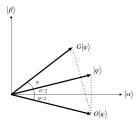
- Let  $|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle$ , and  $|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle$ .
- Observation:  $|\psi\rangle = \sqrt{\frac{N-M}{N}} \, |\alpha\rangle + \sqrt{\frac{M}{N}} \, |\beta\rangle$ .
- $\bullet$  Consider the plane defined by the vectors  $|\alpha\rangle$  and  $|\beta\rangle.$
- Claim 1: The effect of  $\mathcal O$  on a vector on the plane is reflection about the vector  $|\alpha\rangle$ .
- Claim 2 The effect of  $(2 |\psi\rangle \langle \psi| I)$  on a vector on the plane is reflection about the vector  $|\psi\rangle$ .



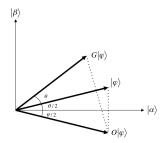
• Let  $\cos \frac{\theta}{2} = \sqrt{\frac{N-M}{N}}$ . So,  $|\psi\rangle = \cos \frac{\theta}{2} |\alpha\rangle + \sin \frac{\theta}{2} |\beta\rangle$  and  $G |\psi\rangle = \cos \frac{3\theta}{2} |\alpha\rangle + \sin \frac{3\theta}{2} |\beta\rangle$ 

• Let 
$$|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \text{ s.t. } f(x)=0} |x\rangle$$
, and  $|\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \text{ s.t. } f(x)=1} |x\rangle$ .

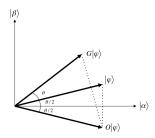
- Observation:  $|\psi\rangle = \sqrt{\frac{N-M}{N}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle$ .
- Consider the plane defined by the vectors  $|\alpha\rangle$  and  $|\beta\rangle$ .
- Claim 1: The effect of  $\mathcal O$  on a vector on the plane is reflection about the vector  $|\alpha\rangle$ .
- Claim 2 The effect of  $(2|\psi\rangle\langle\psi|-I)$  on a vector on the plane is reflection about the vector  $|\psi\rangle$ .



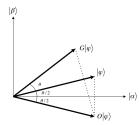
- Let  $\cos\frac{\theta}{2}=\sqrt{\frac{N-M}{N}}.$  So,  $|\psi\rangle=\cos\frac{\theta}{2}\,|\alpha\rangle+\sin\frac{\theta}{2}\,|\beta\rangle$  and  $G\,|\psi\rangle=\cos\frac{3\theta}{2}\,|\alpha\rangle+\sin\frac{3\theta}{2}\,|\beta\rangle$
- Exercise: Show that  $G^k | \psi \rangle = \cos \frac{(2k+1)\theta}{2} | \alpha \rangle + \sin \frac{(2k+1)\theta}{2} | \beta \rangle$ .



- Let  $\cos\frac{\theta}{2} = \sqrt{\frac{N-M}{N}}$ . So,  $|\psi\rangle = \cos\frac{\theta}{2}\,|\alpha\rangle + \sin\frac{\theta}{2}\,|\beta\rangle$  and  $G\,|\psi\rangle = \cos\frac{3\theta}{2}\,|\alpha\rangle + \sin\frac{3\theta}{2}\,|\beta\rangle$
- Exercise: Show that  $G^k |\psi\rangle = \cos \frac{(2k+1)\theta}{2} |\alpha\rangle + \sin \frac{(2k+1)\theta}{2} |\beta\rangle$ .
- Question: How many Grover iterations are required to sample a solution with good probability?



- Let  $\cos \frac{\theta}{2} = \sqrt{\frac{N-M}{N}}$ . So,  $|\psi\rangle = \cos \frac{\theta}{2} |\alpha\rangle + \sin \frac{\theta}{2} |\beta\rangle$  and  $G |\psi\rangle = \cos \frac{3\theta}{2} |\alpha\rangle + \sin \frac{3\theta}{2} |\beta\rangle$
- Exercise: Show that  $G^k | \psi \rangle = \cos \frac{(2k+1)\theta}{2} | \alpha \rangle + \sin \frac{(2k+1)\theta}{2} | \beta \rangle$ .
- Question: How many Grover iterations are required to sample a solution with good probability?
- Let  $R = CI\left(\frac{\arccos\sqrt{M/N}}{\theta}\right)$ , where CI(.) denotes closest integer.
- <u>Exercise</u>: Show that if R Grover iterations are executed, then the probability of measuring a solution is at least 1/2.



- Let  $\cos\frac{\theta}{2} = \sqrt{\frac{N-M}{N}}$ . So,  $|\psi\rangle = \cos\frac{\theta}{2}|\alpha\rangle + \sin\frac{\theta}{2}|\beta\rangle$  and  $G|\psi\rangle = \cos\frac{3\theta}{2}|\alpha\rangle + \sin\frac{3\theta}{2}|\beta\rangle$
- Exercise: Show that  $G^k |\psi\rangle = \cos \frac{(2k+1)\theta}{2} |\alpha\rangle + \sin \frac{(2k+1)\theta}{2} |\beta\rangle$ .
- Question: How many Grover iterations are required to sample a solution with good probability?
- Let  $R = CI\left(\frac{\arccos\sqrt{M/N}}{\theta}\right)$ , where CI(.) denotes closest integer.
- <u>Exercise</u>: Show that if R Grover iterations are executed, then the probability of measuring a solution is at least 1/2.
- Exercise: If  $M \le N/2$ , then  $R \le \lceil \frac{\pi}{4} \sqrt{\frac{N}{M}} \rceil$ .



End