
COL866: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation: Order finding

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Given integers N > x > 0 such that x and N have no common
factors, the order of x modulo N is defined to be the least
positive integer r such that x r = 1 (mod N).
Exercise: What is the order of 5 modulo 21?

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Given integers N > x > 0 such that x and N have no common
factors, the order of x modulo N is defined to be the least
positive integer r such that x r = 1 (mod N).
Exercise: What is the order of 5 modulo 21? 6

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Exercise: Is there an algorithm that computes the order of x
modulo N in time that is polynomial in N?

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Given integers N > x > 0 such that x and N have no common
factors, the order of x modulo N is defined to be the least
positive integer r such that x r = 1 (mod N).
Exercise: What is the order of 5 modulo 21? 6

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Exercise: Is there an algorithm that computes the order of x
modulo N in time that is polynomial in N? Yes
Exercise: Is it an efficient algorithm?

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Given integers N > x > 0 such that x and N have no common
factors, the order of x modulo N is defined to be the least
positive integer r such that x r = 1 (mod N).
Exercise: What is the order of 5 modulo 21? 6

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Exercise: Is there an algorithm that computes the order of x
modulo N in time that is polynomial in N? Yes
Exercise: Is it an efficient algorithm?
Let L = dlog ne. The number of bits needed to specify the
problem is O(L). So, an efficient algorithm should have running
time that is polynomial in L.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise: Show that U is unitary.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise: Show that U is unitary.
Exercise: Show that the states defined by

|us〉 ≡
1√
r

r−1∑
k=0

e−(2πi)
sk
r

∣∣∣xk (mod N)
〉

are the eigenstates of U. Find the corresponding eigenvalues.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ?
How do we prepare an eigenstate |us〉?

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ? Modular exponentiation
How do we prepare an eigenstate |us〉?

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Modular exponentiation

Given |z〉 |y〉, design a circuit that ends in the state |z〉 |xzy (mod N)〉.

What we wanted to do was |z〉 |y〉 → |z〉Uzt2t−1
...Uz120 |y〉 but

then this is the same as |z〉 |xzy (mod N)〉.
Question: Suppose we work with the first register being of size
t = 2L + 1 + dlog (2 + 1

2ε)e = O(L). What would be the size of
the circuit?

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Modular exponentiation

Given |z〉 |y〉, design a circuit that ends in the state |z〉 |xzy (mod N)〉.

What we wanted to do was |z〉 |y〉 → |z〉Uzt2t−1
...Uz120 |y〉 but

then this is the same as |z〉 |xzy (mod N)〉.
Question: Suppose we work with the first register being of size
t = 2L + 1 + dlog (2 + 1

2ε)e = O(L). What would be the size of
the circuit? O(L3)

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ? Modular exponentiation
How do we prepare an eigenstate |us〉?

We work with |1〉 as the first register since 1√
r

∑r−1
s=0 |us〉 = |1〉.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ? Modular exponentiation
How do we prepare an eigenstate |us〉?

We work with |1〉 as the first register since 1√
r

∑r−1
s=0 |us〉 = |1〉.

So, we will argue that for each 0 ≤ s ≤ r − 1, we will obtain an
estimate of ϕ ≈ s

r accurate to 2L + 1 bits with probability at least
(1−ε)

r .

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ? Modular exponentiation
How do we prepare an eigenstate |us〉?

We work with |1〉 as the first register since 1√
r

∑r−1
s=0 |us〉 = |1〉.

So, we will argue that for each 0 ≤ s ≤ r − 1, we will obtain an
estimate of ϕ ≈ s

r accurate to 2L + 1 bits with probability at least
(1−ε)

r .

Question: How do we extract r from this? Continued fractions

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Theorem: Suppose x ≥ 1 is a rational number. Then x has a
representation as a continued fraction, x = [a0, ..., aN]. This may
be found by the continued fraction algorithm.
Exercise: Find the continued fraction expansion of 31

13 .
Question: What is the running time for the continued fractions
algorithm for any given rational number p

q ≥ 1?

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Question: What is the running time for the continued fractions
algorithm for any given rational number p

q ≥ 1?
Theorem: Let a0, ..., aN be a sequence of positive numbers. Then
[a0, ..., an] = pn

qn
, where pn and qn are real numbers defined

inductively by p0 ≡ 0, q0 ≡ 1, p1 ≡ 1 + a0a1, q1 ≡ a1, and for
2 ≤ n ≤ N,

pn ≡ anpn−1 + pn−2

qn ≡ anqn−1 + qn−2

In the case when aj are positive integers, so too are pj and qj and
moreover qnpn−1 − pnqn−1 = (−1)n for n ≥ 1 which implies that
gcd(pn, qn) = 1.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Question: What is the running time for the continued fractions
algorithm for any given rational number p

q ≥ 1?

Let [a0, ..., aN] = p
q ≥ 1 with L = dlog pe and let pn, qn be as

defined in the theorem.
Observation: pn, qn are increasing with pn ≥ 2pn−2, qn ≥ 2qn−2.

Theorem: Let a0, ..., aN be a sequence of positive numbers. Then
[a0, ..., an] = pn

qn
, where pn and qn are real numbers defined

inductively by p0 ≡ 0, q0 ≡ 1, p1 ≡ 1 + a0a1, q1 ≡ a1, and for
2 ≤ n ≤ N,

pn ≡ anpn−1 + pn−2

qn ≡ anqn−1 + qn−2

In the case when aj are positive integers, so too are pj and qj and
moreover qnpn−1 − pnqn−1 = (−1)n for n ≥ 1 which implies that
gcd(pn, qn) = 1.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Question: What is the running time for the continued fractions
algorithm for any given rational number p

q ≥ 1?

Let [a0, ..., aN] = p
q ≥ 1 with L = dlog pe and let pn, qn be as

defined in the theorem.
Observation: pn, qn are increasing with pn ≥ 2pn−2, qn ≥ 2qn−2.
This implies that 2bN/2c ≤ q ≤ p. So, N = O(L) and the running
time of algorithm is O(L3).

Theorem: Let a0, ..., aN be a sequence of positive numbers. Then
[a0, ..., an] = pn

qn
, where pn and qn are real numbers defined

inductively by p0 ≡ 0, q0 ≡ 1, p1 ≡ 1 + a0a1, q1 ≡ a1, and for
2 ≤ n ≤ N,

pn ≡ anpn−1 + pn−2; qn ≡ anqn−1 + qn−2

In the case when aj are positive integers, so too are pj and qj and
moreover qnpn−1 − pnqn−1 = (−1)n for n ≥ 1 which implies that
gcd(pn, qn) = 1.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive
integers a0, ..., aN :

[a0, ..., aN] ≡ a0 +
1

a1 + 1
a2+

1

...+ 1
aN

The nth convergent (0 ≤ n ≤ N) of this continued fraction is defined
to be [a0, ..., an].

Theorem: Let x be a rational number and suppose p
q is a rational

number such that |pq − x | ≤ 1
2q2

. Then p
q is a convergent of the

continued fraction for x .

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Theorem

Let x be a rational number and suppose p
q is a rational number such

that |pq − x | ≤ 1
2q2

. Then p
q is a convergent of the continued fraction

for x .

Proof sketch

Let p
q = [a0, ..., an] and let pj , qj as defined in the previous

theorem so that p
q = pn

qn
.

Define δ by the equation:

x ≡ pn
qn

+
δ

2q2n
, so that |δ| ≤ 1.

Define λ by

λ ≡ 2

(
qnpn−1 − pnqn−1

δ

)
− qn−1

qn

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Theorem

Let x be a rational number and suppose p
q is a rational number such

that |pq − x | ≤ 1
2q2

. Then p
q is a convergent of the continued fraction

for x .

Proof sketch

Let p
q = [a0, ..., an] and let pj , qj as defined in the previous

theorem so that p
q = pn

qn
.

Define δ by the equation: x ≡ pn
qn

+ δ
2q2n
, so that |δ| ≤ 1.

Define λ by λ ≡ 2
(
qnpn−1−pnqn−1

δ

)
− qn−1

qn

Claim 1: x = λpn+pn−1

λqn+qn−1
and therefore x = [a0, ..., an, λ].

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Digression: Continued fractions

Theorem

Let x be a rational number and suppose p
q is a rational number such

that |pq − x | ≤ 1
2q2

. Then p
q is a convergent of the continued fraction

for x .

Proof sketch

Let p
q = [a0, ..., an] and let pj , qj as defined in the previous

theorem so that p
q = pn

qn
.

Define δ by the equation: x ≡ pn
qn

+ δ
2q2n
, so that |δ| ≤ 1.

Define λ by λ ≡ 2
(
qnpn−1−pnqn−1

δ

)
− qn−1

qn

Claim 1: x = λpn+pn−1

λqn+qn−1
and therefore x = [a0, ..., an, λ].

Claim 2: λ = 2
δ −

qn−1

qn
> 2− 1 > 1 which further implies that

λ = [b0, ..., bm] and x = [a0, ..., an, b0, ..., bm].
This completes the proof of the theorem.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Consider the operator U that has the following behaviour:

U |y〉 ≡

{
|xy (mod N)〉 if 0 ≤ y ≤ N − 1

|y〉 if N ≤ y ≤ 2L − 1

Exercise summary: Let |us〉 ≡ 1√
r

∑r−1
k=0 e

−(2πi) sk
r

∣∣xk (mod N)
〉

be an eigenstate of U. Then U |us〉 = e(2πi)
s
r |us〉

Main idea for determining r : We will use phase estimation to get
an estimate on s

r and then obtain r from it.

How do we implement controlled U2j ? Modular exponentiation
How do we prepare an eigenstate |us〉?

We work with |1〉 as the first register since 1√
r

∑r−1
s=0 |us〉 = |1〉.

So, we will argue that for each 0 ≤ s ≤ r − 1, we will obtain an
estimate of ϕ ≈ s

r accurate to 2L + 1 bits with probability at least
(1−ε)

r .

Question: How do we extract r from this? Continued fractions
Question: Are we guaranteed to get r using continued fractions?
What could go wrong?

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

We obtain ϕ ≈ s
r for some 0 ≤ s ≤ r − 1 and then we use

continued fractions to obtain s ′, r ′ such that s ′/r ′ = s/r .
The problem is r ′ may not equal r . One such case is when s = 0.
This, however, is a small probability event.
Claim: Suppose we repeat twice and obtain s ′1, r

′
1 and s ′2, r

′
2. If s1

and s2 are co-prime, then r = lcm(r ′1, r
′
2).

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

We obtain ϕ ≈ s
r for some 0 ≤ s ≤ r − 1 and then we use

continued fractions to obtain s ′, r ′ such that s ′/r ′ = s/r .
The problem is r ′ may not equal r . One such case is when s = 0.
This, however, is a small probability event.
Claim: Suppose we repeat twice and obtain r ′1 and r ′2
corresponding to s1, s2. If s1 and s2 are co-prime, then
r = lcm(r ′1, r

′
2).

Claim: Pr[s1 and s2 are co-prime] ≥ 1/4.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Quantum Order-finding

1. |0〉 |1〉 (Initial state)

2. → 1
2t/2

∑2t−1
j=0 |j〉 |1〉 (Create superposition)

3. → 1
2t/2

∑2t−1
j=0 |j〉

∣∣x j (mod N)
〉

(Apply Ux ,N)

≈ 1√
r2t/2

∑r−1
s=0

∑2t−1
j=0 e(2πi)

sj
r |j〉 |us〉

4. → 1√
r

∑r−1
s=0

∣∣∣ ˜(s/r)
〉
|us〉 (Apply inverse FT to 1st register)

5. → ˜(s/r) (Measure first register)
6. → r (Use continued fractions algorithm)

What is the size of the circuit that computes the order with high
probability?

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order-finding

Order finding

Given co-prime integers N > x > 0, compute the order of x modulo N.

Quantum Order-finding

1. |0〉 |1〉 (Initial state)

2. → 1
2t/2

∑2t−1
j=0 |j〉 |1〉 (Create superposition)

3. → 1
2t/2

∑2t−1
j=0 |j〉

∣∣x j (mod N)
〉

(Apply Ux ,N)

≈ 1√
r2t/2

∑r−1
s=0

∑2t−1
j=0 e(2πi)

sj
r |j〉 |us〉

4. → 1√
r

∑r−1
s=0

∣∣∣ ˜(s/r)
〉
|us〉 (Apply inverse FT to 1st register)

5. → ˜(s/r) (Measure first register)
6. → r (Use continued fractions algorithm)

What is the size of the circuit that computes the order with high
probability? O(L3)

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation: Factoring

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order finding → Factoring

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

We will solve the factoring problem by reduction to the order
finding problem.
Theorem 1: Suppose N is an L bit composite number, and x is a
non-trivial solution to the equation x2 = 1 (mod N) in the range
1 ≤ x ≤ N, that is, neither x = 1 (mod N) nor
x = −1 (mod N). Then at least one of gcd(x − 1,N) and
gcd(x + 1,N) is a non-trivial factor of N that can be computed
using O(L3) operations.
Theorem 2: Suppose N = pα1

1 ...pαm
m is the prime factorisation of

an odd composite positive integer. Let x be an integer chosen
uniformly at random, subject to the requirement that
1 ≤ x ≤ N − 1 and x is co-prime to N. Let r be the order of x
modulo N. Then

Pr[r is even and x r/2 6= −1 (mod N)] ≥ 1− 1

2m
.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

Quantum Computation
Phase estimation → Order finding → Factoring

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

Quantum Factoring Algorithm

1. If N is even, return 2 as a factor.
2. Determine if N = ab for integers a, b ≥ 2 and if so, return a.
3. Randomly choose 1 ≤ x ≤ N − 1. If gcd(x ,N) > 1, then return
gcd(x ,N).
4. Use the Quantum order-finding algorithm to find the order r of x
modulo N.
5. If r is even and x r/2 6= −1 (mod N), then compute
p = gcd(x r/2 − 1,N) and q = gcd(x r/2 + 1,N). If either p or q is a
non-trivial factor of N, then return that factor else return “Failure”.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

End

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

