COL866: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation: Order finding

Quantum Computation
 Phase estimation \rightarrow Order-finding

- Given integers $N>x>0$ such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^{r}=1(\bmod N)$.
- Exercise: What is the order of 5 modulo 21 ?

Quantum Computation
 Phase estimation \rightarrow Order-finding

- Given integers $N>x>0$ such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^{r}=1(\bmod N)$.
- Exercise: What is the order of 5 modulo 21 ? 6

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Exercise: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N ?

Quantum Computation
 Phase estimation \rightarrow Order-finding

- Given integers $N>x>0$ such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^{r}=1(\bmod N)$.
- Exercise: What is the order of 5 modulo 21 ? 6

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Exercise: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N ? Yes
- Exercise: Is it an efficient algorithm?

Quantum Computation

- Given integers $N>x>0$ such that x and N have no common factors, the order of x modulo N is defined to be the least positive integer r such that $x^{r}=1(\bmod N)$.
- Exercise: What is the order of 5 modulo 21 ? 6

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Exercise: Is there an algorithm that computes the order of x modulo N in time that is polynomial in N ? Yes
- Exercise: Is it an efficient algorithm?
- Let $L=\lceil\log n\rceil$. The number of bits needed to specify the problem is $O(L)$. So, an efficient algorithm should have running time that is polynomial in L.

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise: Show that U is unitary.

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise: Show that U is unitary.
- Exercise: Show that the states defined by

$$
\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle
$$

are the eigenstates of U. Find the corresponding eigenvalues.

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)_{r}^{s}}\left|u_{s}\right\rangle$

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)_{r}^{s}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.

Quantum Computation
 \section*{Phase estimation \rightarrow Order-finding}

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)^{\frac{s}{r}}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.
- How do we implement controlled $U^{2^{j}}$?
- How do we prepare an eigenstate $\left|u_{s}\right\rangle$?

Quantum Computation

Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)^{\frac{s}{r}}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.
- How do we implement controlled $U^{2^{j}}$? Modular exponentiation
- How do we prepare an eigenstate $\left|u_{s}\right\rangle$?

Quantum Computation

Phase estimation \rightarrow Order-finding

Modular exponentiation

Given $|z\rangle|y\rangle$, design a circuit that ends in the state $|z\rangle\left|x^{z} y(\bmod N)\right\rangle$.

- What we wanted to do was $|z\rangle|y\rangle \rightarrow|z\rangle U^{z_{t} 2^{t-1}} \ldots U^{z_{1} 2^{0}}|y\rangle$ but then this is the same as $|z\rangle\left|x^{z} y(\bmod N)\right\rangle$.
- Question: Suppose we work with the first register being of size $\overline{t=2 L+1}+\left\lceil\log \left(2+\frac{1}{2 \varepsilon}\right)\right\rceil=O(L)$ What would be the size of the circuit?

Quantum Computation

Phase estimation \rightarrow Order-finding

Modular exponentiation

Given $|z\rangle|y\rangle$, design a circuit that ends in the state $|z\rangle\left|x^{z} y(\bmod N)\right\rangle$.

- What we wanted to do was $|z\rangle|y\rangle \rightarrow|z\rangle U^{z_{t} 2^{t-1}} \ldots U^{z_{1} 2^{0}}|y\rangle$ but then this is the same as $|z\rangle\left|x^{z} y(\bmod N)\right\rangle$.
- Question: Suppose we work with the first register being of size $\overline{t=2 L+1}+\left\lceil\log \left(2+\frac{1}{2 \varepsilon}\right)\right\rceil=O(L)$. What would be the size of the circuit? $O\left(L^{3}\right)$

Quantum Computation

Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)^{\frac{s}{r}}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.
- How do we implement controlled $U^{2^{j}}$? Modular exponentiation
- How do we prepare an eigenstate $\left|u_{s}\right\rangle$?
- We work with $|1\rangle$ as the first register since $\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=|1\rangle$.

Quantum Computation
 \section*{Phase estimation \rightarrow Order-finding}

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)^{\frac{s}{r}}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.
- How do we implement controlled $U^{2^{j}}$? Modular exponentiation
- How do we prepare an eigenstate $\left|u_{s}\right\rangle$?
- We work with $|1\rangle$ as the first register since $\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=|1\rangle$.
- So, we will argue that for each $0 \leq s \leq r-1$, we will obtain an estimate of $\varphi \approx \frac{s}{r}$ accurate to $2 L+1$ bits with probability at least $\frac{(1-\varepsilon)}{r}$.

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv\left\{\begin{array}{lc}
|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\
|y\rangle & \text { if } N \leq y \leq 2^{L}-1
\end{array}\right.
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$ be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i) \frac{s}{r}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.
- How do we implement controlled $U^{2^{j}}$? Modular exponentiation
- How do we prepare an eigenstate $\left|u_{s}\right\rangle$?
- We work with $|1\rangle$ as the first register since $\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=|1\rangle$.
- So, we will argue that for each $0 \leq s \leq r-1$, we will obtain an estimate of $\varphi \approx \frac{s}{r}$ accurate to $2 L+1$ bits with probability at least $\frac{(1-\varepsilon)}{r}$.
- Question: How do we extract r from this? Continued fractions

Quantum Computation
 Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive integers a_{0}, \ldots, a_{N} :

$$
\left[a_{0}, \ldots, a_{N}\right] \equiv a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots+\frac{1}{a_{N}}}}}
$$

The $n^{\text {th }}$ convergent $(0 \leq n \leq N)$ of this continued fraction is defined to be $\left[a_{0}, \ldots, a_{n}\right]$.

- Theorem: Suppose $x \geq 1$ is a rational number. Then x has a representation as a continued fraction, $x=\left[a_{0}, \ldots, a_{N}\right]$. This may be found by the continued fraction algorithm.
- Exercise: Find the continued fraction expansion of $\frac{31}{13}$.
- Question: What is the running time for the continued fractions algorithm for any given rational number $\frac{p}{q} \geq 1$?

Quantum Computation
 Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive integers a_{0}, \ldots, a_{N} :

$$
\left[a_{0}, \ldots, a_{N}\right] \equiv a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots+\frac{1}{a_{N}}}}}
$$

The $n^{\text {th }}$ convergent $(0 \leq n \leq N)$ of this continued fraction is defined to be $\left[a_{0}, \ldots, a_{n}\right]$.

- Question: What is the running time for the continued fractions algorithm for any given rational number $\frac{p}{q} \geq 1$?
- Theorem: Let a_{0}, \ldots, a_{N} be a sequence of positive numbers. Then $\left[a_{0}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}$, where p_{n} and q_{n} are real numbers defined inductively by $p_{0} \equiv 0, q_{0} \equiv 1, p_{1} \equiv 1+a_{0} a_{1}, q_{1} \equiv a_{1}$, and for $2 \leq n \leq N$,

$$
\begin{aligned}
p_{n} & \equiv a_{n} p_{n-1}+p_{n-2} \\
q_{n} & \equiv a_{n} q_{n-1}+q_{n-2}
\end{aligned}
$$

In the case when a_{j} are positive integers, so too are p_{j} and q_{j} and moreover $q_{n} p_{n-1}-p_{n} q_{n-1}=(-1)^{n}$ for $n \geq 1$ which implies that $\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$.

Quantum Computation
 Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive integers a_{0}, \ldots, a_{N} :

$$
\left[a_{0}, \ldots, a_{N}\right] \equiv a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots+\frac{1}{a_{N}}}}}
$$

The $n^{\text {th }}$ convergent $(0 \leq n \leq N)$ of this continued fraction is defined to be $\left[a_{0}, \ldots, a_{n}\right]$.

- Question: What is the running time for the continued fractions algorithm for any given rational number $\frac{p}{q} \geq 1$?
- Let $\left[a_{0}, \ldots, a_{N}\right]=\frac{p}{q} \geq 1$ with $L=\lceil\log p\rceil$ and let p_{n}, q_{n} be as defined in the theorem.
- Observation: p_{n}, q_{n} are increasing with $p_{n} \geq 2 p_{n-2}, q_{n} \geq 2 q_{n-2}$.
- Theorem: Let a_{0}, \ldots, a_{N} be a sequence of positive numbers. Then $\left[a_{0}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}$, where p_{n} and q_{n} are real numbers defined inductively by $p_{0} \equiv 0, q_{0} \equiv 1, p_{1} \equiv 1+a_{0} a_{1}, q_{1} \equiv a_{1}$, and for $2 \leq n \leq N$,

$$
\begin{aligned}
& p_{n} \equiv a_{n} p_{n-1}+p_{n-2} \\
& q_{n} \equiv a_{n} q_{n-1}+q_{n-2}
\end{aligned}
$$

In the case when a_{j} are positive integers, so too are p_{j} and q_{j} and moreover $q_{n} p_{n-1}-p_{n} q_{n-1}=(-1)^{n}$ for $n \geq 1$ which implies that $\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$.

Quantum Computation
 Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive integers a_{0}, \ldots, a_{N} :

$$
\left[a_{0}, \ldots, a_{N}\right] \equiv a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots+\frac{1}{a_{N}}}}}
$$

The $n^{\text {th }}$ convergent $(0 \leq n \leq N)$ of this continued fraction is defined to be $\left[a_{0}, \ldots, a_{n}\right]$.

- Question: What is the running time for the continued fractions algorithm for any given rational number $\frac{p}{q} \geq 1$?
- Let $\left[a_{0}, \ldots, a_{N}\right]=\frac{p}{q} \geq 1$ with $L=\lceil\log p\rceil$ and let p_{n}, q_{n} be as defined in the theorem.
- Observation: p_{n}, q_{n} are increasing with $p_{n} \geq 2 p_{n-2}, q_{n} \geq 2 q_{n-2}$.
- This implies that $2^{\lfloor N / 2\rfloor} \leq q \leq p$. So, $N=O(L)$ and the running time of algorithm is $O\left(L^{\overline{3}}\right)$.
- Theorem: Let a_{0}, \ldots, a_{N} be a sequence of positive numbers. Then $\left[a_{0}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}$, where p_{n} and q_{n} are real numbers defined inductively by $p_{0} \equiv 0, q_{0} \equiv 1, p_{1} \equiv 1+a_{0} a_{1}, q_{1} \equiv a_{1}$, and for $2 \leq n \leq N, p_{n} \equiv a_{n} p_{n-1}+p_{n-2} ; \quad q_{n} \equiv a_{n} q_{n-1}+q_{n-2}$

In the case when a_{j} are positive integers, so too are p_{j} and q_{j} and moreover $q_{n} p_{n-1}-p_{n} q_{n-1}=(-1)^{n}$ for $n \geq 1$ which implies that $\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$.

Quantum Computation
 Digression: Continued fractions

Continued fraction

A finite simple continued fraction is defined by a collection of positive integers a_{0}, \ldots, a_{N} :

$$
\left[a_{0}, \ldots, a_{N}\right] \equiv a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots+\frac{1}{a_{N}}}}}
$$

The $n^{\text {th }}$ convergent $(0 \leq n \leq N)$ of this continued fraction is defined to be $\left[a_{0}, \ldots, a_{n}\right]$.

- Theorem: Let x be a rational number and suppose $\frac{p}{q}$ is a rational number such that $\left|\frac{p}{q}-x\right| \leq \frac{1}{2 q^{2}}$. Then $\frac{p}{q}$ is a convergent of the continued fraction for x.

Quantum Computation

Digression: Continued fractions

Theorem

Let x be a rational number and suppose $\frac{p}{q}$ is a rational number such that $\left|\frac{p}{q}-x\right| \leq \frac{1}{2 q^{2}}$. Then $\frac{p}{q}$ is a convergent of the continued fraction for x.

Proof sketch

- Let $\frac{p}{q}=\left[a_{0}, \ldots, a_{n}\right]$ and let p_{j}, q_{j} as defined in the previous theorem so that $\frac{p}{q}=\frac{p_{n}}{q_{n}}$.
- Define δ by the equation:

$$
x \equiv \frac{p_{n}}{q_{n}}+\frac{\delta}{2 q_{n}^{2}}, \text { so that }|\delta| \leq 1
$$

- Define λ by

$$
\lambda \equiv 2\left(\frac{q_{n} p_{n-1}-p_{n} q_{n-1}}{\delta}\right)-\frac{q_{n-1}}{q_{n}}
$$

Quantum Computation

Digression: Continued fractions

Theorem

Let x be a rational number and suppose $\frac{p}{q}$ is a rational number such that $\left|\frac{p}{q}-x\right| \leq \frac{1}{2 q^{2}}$. Then $\frac{p}{q}$ is a convergent of the continued fraction for x.

Proof sketch

- Let $\frac{p}{q}=\left[a_{0}, \ldots, a_{n}\right]$ and let p_{j}, q_{j} as defined in the previous theorem so that $\frac{p}{q}=\frac{p_{n}}{q_{n}}$.
- Define δ by the equation: $x \equiv \frac{p_{n}}{q_{n}}+\frac{\delta}{2 q_{n}^{2}}$, so that $|\delta| \leq 1$.
- Define λ by $\lambda \equiv 2\left(\frac{q_{n} p_{n-1}-p_{n} q_{n-1}}{\delta}\right)-\frac{q_{n-1}}{q_{n}}$
- Claim 1: $x=\frac{\lambda p_{n}+p_{n-1}}{\lambda q_{n}+q_{n-1}}$ and therefore $x=\left[a_{0}, \ldots, a_{n}, \lambda\right]$.

Quantum Computation

Digression: Continued fractions

Theorem

Let x be a rational number and suppose $\frac{p}{q}$ is a rational number such that $\left|\frac{p}{q}-x\right| \leq \frac{1}{2 q^{2}}$. Then $\frac{p}{q}$ is a convergent of the continued fraction for x.

Proof sketch

- Let $\frac{p}{q}=\left[a_{0}, \ldots, a_{n}\right]$ and let p_{j}, q_{j} as defined in the previous theorem so that $\frac{p}{q}=\frac{p_{n}}{q_{n}}$.
- Define δ by the equation: $x \equiv \frac{p_{n}}{q_{n}}+\frac{\delta}{2 q_{n}^{2}}$, so that $|\delta| \leq 1$.
- Define λ by $\lambda \equiv 2\left(\frac{q_{n} p_{n-1}-p_{n} q_{n-1}}{\delta}\right)-\frac{q_{n-1}}{q_{n}}$
- Claim 1: $x=\frac{\lambda p_{n}+p_{n-1}}{\lambda q_{n}+q_{n-1}}$ and therefore $x=\left[a_{0}, \ldots, a_{n}, \lambda\right]$.
- Claim 2: $\lambda=\frac{2}{\delta}-\frac{q_{n-1}}{q_{n}}>2-1>1$ which further implies that $\lambda=\left[b_{0}, \ldots, b_{m}\right]$ and $x=\left[a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{m}\right]$.
- This completes the proof of the theorem.

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- Consider the operator U that has the following behaviour:

$$
U|y\rangle \equiv \begin{cases}|x y(\bmod N)\rangle & \text { if } 0 \leq y \leq N-1 \\ |y\rangle & \text { if } N \leq y \leq 2^{L}-1\end{cases}
$$

- Exercise summary: Let $\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-(2 \pi i) \frac{s k}{r}}\left|x^{k}(\bmod N)\right\rangle$
be an eigenstate of U. Then $U\left|u_{s}\right\rangle=e^{(2 \pi i)_{r}^{\frac{s}{r}}}\left|u_{s}\right\rangle$
- Main idea for determining r : We will use phase estimation to get an estimate on $\frac{s}{r}$ and then obtain r from it.
- How do we implement controlled U^{2} ? Modular exponentiation
- How do we prepare an eigenstate $\left|u_{s}\right\rangle$?
- We work with $|1\rangle$ as the first register since $\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=|1\rangle$.
- So, we will argue that for each $0 \leq s \leq r-1$, we will obtain an estimate of $\varphi \approx \frac{s}{r}$ accurate to $2 L+1$ bits with probability at least $\frac{(1-\varepsilon)}{r}$.
- Question: How do we extract r from this? Continued fractions
- Question: Are we guaranteed to get r using continued fractions? What could go wrong?

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- We obtain $\varphi \approx \frac{s}{r}$ for some $0 \leq s \leq r-1$ and then we use continued fractions to obtain s^{\prime}, r^{\prime} such that $s^{\prime} / r^{\prime}=s / r$.
- The problem is r^{\prime} may not equal r. One such case is when $s=0$. This, however, is a small probability event.
- Claim: Suppose we repeat twice and obtain $s_{1}^{\prime}, r_{1}^{\prime}$ and $s_{2}^{\prime}, r_{2}^{\prime}$. If s_{1} and s_{2} are co-prime, then $r=\operatorname{lcm}\left(r_{1}^{\prime}, r_{2}^{\prime}\right)$.

Quantum Computation
 Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

- We obtain $\varphi \approx \frac{s}{r}$ for some $0 \leq s \leq r-1$ and then we use continued fractions to obtain s^{\prime}, r^{\prime} such that $s^{\prime} / r^{\prime}=s / r$.
- The problem is r^{\prime} may not equal r. One such case is when $s=0$. This, however, is a small probability event.
- Claim: Suppose we repeat twice and obtain r_{1}^{\prime} and r_{2}^{\prime} corresponding to s_{1}, s_{2}. If s_{1} and s_{2} are co-prime, then $r=\operatorname{lcm}\left(r_{1}^{\prime}, r_{2}^{\prime}\right)$.
- Claim: $\operatorname{Pr}\left[s_{1}\right.$ and s_{2} are co-prime $] \geq 1 / 4$.

Quantum Computation

Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

Quantum Order-finding

1. $|0\rangle|1\rangle$
2. $\rightarrow \frac{1}{2^{t / 2}} \sum_{j=0}^{2^{t}-1}|j\rangle|1\rangle$
3. $\rightarrow \frac{1}{2^{t / 2}} \sum_{j=0}^{2^{t}-1}|j\rangle\left|x^{j}(\bmod N)\right\rangle$

$$
\approx \frac{1}{\sqrt{r} 2^{t / 2}} \sum_{s=0}^{r-1} \sum_{j=0}^{2^{t}-1} e^{(2 \pi i) \frac{s j}{r}}|j\rangle\left|u_{s}\right\rangle
$$

4. $\rightarrow \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}|(\tilde{/} / r)\rangle\left|u_{s}\right\rangle \quad$ (Apply inverse FT to $1^{s t}$ register)
5. $\rightarrow(\tilde{s / r})$
6. $\rightarrow r$

- What is the size of the circuit that computes the order with high probability?

Quantum Computation

Phase estimation \rightarrow Order-finding

Order finding

Given co-prime integers $N>x>0$, compute the order of x modulo N.

Quantum Order-finding

1. $|0\rangle|1\rangle$
2. $\rightarrow \frac{1}{2^{t / 2}} \sum_{j=0}^{2^{t}-1}|j\rangle|1\rangle$
3. $\rightarrow \frac{1}{2^{t / 2}} \sum_{j=0}^{2^{t}-1}|j\rangle\left|x^{j}(\bmod N)\right\rangle$

$$
\approx \frac{1}{\sqrt{r} 2^{t / 2}} \sum_{s=0}^{r-1} \sum_{j=0}^{2^{t}-1} e^{(2 \pi i) \frac{s j}{r}}|j\rangle\left|u_{s}\right\rangle
$$

4. $\rightarrow \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}|(s / r)\rangle\left|u_{s}\right\rangle \quad$ (Apply inverse FT to $1^{s t}$ register)
5. $\rightarrow(\tilde{s / r})$
6. $\rightarrow r$

- What is the size of the circuit that computes the order with high probability? $O\left(L^{3}\right)$

Quantum Computation: Factoring

Quantum Computation

Phase estimation \rightarrow Order finding \rightarrow Factoring

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

- We will solve the factoring problem by reduction to the order finding problem.
- Theorem 1: Suppose N is an L bit composite number, and x is a non-trivial solution to the equation $x^{2}=1(\bmod N)$ in the range $1 \leq x \leq N$, that is, neither $x=1(\bmod N)$ nor $x=-1(\bmod N)$. Then at least one of $\operatorname{gcd}(x-1, N)$ and $\operatorname{gcd}(x+1, N)$ is a non-trivial factor of N that can be computed using $O\left(L^{3}\right)$ operations.
- Theorem 2: Suppose $N=p_{1}^{\alpha_{1}} \ldots p_{m}^{\alpha_{m}}$ is the prime factorisation of an odd composite positive integer. Let x be an integer chosen uniformly at random, subject to the requirement that $1 \leq x \leq N-1$ and x is co-prime to N. Let r be the order of x modulo N. Then

$$
\operatorname{Pr}\left[r \text { is even and } x^{r / 2} \neq-1(\bmod N)\right] \geq 1-\frac{1}{2^{m}}
$$

Quantum Computation

Phase estimation \rightarrow Order finding \rightarrow Factoring

Factoring

Given a positive composite integer N, output a non-trivial factor of N.

Quantum Factoring Algorithm

1. If N is even, return 2 as a factor.
2. Determine if $N=a^{b}$ for integers $a, b \geq 2$ and if so, return a.
3. Randomly choose $1 \leq x \leq N-1$. If $\operatorname{gcd}(x, N)>1$, then return $\operatorname{gcd}(x, N)$.
4. Use the Quantum order-finding algorithm to find the order r of x modulo N.
5. If r is even and $x^{r / 2} \neq-1(\bmod N)$, then compute $p=\operatorname{gcd}\left(x^{r / 2}-1, N\right)$ and $q=\operatorname{gcd}\left(x^{r / 2}+1, N\right)$. If either p or q is a non-trivial factor of N, then return that factor else return "Failure".

End

