COL866: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation: Quantum Fourier transform

Quantum Computation

Quantum fourier transform

Discrete Fourier Transform (DFT)

The discrete Fourier transform takes as input a parameter N and a vector of complex numbers x_{0}, \ldots, x_{N-1} and outputs a vector of complex numbers y_{0}, \ldots, y_{N-1} where the inputs and outputs are related as:

$$
y_{k} \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} e^{\frac{2 \pi i}{N} j k}
$$

- Question: Suppose $N=2^{n}$. How many operations are required for computing the DFT?

Quantum Computation

Quantum fourier transform

Discrete Fourier Transform (DFT)

The discrete Fourier transform takes as input a parameter N and a vector of complex numbers x_{0}, \ldots, x_{N-1} and outputs a vector of complex numbers y_{0}, \ldots, y_{N-1} where the inputs and outputs are related as:

$$
y_{k} \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} e^{\frac{2 \pi i}{N} j k}
$$

- Question: Suppose $N=2^{n}$. How many operations are required for computing the DFT? $O\left(N^{2}\right)$ if done naively
- Question: Can we do this faster?

Quantum Computation

Quantum fourier transform

Discrete Fourier Transform (DFT)

The discrete Fourier transform takes as input a parameter N and a vector of complex numbers x_{0}, \ldots, x_{N-1} and outputs a vector of complex numbers y_{0}, \ldots, y_{N-1} where the inputs and outputs are related as: $y_{k} \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} e^{\frac{2 \pi j}{N} j k}$

- Question: Suppose $N=2^{n}$. How many operations are required for computing the DFT? $O\left(N^{2}\right)$ if done naively
- Question: Can we do this faster? Yes in $O(N \log N)$ operations using Fast Fourier Transform (FFT)
- Claim 1: DFT can be computed by multiplying an $N \times N$ matrix W with the vector $X=\left(x_{0}, \ldots, x_{N-1}\right)^{T}$, where $W_{i j}=w^{i j}$ and $w=e^{\frac{2 \pi i}{N}}$.

Quantum Computation

Quantum fourier transform

Discrete Fourier Transform (DFT)

The discrete Fourier transform take as input a parameter N and a vector of complex numbers x_{0}, \ldots, x_{N-1} and outputs a vector of complex numbers y_{0}, \ldots, y_{N-1} where the inputs and outputs are related as: $y_{k} \equiv \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x_{j} e^{\frac{2 \pi i}{N} j k}$

- Question: Suppose $N=2^{n}$. How many operations are required for computing the Fourier transform? $O\left(N^{2}\right)$ if done naively
- Question: Can we do this faster? Yes in $O(N \log N)$ operations using Fast Fourier Transform (FFT)
- Claim 1: DFT can be computed by multiplying an $N \times N$ matrix W with the vector $X=\left(x_{0}, \ldots, x_{N-1}\right)^{T}$, where $W_{i j}=w^{i j}$ and $w=e^{\frac{2 \pi i}{N}}$.
- Claim 2: WX can be computed using $O(N \log N)$ operations.

Quantum Computation

Quantum fourier transform

Claim 2

Let $X=\left(x_{0}, \ldots, x_{N-1}\right)^{T}$ and W be an $N \times N$ matrix where $W_{i j}=w^{i j}$ and $w=e^{\frac{2 \pi i}{N}}$. Then $W X$ can be computed using $O(N \log N)$ operations.

Proof sketch

- The following picture captures the main idea of FFT.

$$
W X=\left(\begin{array}{cc}
w^{(2 j) k} & w^{(2 j+1) k} \\
w^{(2 j) k} & -w^{(2 j+1) k}
\end{array}\right)\binom{X_{2 j}}{X_{2 j+1}}
$$

- The recurrence relation for the number of operations is given by $T(N)=2 T(N / 2)+O(N)$ which gives $T(N)=O(N \log N)$.

Quantum Computation
 Quantum fourier transform

Discrete Fourier Transform (DFT)

The discrete Fourier transform takes as input a parameter N and a vector of complex numbers x_{0}, \ldots, x_{N-1} and outputs a vector of complex numbers y_{0}, \ldots, y_{N-1} where the inputs and outputs are related as: $y_{k} \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} e^{\frac{2 \pi i}{N} j k}$.

Quantum Fourier Transform (QFT)

The quantum Fourier transform on an orthonormal basis
$|0\rangle, \ldots,|N-1\rangle$ is defined to be a linear operator with the following action on the basis states:

$$
|j\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2 \pi i}{N} j k}|k\rangle
$$

Equivalently, the action on an arbitrary state is:

$$
\sum_{j=0}^{N-1} x_{j}|j\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} y_{k}|k\rangle
$$

where y_{k} is as in DFT.

- Exercise: Show that the Quantum Fourier transform operator is unitary.

Quantum Computation
 Quantum fourier transform

Discrete Fourier Transform (DFT)

The discrete Fourier transform as input a parameter N and a vector of complex numbers x_{0}, \ldots, x_{N-1} and outputs a vector of complex numbers y_{0}, \ldots, y_{N-1} where the inputs and outputs are related as: $y_{k} \equiv \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x_{j} e^{\frac{2 \pi i}{N} j k}$.

Quantum Fourier Transform (QFT)

The quantum Fourier transform on an orthonormal basis $|0\rangle, \ldots,|N-1\rangle$ is defined to be a linear operator with the following action on the basis states:

$$
|j\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2 \pi i}{N} j k}|k\rangle
$$

Equivalently, the action on an arbitrary state is:

$$
\sum_{j=0}^{N-1} x_{j}|j\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} y_{k}|k\rangle
$$

where y_{k} is as in DFT.

- Exercise: Show that the Quantum Fourier transform operator is unitary.
- Claim: Let $N=2^{n}$. There is a quantum circuit of size $O\left(n^{2}\right)$ that computes the QFT on the computational basis corresponding to n-qubits.

Quantum Computation

Quantum fourier transform

QFT circuit

Let $N=2^{n}$. There is a quantum circuit of size $O\left(n^{2}\right)$ that computes the QFT on the computational basis corresponding to n-qubits.

- For $j \in\{0, \ldots, N-1\}$, let $\left[j_{1} j_{2} \ldots j_{n}\right]$ be the binary representation of j. So, $j=j_{1} 2^{n-1}+j_{2} 2^{n-2}+\ldots+j_{n} 2^{0}$.
- We will also use binary fraction notation [0.j$\left.\ldots j_{m}\right]$ which represents the number $\frac{j_{l}}{2}+\frac{j_{l+1}}{2^{2}}+\frac{j_{m}}{2^{m-l+1}}$.
- Claim 1: The QFT of a state $\left|j_{1} \ldots j_{n}\right\rangle$ is given as below:

$$
\left|j_{1} \ldots j_{n}\right\rangle \rightarrow\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{n j}\right]}[1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{n-1} j_{n j}\right]}|1\rangle}{\sqrt{2}}\right) \ldots\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{1} \ldots j_{n j}\right]}|1\rangle}{\sqrt{2}}\right)
$$

Quantum Computation

Quantum fourier transform

QFT circuit

Let $N=2^{n}$. There is a quantum circuit of size $O\left(n^{2}\right)$ that computes the QFT on the computational basis corresponding to n-qubits.

- Claim 1: The QFT of a state $\left|j_{1} \ldots j_{n}\right\rangle$ is given as below:

$$
\left|j_{1} \ldots j_{n}\right\rangle \rightarrow\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{n}\right]_{|1\rangle}}}{\sqrt{2}}\right)\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{n-1} \cdot j_{n}\right]_{|1\rangle}}}{\sqrt{2}}\right) \ldots\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{1} \ldots j_{n}\right]_{|1\rangle}}}{\sqrt{2}}\right)
$$

- This representation helps to construct the following circuit:

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation

Quantum fourier transform

QFT circuit

Let $N=2^{n}$. There is a quantum circuit of size $O\left(n^{2}\right)$ that computes the QFT on the computational basis corresponding to n-qubits.

- Claim 1: The QFT of a state $\left|j_{1} \ldots j_{n}\right\rangle$ is given as below:

$$
\left|j_{1} \ldots j_{n}\right\rangle \rightarrow\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{n}\right]_{|1\rangle}}}{\sqrt{2}}\right)\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{n-1} j_{n j}\right]_{|1\rangle}}}{\sqrt{2}}\right) \ldots\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{1} \ldots j_{n}\right]_{[1\rangle}}}{\sqrt{2}}\right)
$$

- This representation helps to construct the following circuit:

- This does not quite match the expression. What do we do to match?

Quantum Computation

Quantum fourier transform

QFT circuit

Let $N=2^{n}$. There is a quantum circuit of size $O\left(n^{2}\right)$ that computes the QFT on the computational basis corresponding to n-qubits.

- Claim 1: The QFT of a state $\left|j_{1} \ldots j_{n}\right\rangle$ is given as below:

$$
\left|j_{1} \ldots j_{n}\right\rangle \rightarrow\left(\frac{|0\rangle+\mathrm{e}^{2 \pi i\left[0 \cdot j_{n}\right]_{|1\rangle}}}{\sqrt{2}}\right)\left(\frac{|0\rangle+\mathrm{e}^{2 \pi i\left[0 \cdot j_{n-1} j_{n}\right]}|1\rangle}{\sqrt{2}}\right) \ldots\left(\frac{|0\rangle+\mathrm{e}^{2 \pi i\left[0 \cdot j_{1} \ldots j_{n}\right]}|1\rangle}{\sqrt{2}}\right)
$$

- This representation helps to construct the following circuit:

- This does not quite match the expression. What do we do to match? Swap
- What is the total number of gates employed?

Quantum Computation

Quantum fourier transform

QFT circuit

Let $N=2^{n}$. There is a quantum circuit of size $O\left(n^{2}\right)$ that computes the QFT on the computational basis corresponding to n-qubits.

- Claim 1: The QFT of a state $\left|j_{1} \ldots j_{n}\right\rangle$ is given as below:

$$
\left|j_{1} \ldots j_{n}\right\rangle \rightarrow\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{n}\right]_{|1\rangle}}}{\sqrt{2}}\right)\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{n-1} j_{n}\right]}|1\rangle}{\sqrt{2}}\right) \ldots\left(\frac{|0\rangle+e^{2 \pi i\left[0 \cdot j_{1} \ldots j_{n}\right]_{|1\rangle}}}{\sqrt{2}}\right)
$$

- This representation helps to construct the following circuit:

- This does not quite match the expression. What do we do to match? Swap
- What is the total number of gates employed? $O\left(n^{2}\right)$
- What about precision?

Quantum Computation
 \section*{Quantum fourier transform}

QFT circuit

Let $N=2^{n}$. There is a quantum circuit of size $O\left(n^{2}\right)$ that computes the QFT on the computational basis corresponding to n-qubits.

- Claim 1: The QFT of a state $\left|j_{1} \ldots j_{n}\right\rangle$ is given as below:
- This representation helps to construct the following circuit:

- This does not quite match the expression. What do we do to match? Swap
- What is the total number of gates employed? $O\left(n^{2}\right)$
- What about precision? Polynomial precision in each gate is sufficient

End

