COL866: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation: Complexity class BQP

Quantum Computation
 Quantum Complexity

- Complexity class BPP: The class of all problems (or languages) that can be solved probabilistic polynomial time. That is, a randomized algorithm that runs in time polynomial in the input length and has a bounded error probability (this can be assumed to be $1 / 4$).
- Exercise: Argue that $\mathrm{P} \subseteq \mathrm{BPP}$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most $1 / 4$. Also, the circuits should be uniformly generated.

Quantum Computation
 Quantum Complexity

- Complexity class BPP: The class of all problems (or languages) that can be solved probabilistic polynomial time. That is, a randomized algorithm that runs in time polynomial in the input length and has a bounded error probability (this can be assumed to be $1 / 4$).
- Exercise: Argue that $\mathrm{P} \subseteq \mathrm{BPP}$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most $1 / 4$. Also, the circuits should be uniformly generated.

- Exercise: Argue that $\mathrm{P} \subseteq \mathrm{BPP} \subseteq \mathrm{BQP}$.

Quantum Computation
 Quantum Complexity

- Complexity class BPP: The class of all problems (or languages) that can be solved probabilistic polynomial time. That is, a randomized algorithm that runs in time polynomial in the input length and has a bounded error probability (this can be assumed to be 1/4).
- Exercise: Argue that $\mathrm{P} \subseteq \mathrm{BPP}$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most $1 / 4$. Also, the circuits should be uniformly generated.

- Exercise: Argue that $\mathrm{P} \subseteq \mathrm{BPP} \subseteq \mathrm{BQP}$.
- Complexity class PSPACE: A language is in PSPACE if there is a polynomial space Turing Machine (algorithm) that decides the language.

Quantum Computation
 Quantum Complexity

- Complexity class BPP: The class of all problems (or languages) that can be solved probabilistic polynomial time. That is, a randomized algorithm that runs in time polynomial in the input length and has a bounded error probability (this can be assumed to be 1/4).
- Exercise: Argue that $\mathrm{P} \subseteq \mathrm{BPP}$.

BQP (Bounded Quantum Polynomial)

A language is in BQP if there is a family of polynomial size quantum circuits which decides the language with probabilistic error of at most $1 / 4$. Also, the circuits should be uniformly generated.

- Exercise: Argue that $P \subseteq B P P \subseteq B Q P$.
- Complexity class PSPACE: A language is in PSPACE if there is a polynomial space Turing Machine (algorithm) that decides the language.

Theorem

$B Q P \subseteq$ PSPACE.

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Computation
 Quantum Complexity

Theorem

BQP \subseteq PSPACE.

Proof sketch

- For any language L, consider the quantum computer that decides L.
- Let the quantum circuit corresponding to inputs of length n contain $p(n)$ gates for some polynomial p.
- Suppose the quantum circuit starts in state $|0\rangle$ and uses a sequence of gates $U_{1}, \ldots, U_{p(n)}$.
- Question: Can we find the probability of this circuit ending in state $|y\rangle$ on final measurement in polynomial space?

Quantum Computation

Quantum Complexity

Theorem

$B Q P \subseteq P S P A C E$.

Proof sketch

- For any language L, consider the quantum computer that decides L.
- Let the quantum circuit corresponding to inputs of length n contain $p(n)$ gates for some polynomial p.
- Suppose the quantum circuit starts in state $|0\rangle$ and uses a sequence of gates $U_{1}, \ldots, U_{p(n)}$.
- Question: Can we find the probability of this circuit ending in state $|y\rangle$ on final measurement in polynomial space? Yes
- The probability of measuring state $|y\rangle$ is modulus squared of:

$$
\langle y| U_{p(n)} \ldots U_{1}|0\rangle
$$

- We note that

$$
\langle y| U_{p(n)} \ldots U_{1}|0\rangle=\sum_{x_{1}, \ldots, x_{\rho(n)-1}}\langle y| U_{p(n)}\left|x_{p(n)-1}\right\rangle\left\langle x_{p(n)-1}\right| U_{P(n)-2} \ldots U_{2}\left|x_{1}\right\rangle\left\langle x_{1}\right| U_{1}|0\rangle .
$$

- Claim: The above sum can be computed in polynomial space.

Quantum Computation

Quantum Complexity

- Complexity picture:

End

