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Quantum Circuit
Single qubit operations

Single qubit gates are 2× 2 unitary matrices. Some of the
important gates are:

Pauli matrices: X ≡ [ 0 1
1 0 ], Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
.

Hadamard gate: H ≡ 1√
2

[
1 1
1 −1

]
.

Phase gate: S ≡ [ 1 0
0 i ].

π/8 gate: T ≡
[
1 0
0 e iπ/4

]
Simplification: A qubit α |0〉+ β |1〉 may be represented as

cos θ2 |0〉+ e iψ sin θ
2 |1〉. So, any tuple (θ, ψ) represents a qubit.

This has a nice visualization in terms of Bloch sphere.
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Quantum Circuit
Single qubit operations

Single qubit gates are 2× 2 unitary matrices. Some of the
important gates are:

Pauli matrices: X ≡ [ 0 1
1 0 ], Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
.

Hadamard gate: H ≡ 1√
2

[
1 1
1 −1

]
.

Phase gate: S ≡ [ 1 0
0 i ].

π/8 gate: T ≡
[
1 0
0 e iπ/4

]
Simplification: A qubit α |0〉+ β |1〉 may be represented as

cos θ2 |0〉+ e iψ sin θ
2 |1〉. So, any tuple (θ, ψ) represents a qubit.

This has a nice visualisation in terms of Bloch sphere.

The vector (cosψ sin θ, sinψ sin θ, cos θ) is called the Bloch vector.
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Quantum Circuit
Single qubit operations

Single qubit gates are 2× 2 unitary matrices. Some of the
important gates are:

Pauli matrices: X ≡ [ 0 1
1 0 ], Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
.

Hadamard gate: H ≡ 1√
2

[
1 1
1 −1

]
.

Phase gate: S ≡ [ 1 0
0 i ].

π/8 gate: T ≡
[
1 0
0 e iπ/4

]
Pauli matrices give rise to three useful classes of unitary matrices
when they are exponentiated, the rotational operators about the
x̂ , ŷ , and ẑ axis.

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]
Ry (θ) ≡ e−iθY /2 = cos

θ

2
I − i sin

θ

2
Y =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
Rz(θ) ≡ e−iθZ/2 = cos

θ

2
I − i sin

θ

2
Z =

[
e−iθ/2 0

0 e iθ/2

]
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Quantum Circuit
Single qubit operations

Single qubit gates are 2× 2 unitary matrices. Some of the
important gates are:

Pauli matrices: X ≡ [ 0 1
1 0 ], Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
.

Hadamard gate: H ≡ 1√
2

[
1 1
1 −1

]
.

Phase gate: S ≡ [ 1 0
0 i ].

π/8 gate: T ≡
[
1 0
0 e iπ/4

]
A few useful results:

Let n̂ = (nx , ny , nz) be a real unit vector. The rotation by θ about
the n̂ axis is given by

Rn̂(θ) ≡ e−i
θ
2 (n̂·~σ) = cos

θ

2
I − i sin

θ

2
(nxX + nyY + nzZ ),

where ~σ denotes the vector (X ,Y ,Z ).
Theorem: Suppose U is a unitary operator on a single qubit. Then
there exist real numbers α, β, γ, and δ such that
U = e iαRz(β)Ry (γ)Rz(δ).
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Quantum Circuit
Single qubit operations

Theorem

Suppose U is a unitary operator on a single qubit. Then there exist
real numbers α, β, γ, and δ such that U = e iαRz(β)Ry (γ)Rz(δ).

Proof sketch

There are real numbers α, β, γ, δ such that:

U =

[
e i(α−β/2−δ/2) cos γ2 −e i(α−β/2+δ/2) sin γ

2

e i(α+β/2−δ/2) sin γ
2 e i(α+β/2+δ/2) cos γ2

]
Now one just needs to verify that the RHS matches
e iαRz(β)Ry (γ)Rz(δ).
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Quantum Circuit
Single qubit operations

Theorem

Suppose U is a unitary operator on a single qubit. Then there exist
real numbers α, β, γ, and δ such that U = e iαRz(β)Ry (γ)Rz(δ).

Theoerm

Suppose U is a unitary gate on a single qubit. Then there exist unitary
operators A,B,C on a single qubit such that ABC = I and
U = e iαAXBXC , where α is some overall phase factor.
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Quantum Circuit
Single qubit operations

Single qubit gates are 2× 2 unitary matrices. Some of the
important gates are:

Pauli matrices: X ≡ [ 0 1
1 0 ], Y ≡

[
0 −i
i 0

]
, Z ≡

[
1 0
0 −1

]
.

Hadamard gate: H ≡ 1√
2

[
1 1
1 −1

]
.

Phase gate: S ≡ [ 1 0
0 i ].

π/8 gate: T ≡
[
1 0
0 e iπ/4

]
Summary:

The above matrices are fundamental entities that define general
classes of single-qubit unitary gates such that any single-qubit
unitary gate can be represented in terms of these gates.
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Quantum Circuit
Controlled operations

The simplest two-qubit gate is the Controlled-NOT or CNOT gate:

with matrix representation

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
. The top qubit is called the

control qubit, and the bottom qubit is called the target qubit.
Another simple two-qubit gate is the Controlled-U gate:
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Quantum Circuit
Controlled operations

The simplest two-qubit gate is the Controlled-NOT or CNOT gate:

with matrix representation

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
. The top qubit is called the

control qubit, and the bottom qubit is called the target qubit.
Another simple two-qubit gate is the Controlled-U gate:

Some exercises:

Build a CNOT gate from one Controlled-Z gate and two Hadamard
gates.
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Quantum Circuit
Controlled operations

The simplest two-qubit gate is the Controlled-NOT or CNOT gate:

with matrix representation

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
. The top qubit is called the

control qubit, and the bottom qubit is called the target qubit.
Another simple two-qubit gate is the Controlled-U gate:

Some exercises:

Build a CNOT gate from one Controlled-Z gate and two Hadamard
gates.
Show that:
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Quantum Circuit
Controlled operations

The simplest two-qubit gate is the Controlled-NOT or CNOT gate:

with matrix representation

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
. The top qubit is called the

control qubit, and the bottom qubit is called the target qubit.
Another simple two-qubit gate is the Controlled-U gate:

Some exercises:

Show that:
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Quantum Circuit
Controlled operations

The simplest two-qubit gate is the Controlled-NOT or CNOT gate:

with matrix representation

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
. The top qubit is called the

control qubit, and the bottom qubit is called the target qubit.
Another simple two-qubit gate is the Controlled-U gate:

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates?
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates?

Theoerm

Suppose U is a unitary gate on a single qubit. Then there exist unitary
operators A,B,C on a single qubit such that ABC = I and
U = e iαAXBXC , where α is some overall phase factor.
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Quantum Circuit
Controlled operations

Theoerm

Suppose U is a unitary gate on a single qubit. Then there exist unitary
operators A,B,C on a single qubit such that ABC = I and
U = e iαAXBXC , where α is some overall phase factor.

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Construction sketch

The construction follows from the following circuit equivalences.
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates?
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates? Yes

Construction sketch

The construction follows from the following circuit equivalence.

Here V is such that V 2 = U.
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with n
control qubits using only CNOT and single-qubit gates?
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Quantum Circuit
Controlled operations

Question

For a single qubit U, can we implement Controlled-U gate using only
CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with two
control qubits using only CNOT and single-qubit gates? Yes

Question

For a single qubit U, can we implement Controlled-U gate with n
control qubits using only CNOT and single-qubit gates? Yes using
ancilla qubits

Construction sketch

An example construction with n = 4.
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Quantum Circuit
Controlled operations

A few other gates and circuit identities:

Figure: NOT gate applied to the target qubit conditional on the control qubit
being 0.
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Quantum Circuit
Measurements

Principle of deferred measurements

Measurements can always be moved from an intermediate stage of a
quantum circuit to the end of the circuit; if the measurement results
are used at any stage of the circuit, then the classically controlled
operations can be replaced by conditional quantum operations.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information



Quantum Circuit
Measurements

Principle of deferred measurements

Measurements can always be moved from an intermediate stage of a
quantum circuit to the end of the circuit; if the measurement results
are used at any stage of the circuit, then the classically controlled
operations can be replaced by conditional quantum operations.

Principle of implicit measurement

Without loss of generality, any unterminated quantum wires (qubits
that are not measured) at the end of a quantum circuit may be
assumed to be measured.
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Quantum Circuit
Universal quantum gates

A set of gates is said to be universal for quantum computation if
any unitary operation may be approximated to arbitrary
accuracy by a quantum circuit involving only those gates.

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, CNOT, and π/8 gates.

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information



Quantum Circuit
Universal quantum gates

Claim

Any unitary operation can be approximated to arbitrary accuracy using
Hadamard, CNOT, and π/8 gates.

Proof sketch

Claim 1: A single qubit operation may be approximated to
arbitrary accuracy using the Hadamard, and π/8 gates.
Claim 2: An arbitrary unitary operator may be expressed exactly
using single qubit and CNOT gates.

Claim 2.1: An arbitrary unitary operator may be expressed exactly
as a product of unitary operators that each acts non-trivially only
on a subspace spanned by two computational basis states (such
gates are called two-level gates).
Claim 2.2: An arbitrary two-level unitary operator may be
expressed exactly using single qubit and CNOT gates.

What about efficiency?

Upper-bound: Any unitary can be approximated using
exponentially many gates.
Lower-bound: There exists a unitary operation that requires
exponentially many gates to approximate.
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Quantum Circuit
Universal quantum gates

Claim 2.1

An arbitrary unitary operator may be expressed exactly as a product
of unitary operators that each acts non-trivially only on a subspace
spanned by two computational basis states.

Proof sketch

The main idea can be understood using a 3× 3 unitary matrix:

U =

a d g
b e h
c f j

 .
We will find two-level unitary matrices U1,U2,U3 such that

U3U2U1U = I and U = U†1U
†
2U
†
3
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Quantum Circuit
Universal quantum gates

Claim 2.1

An arbitrary unitary operator may be expressed exactly as a product
of unitary operators that each acts non-trivially only on a subspace
spanned by two computational basis states.

Proof sketch

The main idea can be understood using a 3× 3 unitary matrix:

U =

a d g
b e h
c f j

 .
We will find two-level unitary matrices U1,U2,U3 such that

U3U2U1U = I and U = U†1U
†
2U
†
3

Exercise

Show that any d × d unitary matrix can be written in terms of
d(d − 1)/2 two-level matrices.
There exists a d × d unitary matrix U which cannot be
decomposed as a product of fewer than d − 1 two-level unitary
matrices.
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Quantum Circuit
Universal quantum gates

Claim 2

An arbitrary unitary operator may be expressed exactly using single
qubit and CNOT gates.

Claim 2.1: An arbitrary unitary operator may be expressed
exactly as a product of unitary operators that each acts
non-trivially only on a subspace spanned by two computational
basis states.
Claim 2.2: An arbitrary two-level unitary operator may be
expressed exactly using single qubit and CNOT gates.

Proof sketch

Let U be a two-level unitary matrix on a n-qubit quantum
computer.
Let U act non-trivially on the space spanned by the
computational basis states |s〉 and |t〉, where s = s1, ..., sn and
t = t1, ..., tn are n-bit binary strings.
Let Ũ be the non-trivial 2× 2 submatrix of U. Note that we can
think Ũ to be a unitary operator on a single qubit.
We will use the gray-code connecting s and t, which is a
sequence of n-bit strings starting with s and ending with t such
that the subsequent strings in the sequence differ only on one bit.
Example: s = 101001, t = 110011.

g1 = 101001; g2 = 101011; g3 = 100011; g4 = 110011

Main idea:

We will design a sequence of swaps
|g1〉 → |gm−1〉 , |g2〉 → |g1〉 , |g3〉 → |g2〉 , ..., |gm−1〉 → |gm−2〉.
We will apply Ũ to the qubit that differs in gm−1 and gm.
Swap |gm−1〉 with |gm−2〉, |gm−2〉 with |gm−3〉 and so on.
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Quantum Circuit
Universal quantum gates

Claim 2.2

An arbitrary two-level unitary operator may be expressed exactly using
single qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =



a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
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Quantum Circuit
Universal quantum gates

Claim 2.2

An arbitrary two-level unitary operator may be expressed exactly using
single qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =



a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
Construction:
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Quantum Circuit
Universal quantum gates

Claim 2.2

An arbitrary two-level unitary operator may be expressed exactly using
single qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =


a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
Construction:

Exercise

For an arbitrary unitary operator on an n-qubit system, how many
CNOT and single qubit gate will be required in the entire
construction?
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Quantum Circuit
Universal quantum gates

Claim 2

An arbitrary unitary operator may be expressed exactly using single
qubit and CNOT gates.

Example construction

Let the two-level transformation be:

U =


a 0 0 0 0 0 0 c
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
b 0 0 0 0 0 0 d


The gray code connecting |000〉 and |111〉:
|000〉 → |001〉 → |011〉 → |111〉.
Construction:

Exercise

For an arbitrary unitary operator on an n-qubit system, how many
CNOT and single qubit gate will be required in the entire
construction? O(n24n) gates.
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End
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