COL866: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Mechanics
 Postulates: Composite system

- Claim: (Projective measurement + unitary operators $)=$ generalised measurement.

Proof sketch

- Let Q be the state space of the quantum system in which we would like to make a generalised measurement using measurement operators M_{m}.
- We introduce an ancilla system with state space M with orthonormal basis $|m\rangle$.
- Let U be an operator defined as

$$
U|\psi\rangle|0\rangle \equiv \sum_{m} M_{m}|\psi\rangle|m\rangle
$$

where $|0\rangle$ is an arbitrary state of M.

- Claim 1: U preserves inner products between states of the form $|\psi\rangle|0\rangle$.
- Claim 2: U can be extended to a unitary operator on $Q \otimes M$ (let us denote this by U itself).
- Claim 3: Let $P_{m}=I_{Q} \otimes|m\rangle\langle m|$. Projective measurement using P_{m} on $Q \otimes M$ is similar to generalised measurement using M_{m} on Q.

Quantum Computation: Quantum circuits

Quantum Circuit

Single qubit operations

- Single qubit gates are 2×2 unitary matrices. Some of the important gates are:
- Pauli matrices: $X \equiv\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right], Y \equiv\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right], Z \equiv\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
- Hadamard gate: $H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.
- Phase gate: $S \equiv\left[\begin{array}{cc}1 & 0 \\ 0 & i\end{array}\right]$.
- $\underline{\pi / 8 \text { gate: }} T \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right]$
- Simplification: A qubit $\alpha|0\rangle+\beta|1\rangle$ may be represented as $\cos \frac{\theta}{2}|0\rangle+e^{i \psi} \sin \frac{\theta}{2}|1\rangle$. So, any tuple (θ, ψ) represents a qubit.
- This has a nice visualisation in terms of Bloch sphere.

Quantum Circuit

Single qubit operations

- Single qubit gates are 2×2 unitary matrices. Some of the important gates are:
- Pauli matrices: $X \equiv\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right], Y \equiv\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right], Z \equiv\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
- Hadamard gate: $H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.
- Phase gate: $S \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
- $\underline{\pi / 8 \text { gate: }} T \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right]$
- Simplification: A qubit $\alpha|0\rangle+\beta|1\rangle$ may be represented as $\cos \frac{\theta}{2}|0\rangle+e^{i \psi} \sin \frac{\theta}{2}|1\rangle$. So, any tuple (θ, ψ) represents a qubit.
- This has a nice visualisation in terms of Bloch sphere.

- The vector $(\cos \psi \sin \theta, \sin \psi \sin \theta, \cos \theta)$ is called the Bloch vector.

Quantum Circuit

- Single qubit gates are 2×2 unitary matrices. Some of the important gates are:
- Pauli matrices: $X \equiv\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right], Y \equiv\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right], Z \equiv\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
- Hadamard gate: $H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.
- Phase gate: $S \equiv\left[\begin{array}{cc}1 & 0 \\ 0 & i\end{array}\right]$.
- $\pi / 8$ gate: $T \equiv\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right]$
- Pauli matrices give rise to three useful classes of unitary matrices when they are exponentiated, the rotational operators about the \hat{x}, \hat{y}, and \hat{z} axis.

$$
\begin{aligned}
& R_{x}(\theta) \equiv e^{-i \theta X / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} X=\left[\begin{array}{cc}
\cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\
-i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right] \\
& R_{y}(\theta) \equiv e^{-i \theta Y / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Y=\left[\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right] \\
& R_{z}(\theta) \equiv e^{-i \theta Z / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Z=\left[\begin{array}{cc}
e^{-i \theta / 2} & 0 \\
0 & e^{i \theta / 2}
\end{array}\right]
\end{aligned}
$$

Quantum Circuit

- Single qubit gates are 2×2 unitary matrices. Some of the important gates are:
- Pauli matrices: $X \equiv\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right], Y \equiv\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right], Z \equiv\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
- Hadamard gate: $H \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.
- Phase gate: $S \equiv\left[\begin{array}{cc}1 & 0 \\ 0 & i\end{array}\right]$.
- $\overline{\pi / 8 \text { gate: }} T \equiv\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right]$
- A few useful results:
- Let $\hat{n}=\left(n_{x}, n_{y}, n_{z}\right)$ be a real unit vector. The rotation by θ about the \hat{n} axis is given by

$$
R_{\hat{n}}(\theta) \equiv e^{-i \frac{\theta}{2}(\hat{n} \cdot \vec{\sigma})}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2}\left(n_{x} X+n_{y} Y+n_{z} Z\right),
$$

where $\vec{\sigma}$ denotes the vector (X, Y, Z).

- Theorem: Suppose U is a unitary operator on a single qubit. Then there exist real numbers α, β, γ, and δ such that $U=e^{i \alpha} R_{z}(\beta) R_{y}(\gamma) R_{z}(\delta)$.

End

