COL866: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Mechanics
 Postulates

Distinguishing quantum states

Alice chooses a state $\left|\psi_{i}\right\rangle$ from a fixed set of states $\left|\psi_{1}\right\rangle, \ldots .,\left|\psi_{n}\right\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

- Claim 2: There is no winning strategy for Bob if there are non-orthogonal states.

Proof sketch

- Assume $n=2$ and let $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ be non-orthogonal.
- The most general strategy for Bob is to measure using operators $\left\{M_{m}\right\}$ and use a function $f:\{1, \ldots, m\} \rightarrow\{1,2\}$ to return an answer to Alice. Suppose for the sake of contradiction, there exists such a winning strategy for Bob.
- Let $E_{i}=\sum_{j: f(j)=i} M_{j}^{\dagger} M_{j}$ for $i=1,2$.
- Since this is a winning strategy for Bob, we have: $\left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1 ;\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=1$
- Claim 2.1: $\sqrt{E_{2}}\left|\psi_{1}\right\rangle=0$
- Claim 2.2: Decompose $\left|\psi_{2}\right\rangle=\alpha\left|\psi_{1}\right\rangle+\beta|\phi\rangle$, where $|\phi\rangle$ is orthonormal to $\left|\psi_{1}\right\rangle$. Then $|\beta|<1$.
- Claim 2.3: $\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=|\beta|^{2}\langle\phi| E_{2}|\phi\rangle \leq|\beta|^{2}<1$.
- The above contradicts with the fourth bullet item.

Quantum Mechanics
 Superdense coding: Quiz-1

Superdense coding problem

Alice wants to send two classical bits to Bob. They share a Bell pair and the constraint is that Alice can only send a single qubit to Bob.

Quantum Mechanics

- Projective measurement is a special class of measurements and defines as special case of measurement postulate 3.
- Is this a weaker notion than the generalized measurement postulate? No

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.

Quantum Mechanics

Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Observation: Generalized measurements where the measurement operators are constrained to be orthogonal projectors are the same as projective measurements.
- Exercise: M_{m} are orthogonal projectors if and only if M_{m} are Hermitian and $M_{m} M_{m^{\prime}}=\delta_{m, m^{\prime}} M_{m}$.

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Observation: Generalized measurements where the measurement operators are constrained to be orthogonal projectors are the same as projective measurements.
- Exercise: M_{m} are orthogonal projectors if and only if M_{m} are Hermitian and $M_{m} M_{m^{\prime}}=\delta_{m, m^{\prime}} M_{m}$.
- Observation: Generalized measurements where the measurement operators M_{m} have additional constraints that M_{m} are Hermitian and $M_{m} M_{m^{\prime}}=\delta_{m, m^{\prime}} M_{m}$, are the same as projective measurements.

Quantum Mechanics

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Claim: The average value of the measurement, denoted by $\mathbf{E}[M]$, is given by $\mathbf{E}[M]=\langle\psi| M|\psi\rangle$.

Quantum Mechanics

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Exercise: Suppose we measure state ψ that is an eigenvector corresponding to eigenvalue m of the observable M. What is $\mathbf{E}[M]$?

Quantum Mechanics

Postulates: Projective measurements

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Describing the observable M is one way to define the projective measurement. Other ways include:
- A set of orthogonal projectors P_{m} satisfying completeness, that is, $\sum_{m} P_{m}=l$. The observable in this case is $\sum_{m} m P_{m}$.
- An orthonormal basis $|m\rangle$ in which case, $P_{m}=|m\rangle\langle m|$.

Quantum Mechanics

Projective measurements

A projective measurement is described by an observable, M that is a Hermitian operator on the state space of the system being observed.

- The observable has a spectral decomposition $M=\sum_{m} m P_{m}$, where P_{m} is the projector onto the eigenspace of M with eigenvalue m.
- The possible outcomes of the measurement correspond to the eigenvalues, m, of the observable.
- The probability of measuring outcome being m on measuring state $|\psi\rangle$ is given by $p(m)=\langle\psi| P_{m}|\psi\rangle$.
- Given that m is the outcome of the measurement, the post-measurement state is $\frac{P_{m}|\psi\rangle}{\sqrt{p(m)}}$.
- Exercise: Discuss projective measurement of the state $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ w.r.t. observable Z.
- The measurement postulate defines rules for
(1) measurement statistics, and
(2) post-measurement state.
- For certain applications, the post-measurement state is not very important.
- Can you think of such a scenario?
- POVM stands for Positive Operator-Valued Measure. The main ideas are captured in the following points:
- For generalised measurement operators M_{m} and state $|\psi\rangle$, the measurement statistics are given by $p(m)=\langle\psi| M_{m}^{\dagger} M|\psi\rangle$.
- Since we are interested only in the measurement statistics, it will be sufficient to describe the measurement using positive operators

$$
E_{m} \equiv M_{m}^{\dagger} M_{m}
$$

- Observation: $\sum_{m} E_{m}=I$ and $p(m)=\langle\psi| E_{m}|\psi\rangle$.
- Notation: The operators E_{m} are called POVM elements associated with the measurement and set $\left\{E_{m}\right\}$ is known as POVM.
- POVM stands for Positive Operator-Valued Measure. The main ideas are captured in the following points:
- For generalised measurement operators M_{m} and state $|\psi\rangle$, the measurement statistics are given by $p(m)=\langle\psi| M_{m}^{\dagger} M|\psi\rangle$.
- Since we are interested only in the measurement statistics, it will be sufficient to describe the measurement using positive operators

$$
E_{m} \equiv M_{m}^{\dagger} M_{m}
$$

- Observation: $\sum_{m} E_{m}=I$ and $p(m)=\langle\psi| E_{m}|\psi\rangle$.
- Notation: The operators E_{m} are called POVM elements associated with the measurement and set $\left\{E_{m}\right\}$ is known as POVM.
- Exercise: Let E_{m} be an arbitrary set of positive operators such that $\sum_{m} E_{m}=I$. Does there exist measurement operators M_{m} with the same measurement statistics are ones defined by E_{m} ?

Quantum Mechanics

- POVM stands for Positive Operator-Valued Measure. The main ideas are captured in the following points:
- For generalised measurement operators M_{m} and state $|\psi\rangle$, the measurement statistics are given by $p(m)=\langle\psi| M_{m}^{\dagger} M|\psi\rangle$.
- Since we are interested only in the measurement statistics, it will be sufficient to describe the measurement using positive operators

$$
E_{m} \equiv M_{m}^{\dagger} M_{m}
$$

- Observation: $\sum_{m} E_{m}=I$ and $p(m)=\langle\psi| E_{m}|\psi\rangle$.
- Notation: The operators E_{m} are called POVM elements associated with the measurement and set $\left\{E_{m}\right\}$ is known as POVM.
- Exercise: Let E_{m} be an arbitrary set of positive operators such that $\sum_{m} E_{m}=I$. Does there exist measurement operators M_{m} with the same measurement statistics are ones defined by E_{m} ?
- Yes. $M_{m}=\sqrt{E_{m}}$.

Quantum Mechanics

- POVM application: Show that the following POVM

$$
\begin{aligned}
E_{1} & \equiv \frac{\sqrt{2}}{1+\sqrt{2}}|1\rangle\langle 1| \\
E_{2} & \equiv \frac{\sqrt{2}}{1+\sqrt{2}} \frac{(|0\rangle-|1\rangle)(\langle 0|-\langle 1|)}{2} \\
E_{3} & \equiv I-E_{1}-E_{2}
\end{aligned}
$$

helps to distinguish states $|0\rangle$ and $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ with the caveat that sometimes it may output "don't know".

Quantum Mechanics
 Postulates: Composite system

Postulate 4

The state space of a composite physical system is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through n, and system number i is prepared in state $\left|\psi_{i}\right\rangle$, then the joint state of the total system is $\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots \otimes\left|\psi_{n}\right\rangle$.

Quantum Mechanics
 Postulates: Composite system

- We commented earlier that projective measurement is not a weaker notion when compared with generalised measurements (even though it may seem so).
- We will not argue that (Projective measurement + Unitary operators) has the same power generalised measurement.

Lemma

Suppose V is a Hilbert space with a subspace W. Suppose $U: W \rightarrow V$ is a linear operator that preserves inner products, that is, for any $\left|w_{1}\right\rangle,\left|w_{2}\right\rangle \in W$,

$$
\left\langle w_{1}\right| U^{\dagger} U\left|w_{2}\right\rangle=\left\langle w_{1} \mid w_{2}\right\rangle .
$$

Show that there exists a unitary operator $U^{\prime}: V \rightarrow V$ that extends U. That is, $U^{\prime}|w\rangle=U|w\rangle$ for all $|w\rangle \in W$ but U^{\prime} is defined on the entire space V.

Quantum Mechanics
 Postulates: Composite system

- Claim: (Projective measurement + unitary operators) = generalised measurement.

Proof sketch

- Let Q be the state space of the quantum system in which we would like to make a generalised measurement using measurement operators M_{m}.
- We introduce an ancilla system with state space M with orthonormal basis $|m\rangle$.
- Let U be an operator defined as

$$
U|\psi\rangle|0\rangle \equiv \sum_{m} M_{m}|\psi\rangle|m\rangle
$$

where $|0\rangle$ is an arbitrary state of M.

- Claim 1: U preserves inner products between states of the form $|\psi\rangle|0\rangle$.

Quantum Mechanics
 Postulates: Composite system

- Claim: (Projective measurement + unitary operators $)=$ generalised measurement.

Proof sketch

- Let Q be the state space of the quantum system in which we would like to make a generalised measurement using measurement operators M_{m}.
- We introduce an ancilla system with state space M with orthonormal basis $|m\rangle$.
- Let U be an operator defined as

$$
U|\psi\rangle|0\rangle \equiv \sum_{m} M_{m}|\psi\rangle|m\rangle
$$

where $|0\rangle$ is an arbitrary state of M.

- Claim 1: U preserves inner products between states of the form $|\psi\rangle|0\rangle$.
- Claim 2: U can be extended to a unitary operator on $Q \otimes M$ (let us denote this by U itself).
- Claim 3: Let $P_{m}=I_{Q} \otimes|m\rangle\langle m|$. Projective measurement using P_{m} on $Q \otimes M$ is similar to generalised measurement using M_{m} on Q.

End

