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Quantum Mechanics
Postulates

@ The postulates of quantum mechanics were derived after a
long process of trial and error.

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector
space with inner product (Hilbert space) known as the state space
of the system. The system is completely described by its state
vector, which is a unit vector in the system’s state space.
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Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space
with inner product (Hilbert space) known as the state space of the
system. The system is completely described by its state vector, which
is a unit vector in the system'’s state space.

o Determining the state space of real systems may be complicated
and beyond the scope of our discussion.

o We start with a simplest quantum mechanical system (a qubit)
that has a two-dimensional state space with |0) and |1) being the
orthonormal basis. This system is described by a state vector [1))

where (Y1) = 1.
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Quantum Mechanics
Postulates

Postulate 2 (Evolution)

The evolution of a closed quantum system is described by a unitary
transformation. That is, the state |¢)) of the system at time t; is
related to the state [¢’) of the system at time t, by a unitary operator
U which only depends on the times t; and to, [¢') = U [4).

o Doesn't applying a unitary gate contradict with the system being
closed?
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Quantum Mechanics
Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection {M,,} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:

o The index m refers to the measurement outcomes that may occur
in the experiment.

o If the state of the system is |¢)) immediately before the
measurement, then the probability that the result m occurs is
given by

p(m) = (Y| MM [45) ,

and the state of the system after the measurement is given by

My [9))
(%] MM, |)

o The measurement operators satisfy the completeness equation,

ZM,T”Mmzl
m
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Postulate 3 (Measurement)

Quantum measurements are described by a collection {M,,} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:

o The index m refers to the measurement outcomes that may occur
in the experiment.

o If the state of the system is |¢)) immediately before the
measurement, then the probability that the result m occurs is

given by p(m) = (Y| MMy, |1}, and the state of the system
Mim )

after the measurement is given by ——
V(@M M) .
o The measurement operators satisfy the completeness equation,

S MMy, = 1.

o Exercise: Show that ), p(m)=1.
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Postulate 3 (Measurement)

Quantum measurements are described by a collection {Mp,} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:

o The index m refers to the measurement outcomes that may occur
in the experiment.

o If the state of the system is |1)) immediately before the
measurement, then the probability that the result m occurs is

given by p(m) = (| MM, |1}, and the state of the system
after the measurement is given by M’”—TW
7 NV @WIMEM ) _
o The measurement operators satisfy the completeness equation,

S MMy, = 1.

o Exercise: Consider a single-qubit scenario with measurement
operators My = |0) (0] and My = |1) (1|. Compare the above
properties with what we did in earlier lectures.
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Postulate 3 (Measurement)

Quantum measurements are described by a collection {M,} of
measurement operators. These are operators acting on the state space
of the system being measured. The following properties hold:
o The index m refers to the measurement outcomes that may occur
in the experiment.
o If the state of the system is |¢)) immediately before the
measurement, then the probability that the result m occurs is
given by p(m) = (1| MM, |1}, and the state of the system

after the measurement is given by Mﬂl/))
) (3| M Mem 1)) .
o The measurement operators satisfy the completeness equation,

S MEM,, = 1.

y

o Cascaded measurements: Suppose {L;} and {M,} are two sets of
measurement operators. Show that a measurement defined by the
measurement operators {L,} followed by {M,} is physically
equivalent to a single measurement defined by the measurement
operators {Nj,} where Ny, = MLy,
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Quantum Mechanics
Postulates

o We hinted earlier that distinguishing non-orthogonal states may
not be possible. Now that we understands measurements, let us
try to formulate and prove.

o The ability to distinguish quantum states can be formalised as the
following game between two parties:

Distinguishing quantum states

Alice chooses a state |1);) from a fixed set of states |1), ..., |¥n)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 1: There is a winning strategy for Bob if |11}, ..., [1,) are
orthonormal states.

o Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.
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Distinguishing quantum states

Alice chooses a state |1);) from a fixed set of states |)1), ..., |¥n)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 1: There is a winning strategy for Bob if |¢1), ..., |¢,) are
orthonormal states.
o Define measurement operators M; = |1;) (.
o Define My = /1 —>_7_; M;. Note that since /| — > 7, M; is a
positive operator, square root is well defined.
o Claim 1.1: My, My, ..., M,, satisfy completeness relation.
o Claim 1.2: Given state |¢);), p(i) = 1.
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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state |1);) from a fixed set of states |1)1) ,...., [tn)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

o Assume n =2 and let [¢)1) and [¢»2) be non-orthogonal.

o The most general strategy for Bob is to measure using operators
{Mp} and use a function f : {1,..., m} — {1,2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.

o Let £ = cjy— MIM; for i = 1,2.

o Since this is a winning strategy for Bob, we have:

(1] Ex 1) = 1; (ih2| E2 |tp2) =1, and hence
(1| Ea [¢h1) = 0; (32| Eq |tp2) =0
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Distinguishing quantum states

Alice chooses a state [¢);) from a fixed set of states [¢)1) , ..., |n)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch
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o Since this is a wmnlng strategy for Bob, we have:

(1| Ex [Y1) = 1; (32| E2 [th2) = 1, and hence
(¥1] E2 [th1) = 0; (42| Ex |32) = 0

o Claim 2.1: VE, |¢1) =0
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Distinguishing quantum states

Alice chooses a state [¢);) from a fixed set of states [1)1) , ...., [{)n)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

o Assume n =2 and let |¢)1) and [¢) be non-orthogonal.

The most general strategy for Bob is to measure using operators
{M,} and use a function f : {1,...,m} — {1, 2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.

Let £ = Y.p(jyi MIM; for i =1,2.

Since this is a winning strategy for Bob, we have:

©

e ©

(1| Ex [h1) = 1; (2| E2 [th2) = 1, and hence
(1| B2 [¥1) = 0; (2| Ex [12) = 0
Claim 2.1: /E; |1) =0

o Claim 2.2: Decompose [t)2) = a[t)1) + 3 |6), where [¢) is
orthonormal to [¢1). Then |3] < 1.
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Quantum Mechanics
Postulates

Distinguishing quantum states

Alice chooses a state |¢;) from a fixed set of states [i)1) , ..., [tn)
(known to both Alice and Bob) and gives this state to Bob whose task
is to identify /.

o Claim 2: There is no winning strategy for Bob if there are
non-orthogonal states.

Proof sketch

o Assume n =2 and let [¢)1) and |¢);) be non-orthogonal.

o The most general strategy for Bob is to measure using operators
{Mpm} and use a function f : {1,...,m} — {1,2} to return an
answer to Alice. Suppose for the sake of contradiction, there
exists such a winning strategy for Bob.

o Let £ =Y MM, for i =1,2.

o Since this is a winning strategy for Bob, we have:

(1| Ex |1) = 1; (42| E2[th2) =1, and hence
(¥1] B2 [9h1) = 0; (2| Ex [h2) =0

o Claim 2.1: /B 1h1) =0

o Claim 2.2: Decompose [1hp) = a [th1) + B |¢), where |¢) is
orthonormal to [¢1). Then |3| < 1.

Claim 2.3: (Yo B2 [t2) = B2 (8] E2|0) < |82 < 1.

o The above contradicts with the fourth bullet item.
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