COL866: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Quantum Mechanics
 Postulates

- The postulates of quantum mechanics were derived after a long process of trial and error.

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the state space of the system. The system is completely described by its state vector, which is a unit vector in the system's state space.

Quantum Mechanics
 Postulates

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the state space of the system. The system is completely described by its state vector, which is a unit vector in the system's state space.

- Determining the state space of real systems may be complicated and beyond the scope of our discussion.
- We start with a simplest quantum mechanical system (a qubit) that has a two-dimensional state space with $|0\rangle$ and $|1\rangle$ being the orthonormal basis. This system is described by a state vector $|\psi\rangle$ where $\langle\psi \mid \psi\rangle=1$.

Quantum Mechanics
 Postulates

Postulate 1 (State space)

Associated to any isolated physical system is a complex vector space with inner product (Hilbert space) known as the state space of the system. The system is completely described by its state vector, which is a unit vector in the system's state space.

- Determining the state space of real systems may be complicated and beyond the scope of our discussion.
- We start with a simplest quantum mechanical system (a qubit) that has a two-dimensional state space with $|0\rangle$ and $|1\rangle$ being the orthonormal basis. This system is described by a state vector $|\psi\rangle$ where $\langle\psi \mid \psi\rangle=1$.

Quantum Mechanics
 Postulates

Postulate 2 (Evolution)

The evolution of a closed quantum system is described by a unitary transformation. That is, the state $|\psi\rangle$ of the system at time t_{1} is related to the state $\left|\psi^{\prime}\right\rangle$ of the system at time t_{2} by a unitary operator U which only depends on the times t_{1} and $t_{2},\left|\psi^{\prime}\right\rangle=U|\psi\rangle$.

- Doesn't applying a unitary gate contradict with the system being closed?

Quantum Mechanics
 Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection $\left\{M_{m}\right\}$ of measurement operators. These are operators acting on the state space of the system being measured. The following properties hold:

- The index m refers to the measurement outcomes that may occur in the experiment.
- If the state of the system is $|\psi\rangle$ immediately before the measurement, then the probability that the result m occurs is given by

$$
p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle,
$$

and the state of the system after the measurement is given by

$$
\frac{M_{m}|\psi\rangle}{\sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}}
$$

- The measurement operators satisfy the completeness equation,

$$
\sum_{m} M_{m}^{\dagger} M_{m}=I
$$

Quantum Mechanics
 Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection $\left\{M_{m}\right\}$ of measurement operators. These are operators acting on the state space of the system being measured. The following properties hold:

- The index m refers to the measurement outcomes that may occur in the experiment.
- If the state of the system is $|\psi\rangle$ immediately before the measurement, then the probability that the result m occurs is given by $p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle$, and the state of the system after the measurement is given by $\frac{M_{m}|\psi\rangle}{\sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}}$
- The measurement operators satisfy the completeness equation, $\sum_{m} M_{m}^{\dagger} M_{m}=l$.
- Exercise: Show that $\sum_{m} p(m)=1$.

Quantum Mechanics
 Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection $\left\{M_{m}\right\}$ of measurement operators. These are operators acting on the state space of the system being measured. The following properties hold:

- The index m refers to the measurement outcomes that may occur in the experiment.
- If the state of the system is $|\psi\rangle$ immediately before the measurement, then the probability that the result m occurs is given by $p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle$, and the state of the system after the measurement is given by $\frac{M_{m}|\psi\rangle}{\sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}}$
- The measurement operators satisfy the completeness equation, $\sum_{m} M_{m}^{\dagger} M_{m}=I$.
- Exercise: Consider a single-qubit scenario with measurement operators $M_{0}=|0\rangle\langle 0|$ and $M_{1}=|1\rangle\langle 1|$. Compare the above properties with what we did in earlier lectures.

Quantum Mechanics
 Postulates

Postulate 3 (Measurement)

Quantum measurements are described by a collection $\left\{M_{m}\right\}$ of measurement operators. These are operators acting on the state space of the system being measured. The following properties hold:

- The index m refers to the measurement outcomes that may occur in the experiment.
- If the state of the system is $|\psi\rangle$ immediately before the measurement, then the probability that the result m occurs is given by $p(m)=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle$, and the state of the system after the measurement is given by $\frac{M_{m}|\psi\rangle}{\sqrt{\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle}}$
- The measurement operators satisfy the completeness equation, $\sum_{m} M_{m}^{\dagger} M_{m}=l$.
- Cascaded measurements: Suppose $\left\{L_{l}\right\}$ and $\left\{M_{m}\right\}$ are two sets of measurement operators. Show that a measurement defined by the measurement operators $\left\{L_{l}\right\}$ followed by $\left\{M_{m}\right\}$ is physically equivalent to a single measurement defined by the measurement operators $\left\{N_{l m}\right\}$ where $N_{l m}=M_{m} L_{l}$.

Quantum Mechanics
 Postulates

- We hinted earlier that distinguishing non-orthogonal states may not be possible. Now that we understands measurements, let us try to formulate and prove.
- The ability to distinguish quantum states can be formalised as the following game between two parties:

Distinguishing quantum states

Alice chooses a state $\left|\psi_{i}\right\rangle$ from a fixed set of states $\left|\psi_{1}\right\rangle, \ldots .,\left|\psi_{n}\right\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

- Claim 1: There is a winning strategy for Bob if $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{n}\right\rangle$ are orthonormal states.
- Claim 2: There is no winning strategy for Bob if there are non-orthogonal states.

Quantum Mechanics
 Postulates

Distinguishing quantum states

Alice chooses a state $\left|\psi_{i}\right\rangle$ from a fixed set of states $\left|\psi_{1}\right\rangle, \ldots .,\left|\psi_{n}\right\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

- Claim 1: There is a winning strategy for Bob if $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{n}\right\rangle$ are orthonormal states.
- Define measurement operators $M_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$.
- Define $M_{0}=\sqrt{I-\sum_{i=1}^{n} M_{i}}$. Note that since $I-\sum_{i=1}^{n} M_{i}$ is a positive operator, square root is well defined.
- Claim 1.1: $M_{0}, M_{1}, \ldots, M_{n}$ satisfy completeness relation.
- Claim 1.2: Given state $\left|\psi_{i}\right\rangle, p(i)=1$.

Quantum Mechanics
 Postulates

Distinguishing quantum states

Alice chooses a state $\left|\psi_{i}\right\rangle$ from a fixed set of states $\left|\psi_{1}\right\rangle, \ldots .,\left|\psi_{n}\right\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

- Claim 2: There is no winning strategy for Bob if there are non-orthogonal states.

Proof sketch

- Assume $n=2$ and let $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ be non-orthogonal.
- The most general strategy for Bob is to measure using operators $\left\{M_{m}\right\}$ and use a function $f:\{1, \ldots, m\} \rightarrow\{1,2\}$ to return an answer to Alice. Suppose for the sake of contradiction, there exists such a winning strategy for Bob.
- Let $E_{i}=\sum_{j: f(j)=i} M_{j}^{\dagger} M_{j}$ for $i=1,2$.
- Since this is a winning strategy for Bob, we have:

$$
\begin{aligned}
& \left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1 ;\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=1, \quad \text { and hence } \\
& \left\langle\psi_{1}\right| E_{2}\left|\psi_{1}\right\rangle=0 ;\left\langle\psi_{2}\right| E_{1}\left|\psi_{2}\right\rangle=0
\end{aligned}
$$

Quantum Mechanics
 Postulates

Distinguishing quantum states

Alice chooses a state $\left|\psi_{i}\right\rangle$ from a fixed set of states $\left|\psi_{1}\right\rangle, \ldots .,\left|\psi_{n}\right\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

- Claim 2: There is no winning strategy for Bob if there are non-orthogonal states.

Proof sketch

- Assume $n=2$ and let $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ be non-orthogonal.
- The most general strategy for Bob is to measure using operators $\left\{M_{m}\right\}$ and use a function $f:\{1, \ldots, m\} \rightarrow\{1,2\}$ to return an answer to Alice. Suppose for the sake of contradiction, there exists such a winning strategy for Bob.
- Let $E_{i}=\sum_{j: f(j)=i} M_{j}^{\dagger} M_{j}$ for $i=1,2$.
- Since this is a winning strategy for Bob, we have:

$$
\begin{aligned}
& \left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1 ;\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=1, \quad \text { and hence } \\
& \left\langle\psi_{1}\right| E_{2}\left|\psi_{1}\right\rangle=0 ;\left\langle\psi_{2}\right| E_{1}\left|\psi_{2}\right\rangle=0
\end{aligned}
$$

- Claim 2.1: $\sqrt{E_{2}}\left|\psi_{1}\right\rangle=\mathbf{0}$

Quantum Mechanics
 Postulates

Distinguishing quantum states

Alice chooses a state $\left|\psi_{i}\right\rangle$ from a fixed set of states $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{n}\right\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

- Claim 2: There is no winning strategy for Bob if there are non-orthogonal states.

Proof sketch

- Assume $n=2$ and let $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ be non-orthogonal.
- The most general strategy for Bob is to measure using operators $\left\{M_{m}\right\}$ and use a function $f:\{1, \ldots, m\} \rightarrow\{1,2\}$ to return an answer to Alice. Suppose for the sake of contradiction, there exists such a winning strategy for Bob.
- Let $E_{i}=\sum_{j: f(j)=i} M_{j}^{\dagger} M_{j}$ for $i=1,2$.
- Since this is a winning strategy for Bob, we have:

$$
\begin{aligned}
& \left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1 ;\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=1, \quad \text { and hence } \\
& \left\langle\psi_{1}\right| E_{2}\left|\psi_{1}\right\rangle=0 ;\left\langle\psi_{2}\right| E_{1}\left|\psi_{2}\right\rangle=0
\end{aligned}
$$

- Claim 2.1: $\sqrt{E_{2}}\left|\psi_{1}\right\rangle=\mathbf{0}$
- Claim 2.2: Decompose $\left|\psi_{2}\right\rangle=\alpha\left|\psi_{1}\right\rangle+\beta|\phi\rangle$, where $|\phi\rangle$ is orthonormal to $\left|\psi_{1}\right\rangle$. Then $|\beta|<1$.

Quantum Mechanics
 Postulates

Distinguishing quantum states

Alice chooses a state $\left|\psi_{i}\right\rangle$ from a fixed set of states $\left|\psi_{1}\right\rangle, \ldots .,\left|\psi_{n}\right\rangle$ (known to both Alice and Bob) and gives this state to Bob whose task is to identify i.

- Claim 2: There is no winning strategy for Bob if there are non-orthogonal states.

Proof sketch

- Assume $n=2$ and let $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ be non-orthogonal.
- The most general strategy for Bob is to measure using operators $\left\{M_{m}\right\}$ and use a function $f:\{1, \ldots, m\} \rightarrow\{1,2\}$ to return an answer to Alice. Suppose for the sake of contradiction, there exists such a winning strategy for Bob.
- Let $E_{i}=\sum_{j: f(j)=i} M_{j}^{\dagger} M_{j}$ for $i=1,2$.
- Since this is a winning strategy for Bob, we have:

$$
\begin{aligned}
& \left\langle\psi_{1}\right| E_{1}\left|\psi_{1}\right\rangle=1 ;\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=1, \quad \text { and hence } \\
& \left\langle\psi_{1}\right| E_{2}\left|\psi_{1}\right\rangle=0 ;\left\langle\psi_{2}\right| E_{1}\left|\psi_{2}\right\rangle=0
\end{aligned}
$$

- Claim 2.1: $\sqrt{E_{2}}\left|\psi_{1}\right\rangle=\mathbf{0}$
- Claim 2.2: Decompose $\left|\psi_{2}\right\rangle=\alpha\left|\psi_{1}\right\rangle+\beta|\phi\rangle$, where $|\phi\rangle$ is orthonormal to $\left|\psi_{1}\right\rangle$. Then $|\beta|<1$.
- Claim 2.3: $\left\langle\psi_{2}\right| E_{2}\left|\psi_{2}\right\rangle=|\beta|^{2}\langle\phi| E_{2}|\phi\rangle \leq|\beta|^{2}<1$.
- The above contradicts with the fourth bullet item.

End

