COL866: Quantum Computation and Information

Ragesh Jaiswal, CSE, IIT Delhi

Introduction

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - \bullet Yes and no. A qubit can be in states $|0\rangle$ and $|1\rangle.$ However, these are not the only two states of the qubit.
 - A qubit can also be in a superposition or linear combination of states such as: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, where α and β are complex numbers.
- Then is it true that there are infinitely many possible states for a qubit?
 - Yes this is true.
- Can all these infinitely many states be recognised or measured? In other words, can one determine the state of a qubit (i.e., α, β)?
 - No. A measurement results in either 0 or 1 as output.
 - For a qubit in state $\alpha |0\rangle + \beta |1\rangle$, the probability of 0 is $|\alpha|^2$ and 1 is $|\beta|^2$ (Note that this means $|\alpha|^2 + |\beta|^2 = 1$)
 - Measurements changes the state of the qubit. If the measurement results in $x \in \{0, 1\}$, then the post-measurement state is $|x\rangle$.

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - <u>Summary</u>: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - <u>Summary</u>: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information?
 - This is tricky. Even though α and β may encode a lot of information, the information available to us is only through a measurement and we can only extract a single bit of information from a measurement.
 - However, note that nature keeps track of α, β .

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - A two qubit system can be written as a superposition of computational basis states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$:

$$\left|\psi\right\rangle = \alpha_{00}\left|00\right\rangle + \alpha_{01}\left|01\right\rangle + \alpha_{10}\left|10\right\rangle + \alpha_{11}\left|11\right\rangle$$

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - <u>Summary</u>: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - A two qubit system can be written as a superposition of computational basis states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$:

 $\left|\psi\right\rangle = \alpha_{00}\left|00\right\rangle + \alpha_{01}\left|01\right\rangle + \alpha_{10}\left|10\right\rangle + \alpha_{11}\left|11\right\rangle$

- Can individual qubits be measured? Yes
- What is the probability that the measurement output of the first qubit is 0?

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - <u>Summary</u>: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with |0⟩ and |1⟩ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - A two qubit system can be written as a superposition of computational basis states |00>, |01>, |10>, |11>:

 $\left|\psi\right\rangle = \alpha_{00}\left|00\right\rangle + \alpha_{01}\left|01\right\rangle + \alpha_{10}\left|10\right\rangle + \alpha_{11}\left|11\right\rangle$

- Can individual qubits be measured? Yes
- What is the probability that the measurement output of the first qubit is 0? $|\alpha_{00}|^2+|\alpha_{01}|^2$
- What is the post-measurement state of the system given that the measurement output of the first qubit is 0?

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - <u>Summary</u>: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with |0⟩ and |1⟩ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - A two qubit system can be written as a superposition of computational basis states $\left|00\right\rangle,\left|01\right\rangle,\left|10\right\rangle,\left|11\right\rangle:$

 $\left|\psi\right\rangle = \alpha_{00}\left|00\right\rangle + \alpha_{01}\left|01\right\rangle + \alpha_{10}\left|10\right\rangle + \alpha_{11}\left|11\right\rangle$

- Can individual qubits be measured? Yes
- What is the probability that the measurement output of the first qubit is 0? $|\alpha_{00}|^2+|\alpha_{01}|^2$
- What is the post-measurement state of the system given that the measurement output of the first qubit is 0? $|\psi'\rangle = \frac{\alpha_{00}|00\rangle + \alpha_{01}|01\rangle}{\sqrt{|\alpha_{00}|^2 + |\alpha_{01}|^2}}$

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - An n-qubit system is a unit vector in a 2ⁿ-dimensional complex vector space with computational basis states |00...0>, ... |11...1>.

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - An n-qubit system is a unit vector in a 2ⁿ-dimensional complex vector space with computational basis states |00...0>, ... |11...1>.
- How do a system of qubits evolve or chage? Computation over classical bit systems can be expressed in terms of circuits. Can we do something similar for qubit systems?

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - An n-qubit system is a unit vector in a 2ⁿ-dimensional complex vector space with computational basis states |00...0>, ... |11...1>.
- How do a system of qubits evolve or chage? Computation over classical bit systems can be expressed in terms of circuits. Can we do something similar for qubit systems?
 - Yes. The Quantum counterpart of classical circuits are called quantum circuits that has quantum gates.

- What is a qubit? Quantum analogue of classical bit.
- Classical bit can be realised in real physical systems. Does it hold for qubits? We will work with yes.
- The classical bit has two states 0 and 1. Is qubit similar?
 - Summary: The state of a qubit is a *unit* vector in a two-dimensional complex vector space with $|0\rangle$ and $|1\rangle$ as the orthonormal basis (interpreted as computational basis states).
- Doesn't this mean that a qubit can encode infinite amount of information? No
- What about multiple qubit systems?
 - An n-qubit system is a unit vector in a 2ⁿ-dimensional complex vector space with computational basis states |00...0>, ... |11...1>.
- How do a system of qubits evolve or chage? Computation over classical bit systems can be expressed in terms of circuits. Can we do something similar for qubit systems? Quantum circuit

Quantum Circuit

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information

• Single qubit gates:

There is only one single-input logical gate in the classical setting, the NOT gate. What could be a quantum version of such a gate?

• The general state of a qubit is expressed as $\alpha |0\rangle + \beta |1\rangle$. The quantum version of NOT gate does the following conversion:

 $\alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle \rightarrow \alpha \left| \mathbf{1} \right\rangle + \beta \left| \mathbf{0} \right\rangle$

This is known as the X gate.

- The general state of a qubit can be written using matrix notation as $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$. The X gate operating on the qubit can then be interpreted as a simple matrix multiplication where $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- In general single-qubit gates can be expressed as 2 × 2 complex matrices. Can any 2 × 2 matrix represent a valid single-qubit gate?

• Single qubit gates:

There is only one single-input logical gate in the classical setting, the NOT gate. What could be a quantum version of such a gate?

• The general state of a qubit is expressed as $\alpha |0\rangle + \beta |1\rangle$. The quantum version of NOT gate does the following conversion:

 $\alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle \rightarrow \alpha \left| \mathbf{1} \right\rangle + \beta \left| \mathbf{0} \right\rangle$

This is known as the X gate.

- The general state of a qubit can be written using matrix notation as $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$. The X gate operating on the qubit can then be interpreted as a simple matrix multiplication where $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- In general single-qubit gates can be expressed as 2×2 complex matrices. Can any 2×2 matrix represent a valid single-qubit gate? No
 - Is [¹₁] a valid single-qubit gate?

Single qubit gates:

There is only one single-input logical gate in the classical setting, the NOT gate. What could be a quantum version of such a gate?

• The general state of a qubit is expressed as $\alpha |0\rangle + \beta |1\rangle$. The quantum version of NOT gate does the following conversion:

$$\alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle \to \alpha \left| \mathbf{1} \right\rangle + \beta \left| \mathbf{0} \right\rangle$$

This is known as the X gate.

- The general state of a qubit can be written using matrix notation as $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$. The X gate operating on the qubit can then be interpreted as a simple matrix multiplication where $X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- In general single-qubit gates can be expressed as 2×2 complex matrices. Can any 2×2 matrix represent a valid single-qubit gate? No
 - Is [11] a valid single-qubit gate? No
 - In general, if the state after applying the gate is $\alpha'\,|0\rangle+\beta'\,|1\rangle,$ then $|\alpha'|^2+|\beta'|^2=1.$
 - A necessary condition to ensure this is that the matrix is unitary. That is, $U^{\dagger}U = I$.
 - This also happens to be a sufficient condition for any quantum gate.
 - One implication of this fact is that there can be infinitely many single-qubit gates.

- Single qubit gates: Frequently used gates
 - X gate: Analogue of classical NOT gate with matrix representation

$$X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

• Z gate: Matrix representation:

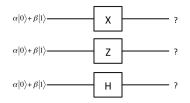
$$Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

• *H* gate: Called Hadamard gate with matrix representation:

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

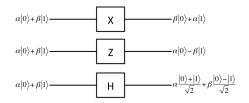
Introduction Quantum circuit

- Single qubit gates: Frequently used gates
 - X gate: Analogue of classical NOT gate with matrix representation $\overline{X} \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - Z gate: Matrix representation: $Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - \overline{H} gate: Called Hadamard gate with matrix representation: $\overline{H} \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$.



Introduction Quantum circuit

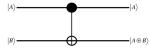
- Single qubit gates: Frequently used gates
 - X gate: Analogue of classical NOT gate with matrix representation $\overline{X} \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - Z gate: Matrix representation: $Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - \overline{H} gate: Called Hadamard gate with matrix representation: $\overline{H} \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$.



- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold?

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
 - NAND gate is irreversible. That is one cannot obtain A and B from $A \wedge B$.
 - Quantum gates are constrained to be reversible.
 - Unitary gates (operations using unitary matrices) are invertible and hence reversible.

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
- Is there a reversible gate that is universal for quantum computation? Yes
 - This is called the controlled-NOT gate or CNOT gate.



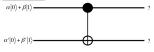
More precisely, the matrix representing the gate is given by

$$U_{CN} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
- Is there a reversible gate that is universal for quantum computation? Yes
 - This is called the controlled-NOT gate or CNOT gate.
 - More precisely, the matrix representing the gate is given by

$$U_{CN} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

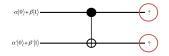
Question: What is the output of the following circuit?



- <u>Claim</u>: We saw that there is a quantum analogue of the classical NOT gate. If there is a similar analogue for NAND gate, then any classical logic circuit will have a quantum analogue.
- Why should the above claim hold? NAND gate is a universal gate.
- Does a quantum analogue of NAND gate exist? No
- Is there a reversible gate that is universal for quantum computation? Yes
 - This is called the controlled-NOT gate or CNOT gate.
 - More precisely, the matrix representing the gate is given by

$$\mathcal{U}_{CN} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

• Question: What is the output of the following circuit?



End

Ragesh Jaiswal, CSE, IIT Delhi COL866: Quantum Computation and Information