• You may submit on Gradescope in groups of size at most 2.

There are 11 questions for a total of 40 points.

1. (2 points) Can the following two-qubit state $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$ be represented as $(\alpha |0\rangle + \beta |1\rangle)(\alpha' |0\rangle + \beta' |1\rangle)$? Give reasons.

Solution: (You may type your answer in these "solution" boxes if you submit $\mathbb{A}T_{FX}$)

2. (2 points) Can there exist a single qubit gate with the following truth table? Give reasons.

Input	Output
0 angle	$\frac{\sqrt{3}}{2}\left 0\right\rangle + \frac{1}{2}\left 1\right\rangle$
$ 1\rangle$	$\frac{1}{2}\left 0\right\rangle + \frac{\sqrt{3}}{2}\left 1\right\rangle$

3. (2 points) Show that there exist a single qubit gate with the following truth table? Give the matrix representation of such a gate.

Input	Output
$ 0\rangle$	$\frac{\sqrt{3}}{2}\left 0 ight angle-rac{1}{2}\left 1 ight angle$
$ 1\rangle$	$\frac{1}{2}\left 0\right\rangle + \frac{\sqrt{3}}{2}\left 1\right\rangle$

4. (4 points) Draw the classical circuit for computing the Boolean function $f : \{0,1\}^2 \to \{0,1\}$ given by the following truth table.

x	f(x)
00	1
01	0
10	1
11	0

Give the Quantum analogue of your classical circuit using Toffoli gates.

5. (4 points) Output $|\psi\rangle$ when the input to the circuit is $|000\rangle$. Output $|\psi\rangle$ when the input is $[\alpha |0\rangle + \beta |1\rangle] |00\rangle$.

6. (4 points) Output $|\psi\rangle$ when the input to the circuit is $|000\rangle$. Output $|\psi\rangle$ when the input is $[\alpha |0\rangle + \beta |1\rangle] |00\rangle$.

- 7. (2 points) Can you use a single qubit as a source of randomness? How?
- 8. (5 points) Let the matrix representation of gates U_1 and U_2 be $U_1 = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$ and $U_2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Give the states $|\psi_1\rangle, |\psi_2\rangle, |\psi_3\rangle, |\psi_4\rangle$ in the circuits below.

9. (5 points) What is the input-output behaviour of the following circuit. (U^* denotes conjugate transpose.)

10. (5 points) Suppose you have two qubits in the bell state $\frac{|01\rangle - |10\rangle}{\sqrt{2}}$ and you apply the teleportation protocol to the first qubit. What is the result?

11. (5 points) Give the intermediate states $|\psi_0\rangle$, $|\psi_1\rangle$, $|\psi_2\rangle$, $|\psi_3\rangle$ of the 3-qubit circuit given below. Show your calculations.

