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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem X is said to be in NP iff there is an efficient certifier for X .

Definition (NP-complete)

A problem is said to be NP-complete iff the following two properties
hold:

X ∈ NP
For all Y ∈ NP, Y ≤p X

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Definition (NP-hard)

A problem X is said to be NP-hard iff the following property holds:

X ∈ NP
For all Y ∈ NP, Y ≤p X
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Computational Intractability
NP, NP-hard, NP-complete

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Claim 1: INDEPENDENT-SET, VERTEX-COVER, SET-COVER
are also NP-complete.

Proof of Claim 1

These problems are in NP.
3-SAT ≤p INDEPENDENT-SET ≤p VERTEX-COVER ≤p

SET-COVER

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Computational Intractability
NP-complete problems: Travelling Salesperson (TSP)

Problem

TSP: Given a complete, weighted, directed graph G and an integer k ,
determine if there is a tour in the graph of total length at most k .

Claim 1: TSP ∈ NP

Proof sketch: A tour of length at most k is a certificate.
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Computational Intractability
NP-complete problems: Travelling Salesperson (TSP)

Problem

TSP: Given a complete, weighted, directed graph G and an integer k ,
determine if there is a tour in the graph of total length at most k .

Claim 1: TSP ∈ NP

Proof sketch: A tour of length at most k is a certificate.

Claim 2: 3-SAT ≤p TSP

Proof of Claim 2

Claim 2.1: 3-SAT ≤p HAMILTONIAN-CYCLE
Claim 2.2: HAMILTONIAN-CYCLE ≤p TSP

Problem

HAMILTONIAN-CYCLE: Given an unweighted, directed graph,
determine if there is a Hamiltonian cycle in the graph.

Hamiltonian cycle: A cycle that visits each vertex exactly once.
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Computational Intractability
NP-complete problems: Travelling Salesperson (TSP)

Problem

TSP: Given a complete, weighted, directed graph G and an integer k ,
determine if there is a tour in the graph of total length at most k .

Problem

HAMILTONIAN-CYCLE: Given an unweighted, directed graph,
determine if there is a Hamiltonian cycle in the graph.

Hamiltonian cycle: A cycle that visits each vertex exactly once.

Claim 2.2: HAMILTONIAN-CYCLE ≤p TSP

Proof of Claim 2.2

Given an unweighted, directed graph G , construct the following
complete, directed, weighted graph G ′:

For each edge (u, v) in G , give the weight of 1 to edge (u, v) in G ′

For each pair (u, v) such that there is no edge from u to v in G ,
add an edge (u, v) with weight 2 in G ′

Claim 2.2.1: G has a Hamiltonian cycle if and only if G ′ has a
tour of length at most n
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Computational Intractability
NP-complete problems: Travelling Salesperson (TSP)

Problem

TSP: Given a complete, weighted, directed graph G and an integer k ,
determine if there is a tour in the graph of total length at most k .

Claim 1: TSP ∈ NP

Proof sketch: A tour of length at most k is a certificate.

Claim 2: 3-SAT ≤p TSP

Proof of Claim 2

Claim 2.1: 3-SAT ≤p HAMILTONIAN-CYCLE
Claim 2.2: HAMILTONIAN-CYCLE ≤p TSP

Problem

HAMILTONIAN-CYCLE: Given an unweighted, directed graph,
determine if there is a Hamiltonian cycle in the graph.

Hamiltonian cycle: A cycle that visits each vertex exactly once.
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Computational Intractability
NP-complete problems: Travelling Salesperson (TSP)

Claim 2.1: 3-SAT ≤p HAMILTONIAN-CYCLE

Proof of Claim 2.1

Given an instance of the 3-SAT problem (a formula Ω with n
variables and m clauses), we need to create a directed graph G
such that Ω is satisfiable if and only if G has a Hamiltonian cycle.
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Computational Intractability
NP-complete problems: Travelling Salesperson (TSP)

Claim 2.1: 3-SAT ≤p HAMILTONIAN-CYCLE

Proof of Claim 2.1

Given an instance of the 3-SAT problem (a formula Ω with n
variables and m clauses), we need to create a directed graph G
such that Ω is satisfiable if and only if G has a Hamiltonian cycle.
Claim 2.1.1: If the 3-SAT formula is satisfiable, then there is a
Hamiltonian cycle in the constructed graph.
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Computational Intractability
NP-complete problems: Travelling Salesperson (TSP)

Claim 2.1: 3-SAT ≤p HAMILTONIAN-CYCLE

Proof of Claim 2.1

Given an instance of the 3-SAT problem (a formula Ω with n
variables and m clauses), we need to create a directed graph G
such that Ω is satisfiable if and only if G has a Hamiltonian cycle.
Claim 2.1.1: If the 3-SAT formula is satisfiable, then there is a
Hamiltonian cycle in the constructed graph.
Claim 2.1.2: If the constructed graph has a Hamiltonian cycle,
then the 3-SAT formula has a satisfying assignment.
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Computational Intractability
NP-complete problems: Hamiltonian Path

Definition (Hamiltonian path)

A Hamiltonian path in any directed graph is a path that visits each
vertex exactly once.

Problem

HAMILTONIAN-PATH: Given a directed graph G , determine if
there is a Hamiltonian path in the graph.
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Computational Intractability
NP-complete problems: Hamiltonian Path

Definition (Hamiltonian path)

A Hamiltonian path in any directed graph is a path that visits each
vertex exactly once.

Problem

HAMILTONIAN-PATH: Given a directed graph G , determine if
there is a Hamiltonian path in the graph.

Claim 1: HAMILTONIAN-PATH is NP-complete.
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Computational Intractability
NP-complete problems: Hamiltonian Path

Definition (Hamiltonian path)

A Hamiltonian path in any directed graph is a path that visits each
vertex exactly once.

Problem

HAMILTONIAN-PATH: Given a directed graph G , determine if
there is a Hamiltonian path in the graph.

Claim 1: HAMILTONIAN-PATH is NP-complete.

Proof of Claim 1

Claim 1.1: HAMILTONIAN-PATH ∈ NP
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Computational Intractability
NP-complete problems: Hamiltonian Path

Definition (Hamiltonian path)

A Hamiltonian path in any directed graph is a path that visits each
vertex exactly once.

Problem

HAMILTONIAN-PATH: Given a directed graph G , determine if
there is a Hamiltonian path in the graph.

Claim 1: HAMILTONIAN-PATH is NP-complete.

Proof of Claim 1

Claim 1.1: HAMILTONIAN-PATH ∈ NP

A Hamiltonian path acts as a certificate.
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Computational Intractability
NP-complete problems: Hamiltonian Path

Definition (Hamiltonian path)

A Hamiltonian path in any directed graph is a path that visits each
vertex exactly once.

Problem

HAMILTONIAN-PATH: Given a directed graph G , determine if
there is a Hamiltonian path in the graph.

Claim 1: HAMILTONIAN-PATH is NP-complete.

Proof of Claim 1

Claim 1.1: HAMILTONIAN-PATH ∈ NP

A Hamiltonian path acts as a certificate.

Claim 1.2: HAMILTONIAN-PATH is NP-hard.

Claim 1.2.1: HAMILTONIAN-CYCLE ≤p

HAMILTONIAN-PATH
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Computational Intractability
NP-complete problems: Hamiltonian Path

Claim 1.2.1: HAMILTONIAN-CYCLE ≤p

HAMILTONIAN-PATH

Proof of Claim 1.2.1

Consider the graph G ′ constructed from graph G .

There is a Hamiltonian cycle in G if and only there is a
Hamiltonian path in G ′.
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Computational Intractability
NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k
colors to each node such that for every edge (u, v), u and v are
assigned different colors.

Problem

k-COLORING: Given a graph G , determine if G is k-colorable.

Figure: Is this graph 2-colorable?
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Computational Intractability
NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k
colors to each node such that for every edge (u, v), u and v are
assigned different colors.

Problem

k-COLORING: Given a graph G , determine if G is k-colorable.

Figure: Is this graph 2-colorable? Yes
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Computational Intractability
NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k
colors to each node such that for every edge (u, v), u and v are
assigned different colors.

Problem

k-COLORING: Given a graph G , determine if G is k-colorable.

Problem

2-COLORING: Given a graph G , determine if G is 2-colorable.

How hard is the 2-COLORING problem?
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Computational Intractability
NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k
colors to each node such that for every edge (u, v), u and v are
assigned different colors.

Problem

k-COLORING: Given a graph G , determine if G is k-colorable.

Problem

2-COLORING: Given a graph G , determine if G is 2-colorable.

How hard is the 2-COLORING problem?

2-COLORING ∈ P since G is 2-colorable if and only if G is
bipartite and we know an efficient algorithm for checking if a
given graph is bipartite.
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Computational Intractability
NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k
colors to each node such that for every edge (u, v), u and v are
assigned different colors.

Problem

k-COLORING: Given a graph G , determine if G is k-colorable.

Problem

3-COLORING: Given a graph G , determine if G is 3-colorable.

How hard is the 3-COLORING problem?
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Computational Intractability
NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k
colors to each node such that for every edge (u, v), u and v are
assigned different colors.

Problem

k-COLORING: Given a graph G , determine if G is k-colorable.

Problem

3-COLORING: Given a graph G , determine if G is 3-colorable.

How hard is the 3-COLORING problem?

Claim 1: 3-COLORING is NP-complete.
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Computational Intractability
NP-complete problems: 3-COLORING

Problem

3-COLORING: Given a graph G , determine if G is 3-colorable.

Claim 1: 3-COLORING is NP-complete.

Proof of Claim 1

Claim 1.1: 3-COLORING is in NP

A short certificate is a 3-coloring of the graph.

Claim 1.2: 3-SAT ≤p 3-COLORING
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Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

Consider the following gadget. There is a bijection between colors
and truth values.
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Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

How we encode a clause, say (x̄1 ∨ x2 ∨ x3).
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Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

Claim 1.2.1: There is no 3 coloring of the graph below with nodes
x̄1, x2, and x3 assigned F color.
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Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

Claim 1.2.2: There is a 3 coloring of the graph below with at
least one of the nodes x̄1, x2, and x3 assigned T color.
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Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

Claim 1.2.2: There is a 3 coloring of the graph below with at
least one of the nodes x̄1, x2, and x3 assigned T color.

x̄1 : T , x2 : T , x3 : T
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Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

Claim 1.2.2: There is a 3 coloring of the graph below with at
least one of the nodes x̄1, x2, and x3 assigned T color.

x̄1 : F , x2 : T , x3 : T
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Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

Claim 1.2.2: There is a 3 coloring of the graph below with at
least one of the nodes x̄1, x2, and x3 assigned T color.

x̄1 : T , x2 : F , x3 : T
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Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

Claim 1.2.2: There is a 3 coloring of the graph below with at
least one of the nodes x̄1, x2, and x3 assigned T color.

x̄1 : T , x2 : T , x3 : F
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Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

Claim 1.2.2: There is a 3 coloring of the graph below with at
least one of the nodes x̄1, x2, and x3 assigned T color.

x̄1 : F , x2 : F , x3 : T

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

Claim 1.2.2: There is a 3 coloring of the graph below with at
least one of the nodes x̄1, x2, and x3 assigned T color.

x̄1 : T , x2 : F , x3 : F
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Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

Claim 1.2.2: There is a 3 coloring of the graph below with at
least one of the nodes x̄1, x2, and x3 assigned T color.

x̄1 : F , x2 : T , x3 : F
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Computational Intractability
NP-complete problems: 3-COLORING

Claim 1.2: 3-SAT ≤p 3-COLORING

Proof ideas for Claim 1.2

Claim 1.2.3: The given formula is satisfiable if and only if the
constructed graph has a 3 coloring.
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Computational Intractability
NP-complete problems

SUBSET-SUM

Given natural numbers w1, ...,wn and a target number W , determine
if there is a subset S of {1, ..., n} such that

∑
i∈S wi = W .

SCHEDULING

Given n jobs with start time si and duration ti and deadline di ,
determine if all the jobs can be scheduled on a single machine such
that no deadlines are missed.

Claim 1: SUBSET-SUM ∈ NP
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Computational Intractability
NP-complete problems

SUBSET-SUM

Given natural numbers w1, ...,wn and a target number W , determine
if there is a subset S of {1, ..., n} such that

∑
i∈S wi = W .

SCHEDULING

Given n jobs with start time si and duration ti and deadline di ,
determine if all the jobs can be scheduled on a single machine such
that no deadlines are missed.

Claim 1: SUBSET-SUM ∈ NP
Claim 2: SCHEDULING ∈ NP
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Computational Intractability
NP-complete problems

SUBSET-SUM

Given natural numbers w1, ...,wn and a target number W , determine
if there is a subset S of {1, ..., n} such that

∑
i∈S wi = W .

SCHEDULING

Given n jobs with start time si and duration ti and deadline di ,
determine if all the jobs can be scheduled on a single machine such
that no deadlines are missed.

Claim 1: SUBSET-SUM ∈ NP
Claim 2: SCHEDULING ∈ NP
Claim 3: SUBSET-SUM ≤p SCHEDULING
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Computational Intractability
NP-complete problems

SUBSET-SUM

Given natural numbers w1, ...,wn and a target number W , determine
if there is a subset S of {1, ..., n} such that

∑
i∈S wi = W .

SCHEDULING

Given n jobs with start time si and duration ti and deadline di ,
determine if all the jobs can be scheduled on a single machine such
that no deadlines are missed.

Claim 1: SUBSET-SUM ∈ NP
Claim 2: SCHEDULING ∈ NP
Claim 3: SUBSET-SUM ≤p SCHEDULING

Proof sketch for Claim 3

Given an instance of the subset sum problem ({w1, ...,wn},W ), we
construct the following instance of the Scheduling problem:
((0,w1, S + 1), ..., (0,wn,S + 1), (W , 1,W + 1)). We then argue that
there is a subset that sums to W if and only if the (n + 1) jobs can be
scheduled. Here S = w1 + ... + wn.
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Computational Intractability
Many-one reduction

Most of the polynomial-time reductions X ≤p Y that we have
seen are of the following general nature: We give an efficient
mapping from instances of X to instances of Y such that “yes”
instances of X map to “yes” instances of Y and “no” instances
of X map to “no” instances of Y .
Such reductions have special name. They are called many-one
reductions.
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Computational Intractability
Many-one reduction

Most of the polynomial-time reductions X ≤p Y that we have
seen are of the following general nature: We give an efficient
mapping from instances of X to instances of Y such that “yes”
instances of X map to “yes” instances of Y and “no” instances
of X map to “no” instances of Y .
Such reductions have special name. They are called many-one
reductions.

Many-one reduction

In order to show that X ≤p Y we design an efficient mapping f from
the set of instances of X to set of instances of Y such that s ∈ X iff
f (s) ∈ Y .
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Computational Intractability
NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X ,Y , and Z each of size n, and given a set T of
triples (x , y , z), determine if there exist a subset of n triples in T such
that each element of X ∪ Y ∪ Z is contained in exactly one of these
triples.

Figure: Let T = {(a, x , p), (a, y , p), (b, y , q), (c , z , r)}. Does there exist a
3D-Matching?
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Computational Intractability
NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X ,Y , and Z each of size n, and given a set T of
triples (x , y , z), determine if there exist a subset of n triples in T such
that each element of X ∪ Y ∪ Z is contained in exactly one of these
triples.

Claim 1: 3D-MATCHING ∈ NP.
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Computational Intractability
NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X ,Y , and Z each of size n, and given a set T of
triples (x , y , z), determine if there exist a subset of n triples in T such
that each element of X ∪ Y ∪ Z is contained in exactly one of these
triples.

Claim 1: 3D-MATCHING ∈ NP.
Claim 2: 3D-MATCHING is NP-complete.
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Computational Intractability
NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X ,Y , and Z each of size n, and given a set T of
triples (x , y , z), determine if there exist a subset of n triples in T such
that each element of X ∪ Y ∪ Z is contained in exactly one of these
triples.

Claim 1: 3D-MATCHING ∈ NP.
Claim 2: 3D-MATCHING is NP-complete.

Claim 2.1: 3-SAT ≤p 3D-MATCHING.
Proof sketch of Claim 2.1: We will show an efficient many-one
reduction.
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Computational Intractability
NP-complete problems: 3D-Matching

Figure: Example construction for (x1 ∨ x̄2 ∨ x3), (x̄1 ∨ x2 ∨ x3)
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Computational Intractability
NP-complete problems: 3D-Matching

Figure: Example construction for (x1 ∨ x̄2 ∨ x3), (x̄1 ∨ x2 ∨ x3). k denotes the
number of clauses.
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Computational Intractability
NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w1, ...,wn and a target number W , determine
if there is a subset S of {1, ..., n} such that

∑
i∈S wi = W .

Claim 1: SUBSET-SUM ∈ NP.
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Computational Intractability
NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w1, ...,wn and a target number W , determine
if there is a subset S of {1, ..., n} such that

∑
i∈S wi = W .

Claim 1: SUBSET-SUM ∈ NP.
Claim 2: SUBSET-SUM is NP-complete.
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Computational Intractability
NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w1, ...,wn and a target number W , determine
if there is a subset S of {1, ..., n} such that

∑
i∈S wi = W .

Claim 1: SUBSET-SUM ∈ NP.
Claim 2: SUBSET-SUM is NP-complete.

Claim 2.1: 3D-MATCHING ≤p SUBSET-SUM.
Proof sketch: We will show an efficient many-one reduction. Given
an instance (X ,Y ,Z ,T ) of the 3D-MATCHING problem, we
construct an instance of the SUBSET-SET problem.

We first construct a 3n-bit vector. Given a triple ti = (x1, y3, z5),
we construct the following vector vi :
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Computational Intractability
NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w1, ...,wn and a target number W , determine
if there is a subset S of {1, ..., n} such that

∑
i∈S wi = W .

Claim 1: SUBSET-SUM ∈ NP.
Claim 2: SUBSET-SUM is NP-complete.

Claim 2.1: 3D-MATCHING ≤p SUBSET-SUM.
Proof sketch: We will show an efficient many-one reduction. Given
an instance (X ,Y ,Z ,T ) of the 3D-MATCHING problem, we
construct an instance of the SUBSET-SET problem.

We first construct a 3n-bit vector. Given a triple ti = (x1, y3, z5),
we construct the following vector vi :

Let wi be the value of vi in base (|T | + 1) and
W =

∑3n−1
i=0 (|T | + 1)i .

Claim 2.1.1: There is a 3D-Matching iff there is a subset
{w1, ...,w|T |} that sums to W .
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End
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