COL702: Advanced Data Structures and Algorithms

Ragesh Jaiswal, CSE, IITD

Computational Intractability: NP, NP-complete, NP-hard

Computational Intractability

NP, NP-hard, NP-complete

Definition (NP)

A problem X is said to be in NP iff there is an efficient certifier for X.

Definition (NP-complete)

A problem is said to be NP-complete iff the following two properties hold:

- $X \in N P$
- For all $Y \in$ NP, $Y \leq_{p} X$

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Definition (NP-hard)

A problem X is said to be NP-hard iff the following property holds:

- $X \in N P$
- For all $Y \in$ NP, $Y \leq_{p} X$

Computational Intractability
 NP, NP-hard, NP-complete

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

- Claim 1: INDEPENDENT-SET, VERTEX-COVER, SET-COVER are also NP-complete.

Proof of Claim 1

- These problems are in NP.
- 3 -SAT \leq_{p} INDEPENDENT-SET \leq_{p} VERTEX-COVER \leq_{p} SET-COVER

Computational Intractability

NP-complete problems: Travelling Salesperson (TSP)

Problem

TSP: Given a complete, weighted, directed graph G and an integer k, determine if there is a tour in the graph of total length at most k.

- Claim 1: $T S P \in N P$
- Proof sketch: A tour of length at most k is a certificate.

Computational Intractability
 NP-complete problems: Travelling Salesperson (TSP)

Problem

TSP: Given a complete, weighted, directed graph G and an integer k, determine if there is a tour in the graph of total length at most k.

- Claim 1: TSP \in NP
- Proof sketch: A tour of length at most k is a certificate.
- Claim 2: 3-SAT \leq_{p} TSP

Proof of Claim 2

- Claim 2.1: 3-SAT \leq_{p} HAMILTONIAN-CYCLE
- Claim 2.2: HAMILTONIAN-CYCLE \leq_{p} TSP

Problem

HAMILTONIAN-CYCLE: Given an unweighted, directed graph, determine if there is a Hamiltonian cycle in the graph.

- Hamiltonian cycle: A cycle that visits each vertex exactly once.

Computational Intractability

NP-complete problems: Travelling Salesperson (TSP)

Problem

TSP: Given a complete, weighted, directed graph G and an integer k, determine if there is a tour in the graph of total length at most k.

Problem

HAMILTONIAN-CYCLE: Given an unweighted, directed graph, determine if there is a Hamiltonian cycle in the graph.

- Hamiltonian cycle: A cycle that visits each vertex exactly once.
- Claim 2.2: HAMILTONIAN-CYCLE \leq_{p} TSP

Proof of Claim 2.2

- Given an unweighted, directed graph G, construct the following complete, directed, weighted graph G^{\prime} :
- For each edge (u, v) in G, give the weight of 1 to edge (u, v) in G^{\prime}
- For each pair (u, v) such that there is no edge from u to v in G, add an edge (u, v) with weight 2 in G^{\prime}
- Claim 2.2.1: G has a Hamiltonian cycle if and only if G^{\prime} has a tour of length at most n

Computational Intractability
 NP-complete problems: Travelling Salesperson (TSP)

Problem

TSP: Given a complete, weighted, directed graph G and an integer k, determine if there is a tour in the graph of total length at most k.

- Claim 1: TSP \in NP
- Proof sketch: A tour of length at most k is a certificate.
- Claim 2: 3-SAT \leq_{p} TSP

Proof of Claim 2

- Claim 2.1: 3-SAT \leq_{p} HAMILTONIAN-CYCLE
- Claim 2.2: HAMILTONIAN-CYCLE \leq_{p} TSP

Problem

HAMILTONIAN-CYCLE: Given an unweighted, directed graph, determine if there is a Hamiltonian cycle in the graph.

- Hamiltonian cycle: A cycle that visits each vertex exactly once.

Computational Intractability

NP-complete problems: Travelling Salesperson (TSP)

- Claim 2.1: 3-SAT \leq_{p} HAMILTONIAN-CYCLE

Proof of Claim 2.1

- Given an instance of the 3-SAT problem (a formula Ω with n variables and m clauses), we need to create a directed graph G such that Ω is satisfiable if and only if G has a Hamiltonian cycle.

Computational Intractability

NP-complete problems: Travelling Salesperson (TSP)

- Claim 2.1: $3-$ SAT \leq_{p} HAMILTONIAN-CYCLE

Proof of Claim 2.1

- Given an instance of the 3-SAT problem (a formula Ω with n variables and m clauses), we need to create a directed graph G such that Ω is satisfiable if and only if G has a Hamiltonian cycle.
- Claim 2.1.1: If the 3-SAT formula is satisfiable, then there is a Hamiltonian cycle in the constructed graph.

Computational Intractability

NP-complete problems: Travelling Salesperson (TSP)

- Claim 2.1: 3-SAT \leq_{p} HAMILTONIAN-CYCLE

Proof of Claim 2.1

- Given an instance of the 3-SAT problem (a formula Ω with n variables and m clauses), we need to create a directed graph G such that Ω is satisfiable if and only if G has a Hamiltonian cycle.
- Claim 2.1.1: If the 3-SAT formula is satisfiable, then there is a Hamiltonian cycle in the constructed graph.
- Claim 2.1.2: If the constructed graph has a Hamiltonian cycle, then the 3-SAT formula has a satisfying assignment.

Computational Intractability

NP-complete problems: Hamiltonian Path

Definition (Hamiltonian path)

A Hamiltonian path in any directed graph is a path that visits each vertex exactly once.

Problem

HAMILTONIAN-PATH: Given a directed graph G, determine if there is a Hamiltonian path in the graph.

Computational Intractability
 NP-complete problems: Hamiltonian Path

Definition (Hamiltonian path)

A Hamiltonian path in any directed graph is a path that visits each vertex exactly once.

Problem

HAMILTONIAN-PATH: Given a directed graph G, determine if there is a Hamiltonian path in the graph.

- Claim 1: HAMILTONIAN-PATH is NP-complete.

Computational Intractability

NP-complete problems: Hamiltonian Path

Definition (Hamiltonian path)

A Hamiltonian path in any directed graph is a path that visits each vertex exactly once.

Problem

HAMILTONIAN-PATH: Given a directed graph G, determine if there is a Hamiltonian path in the graph.

- Claim 1: HAMILTONIAN-PATH is NP-complete.

Proof of Claim 1

- Claim 1.1: HAMILTONIAN-PATH \in NP

Computational Intractability

NP-complete problems: Hamiltonian Path

Definition (Hamiltonian path)

A Hamiltonian path in any directed graph is a path that visits each vertex exactly once.

Problem

HAMILTONIAN-PATH: Given a directed graph G, determine if there is a Hamiltonian path in the graph.

- Claim 1: HAMILTONIAN-PATH is NP-complete.

Proof of Claim 1

- Claim 1.1: HAMILTONIAN-PATH \in NP
- A Hamiltonian path acts as a certificate.

Computational Intractability
 NP-complete problems: Hamiltonian Path

Definition (Hamiltonian path)

A Hamiltonian path in any directed graph is a path that visits each vertex exactly once.

Problem

HAMILTONIAN-PATH: Given a directed graph G, determine if there is a Hamiltonian path in the graph.

- Claim 1: HAMILTONIAN-PATH is NP-complete.

Proof of Claim 1

- Claim 1.1: HAMILTONIAN-PATH \in NP
- A Hamiltonian path acts as a certificate.
- Claim 1.2: HAMILTONIAN-PATH is NP-hard.
- Claim 1.2.1: HAMILTONIAN-CYCLE \leq_{p} HAMILTONIAN-PATH

Computational Intractability

NP-complete problems: Hamiltonian Path

- Claim 1.2.1: HAMILTONIAN-CYCLE \leq_{p} HAMILTONIAN-PATH

Proof of Claim 1.2.1

- Consider the graph G^{\prime} constructed from graph G.
- There is a Hamiltonian cycle in G if and only there is a Hamiltonian path in G^{\prime}.

Computational Intractability
 NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge $(u, v), u$ and v are assigned different colors.

Problem

k-COLORING: Given a graph G, determine if G is k-colorable.

Figure: Is this graph 2-colorable?

Computational Intractability

NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge $(u, v), u$ and v are assigned different colors.

Problem

k-COLORING: Given a graph G, determine if G is k-colorable.

Figure: Is this graph 2-colorable? Yes

Computational Intractability
 NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge (u, v), u and v are assigned different colors.

Problem

k-COLORING: Given a graph G, determine if G is k-colorable.

Problem

2-COLORING: Given a graph G, determine if G is 2-colorable.

- How hard is the 2-COLORING problem?

Computational Intractability
 NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge $(u, v), u$ and v are assigned different colors.

Problem

k-COLORING: Given a graph G, determine if G is k-colorable.

Problem

2-COLORING: Given a graph G, determine if G is 2-colorable.

- How hard is the 2-COLORING problem?
- 2 -COLORING $\in P$ since G is 2 -colorable if and only if G is bipartite and we know an efficient algorithm for checking if a given graph is bipartite.

Computational Intractability
 NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge (u, v), u and v are assigned different colors.

Problem

k-COLORING: Given a graph G, determine if G is k-colorable.

Problem

3-COLORING: Given a graph G, determine if G is 3-colorable.

- How hard is the 3-COLORING problem?

Computational Intractability
 NP-complete problems: k-COLORING

Definition (k-colorable)

A graph is said to be k-colorable is it is possible to assign one of k colors to each node such that for every edge (u, v), u and v are assigned different colors.

Problem

k-COLORING: Given a graph G, determine if G is k-colorable.

Problem

3-COLORING: Given a graph G, determine if G is 3-colorable.

- How hard is the 3-COLORING problem?
- Claim 1: 3-COLORING is NP-complete.

Computational Intractability
 NP-complete problems: 3-COLORING

Problem

3-COLORING: Given a graph G, determine if G is 3-colorable.

- Claim 1: 3-COLORING is NP-complete.

Proof of Claim 1

- Claim 1.1: 3-COLORING is in NP
- A short certificate is a 3-coloring of the graph.
- Claim 1.2: 3 -SAT $\leq_{p} 3$-COLORING

Computational Intractability

NP-complete problems: 3-COLORING

- Claim 1.2: 3-SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- Consider the following gadget. There is a bijection between colors and truth values.

Computational Intractability

NP-complete problems: 3-COLORING

- Claim 1.2: 3 -SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- How we encode a clause, say $\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right)$.

Computational Intractability

NP-complete problems: 3-COLORING

- Claim 1.2: 3-SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- Claim 1.2.1: There is no 3 coloring of the graph below with nodes \bar{x}_{1}, x_{2}, and x_{3} assigned F color.

Computational Intractability

NP-complete problems: 3-COLORING

- Claim 1.2: 3-SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- Claim 1.2.2: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_{1}, x_{2}, and x_{3} assigned T color.

Computational Intractability

NP-complete problems: 3-COLORING

- Claim 1.2: 3-SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- Claim 1.2.2: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_{1}, x_{2}, and x_{3} assigned T color.
- $\bar{x}_{1}: T, x_{2}: T, x_{3}: T$

Computational Intractability

NP-complete problems: 3-COLORING

- Claim 1.2: 3-SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- Claim 1.2.2: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_{1}, x_{2}, and x_{3} assigned T color.
- $\bar{x}_{1}: F, x_{2}: T, x_{3}: T$

Computational Intractability

NP-complete problems: 3-COLORING

- Claim 1.2: 3-SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- Claim 1.2.2: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_{1}, x_{2}, and x_{3} assigned T color.
- $\bar{x}_{1}: T, x_{2}: F, x_{3}: T$

Computational Intractability

NP-complete problems: 3-COLORING

- Claim 1.2: 3-SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- Claim 1.2.2: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_{1}, x_{2}, and x_{3} assigned T color.
- $\bar{x}_{1}: T, x_{2}: T, x_{3}: F$

Computational Intractability

NP-complete problems: 3-COLORING

- Claim 1.2: 3-SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- Claim 1.2.2: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_{1}, x_{2}, and x_{3} assigned T color.
- $\bar{x}_{1}: F, x_{2}: F, x_{3}: T$

Computational Intractability

NP-complete problems: 3-COLORING

- Claim 1.2: 3-SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- Claim 1.2.2: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_{1}, x_{2}, and x_{3} assigned T color.
- $\bar{x}_{1}: T, x_{2}: F, x_{3}: F$

Computational Intractability

NP-complete problems: 3-COLORING

- Claim 1.2: 3-SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- Claim 1.2.2: There is a 3 coloring of the graph below with at least one of the nodes \bar{x}_{1}, x_{2}, and x_{3} assigned T color.
- $\bar{x}_{1}: F, x_{2}: T, x_{3}: F$

Computational Intractability
 NP-complete problems: 3-COLORING

- Claim 1.2: 3-SAT $\leq_{p} 3$-COLORING

Proof ideas for Claim 1.2

- Claim 1.2.3: The given formula is satisfiable if and only if the constructed graph has a 3 coloring.

Computational Intractability
 NP-complete problems

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

SCHEDULING

Given n jobs with start time s_{i} and duration t_{i} and deadline d_{i}, determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

- Claim 1: SUBSET-SUM \in NP

Computational Intractability
 NP-complete problems

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

SCHEDULING

Given n jobs with start time s_{i} and duration t_{i} and deadline d_{i}, determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

- Claim 1: SUBSET-SUM \in NP
- Claim 2: SCHEDULING $\in N P$

Computational Intractability
 NP-complete problems

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

SCHEDULING

Given n jobs with start time s_{i} and duration t_{i} and deadline d_{i}, determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

- Claim 1: SUBSET-SUM \in NP
- Claim 2: SCHEDULING \in NP
- Claim 3: SUBSET-SUM \leq_{p} SCHEDULING

Computational Intractability
 NP-complete problems

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

SCHEDULING

Given n jobs with start time s_{i} and duration t_{i} and deadline d_{i}, determine if all the jobs can be scheduled on a single machine such that no deadlines are missed.

- Claim 1: SUBSET-SUM \in NP
- Claim 2: SCHEDULING \in NP
- Claim 3: SUBSET-SUM \leq_{p} SCHEDULING

Proof sketch for Claim 3

Given an instance of the subset sum problem $\left(\left\{w_{1}, \ldots, w_{n}\right\}, W\right)$, we construct the following instance of the Scheduling problem:
$\left(\left(0, w_{1}, S+1\right), \ldots,\left(0, w_{n}, S+1\right),(W, 1, W+1)\right)$. We then argue that there is a subset that sums to W if and only if the $(n+1)$ jobs can be scheduled. Here $S=w_{1}+\ldots+w_{n}$.

Computational Intractability

Many-one reduction

- Most of the polynomial-time reductions $X \leq_{p} Y$ that we have seen are of the following general nature: We give an efficient mapping from instances of X to instances of Y such that "yes" instances of X map to "yes" instances of Y and "no" instances of X map to "no" instances of Y.
- Such reductions have special name. They are called many-one reductions.

Computational Intractability

Many-one reduction

- Most of the polynomial-time reductions $X \leq_{p} Y$ that we have seen are of the following general nature: We give an efficient mapping from instances of X to instances of Y such that "yes" instances of X map to "yes" instances of Y and "no" instances of X map to "no" instances of Y.
- Such reductions have special name. They are called many-one reductions.

Many-one reduction

In order to show that $X \leq_{p} Y$ we design an efficient mapping f from the set of instances of X to set of instances of Y such that $s \in X$ iff $f(s) \in Y$.

Computational Intractability

NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

Figure: Let $T=\{(a, x, p),(a, y, p),(b, y, q),(c, z, r)\}$. Does there exist a 3D-Matching?

Computational Intractability

NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

- Claim 1: 3D-MATCHING \in NP.

Computational Intractability
 NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

- Claim 1: 3D-MATCHING \in NP.
- Claim 2: 3D-MATCHING is NP-complete.

Computational Intractability
 NP-complete problems: 3D-Matching

3D-MATCHING

Given disjoint sets X, Y, and Z each of size n, and given a set T of triples (x, y, z), determine if there exist a subset of n triples in T such that each element of $X \cup Y \cup Z$ is contained in exactly one of these triples.

- Claim 1: 3D-MATCHING \in NP.
- Claim 2: 3D-MATCHING is NP-complete.
- Claim 2.1: 3-SAT \leq_{p} 3D-MATCHING.
- Proof sketch of Claim 2.1: We will show an efficient many-one reduction.

Computational Intractability

NP-complete problems: 3D-Matching

Figure: Example construction for $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right)$

Computational Intractability
 NP-complete problems: 3D-Matching

Elements from
the previous slide

Figure: Example construction for $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) . k$ denotes the number of clauses.

Computational Intractability

NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

- Claim 1: SUBSET-SUM \in NP.

Computational Intractability

NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

- Claim 1: SUBSET-SUM \in NP.
- Claim 2: SUBSET-SUM is NP-complete.

Computational Intractability

NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

- Claim 1: SUBSET-SUM \in NP.
- Claim 2: SUBSET-SUM is NP-complete.
- Claim 2.1: 3D-MATCHING \leq_{p} SUBSET-SUM.
- Proof sketch: We will show an efficient many-one reduction. Given an instance (X, Y, Z, T) of the 3D-MATCHING problem, we construct an instance of the SUBSET-SET problem.
- We first construct a $3 n$-bit vector. Given a triple $t_{i}=\left(x_{1}, y_{3}, z_{5}\right)$, we construct the following vector v_{i} :

1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0

Computational Intractability

NP-complete problems: Subset-sum

SUBSET-SUM

Given natural numbers w_{1}, \ldots, w_{n} and a target number W, determine if there is a subset S of $\{1, \ldots, n\}$ such that $\sum_{i \in S} w_{i}=W$.

- Claim 1: SUBSET-SUM \in NP.
- Claim 2: SUBSET-SUM is NP-complete.
- Claim 2.1: 3D-MATCHING \leq_{p} SUBSET-SUM.
- Proof sketch: We will show an efficient many-one reduction. Given an instance (X, Y, Z, T) of the 3D-MATCHING problem, we construct an instance of the SUBSET-SET problem.
- We first construct a $3 n$-bit vector. Given a triple $t_{i}=\left(x_{1}, y_{3}, z_{5}\right)$, we construct the following vector v_{i} :

1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0

- Let w_{i} be the value of v_{i} in base $(|T|+1)$ and

$$
W=\sum_{i=0}^{3 n-1}(|T|+1)^{i}
$$

- Claim 2.1.1: There is a 3D-Matching iff there is a subset $\left\{w_{1}, \ldots, w_{|T|}\right\}$ that sums to W.

End

