
COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

How do we prove that the flow returned by the Ford-Fulkerson

algorithm is the maximum flow?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Definition (f in and f out)

Let S be a subset of vertices and f be a flow. Then

f in(S) =
∑

e into S

f (e) and f out(S) =
∑

e out of S

f (e)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Definition (f in and f out)

Let S be a subset of vertices and f be a flow. Then

f in(S) =
∑

e into S

f (e) and f out(S) =
∑

e out of S

f (e)

Definition (s − t cut)

A partition of vertices (A,B) is called an s − t cut iff A contains s and
B contains t.

Definition (Capacity of s − t cut)

The capacity of an s − t cut (A,B) is defined as
C (A,B) =

∑
e out of A c(e).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s − t cut (A,B) and any s − t flow f ,
v(f ) = f out(A)− f in(A).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s − t cut (A,B) and any s − t flow f ,
v(f ) = f out(A)− f in(A).

Proof of claim 1.1.

v(f ) = f out({s})− f in({s}) and for all other nodes
v ∈ A, f out({v})− f in({v}) = 0. So,

v(f ) =
∑
v∈A

(f out({v})− f in({v})) = f out(A)− f in(A).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s-t cut (A,B) and any s-t flow f ,
v(f ) = f out(A)− f in(A).
Claim 1.2: Let f be any s-t flow and (A,B) be any s-t cut. Then
v(f ) ≤ C (A,B).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s-t cut (A,B) and any s-t flow f ,
v(f ) = f out(A)− f in(A).
Claim 1.2: Let f be any s-t flow and (A,B) be any s-t cut. Then
v(f ) ≤ C (A,B).

Proof of claim 1.2.

v(f ) = f out(A)− f in(A) ≤ f out(A) ≤ C (A,B).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s-t cut (A,B) and any s-t flow f ,
v(f ) = f out(A)− f in(A).
Claim 1.2: Let f be any s-t flow and (A,B) be any s-t cut. Then
v(f ) ≤ C (A,B).
Claim 1.3: Let f be an s-t flow such that there is no s-t path in
Gf . Then there is an s-t cut (A∗,B∗) such that
v(f ) = C (A∗,B∗). Furthermore, f is a flow with maximum value
and (A∗,B∗) is an s-t cut with minimum capacity.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Claim 1.3: Let f be an s-t flow such that there is no s-t path in
Gf . Then there is an s-t cut (A∗,B∗) such that
v(f ) = C (A∗,B∗). Furthermore, f is a flow with maximum value
and (A∗,B∗) is an s-t cut with minimum capacity.

Proof of claim 1.3

Let A∗ be all vertices reachable from s in the graph Gf (see figure
below). Then we have:

v(f ) = f out(A∗)− f in(A∗)

= f out(A∗)− 0

= C (A∗,B∗)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Theorem (Max-flow-min-cut theorem)

In every flow network, the maximum value of s-t flow is equal to
the minimum capacity of s-t cut.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Summary:
Ford-Fulkerson Algorithm:

Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.
Update the residual capacity of edges in the residual graph.
Repeat.

Proof of correctness:

The algorithm terminates (since the capacities are integers).
Max-flow-min-cut theorem: In every flow network, the
maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Summary:
Ford-Fulkerson Algorithm:

Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.
Update the residual capacity of edges in the residual graph.
Repeat.

Proof of correctness:

The algorithm terminates (since the capacities are integers).
Max-flow-min-cut theorem: In every flow network, the
maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

What if the capacities are not integers? Does the algorithm
terminate?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Summary:
Ford-Fulkerson Algorithm:

Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.
Update the residual capacity of edges in the residual graph.
Repeat.

Proof of correctness:

The algorithm terminates (since the capacities are integers).
Max-flow-min-cut theorem: In every flow network, the
maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

What if the capacities are not integers? Does the algorithm
terminate?

There is a network where the edges have non-integer capacities
where the Ford-Fulkerson algorithm does not terminate.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Applications of Network Flow

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Definition (Matching in bipartite graphs)

A subset M of edges such that each node appears in at most one
edge in M.

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give
a maximum matching in the graph.

Example:

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size k .

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size
k.

Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size
k.

Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

Claim 2: Suppose the bipartite graph has a matching of size k .
Then there is an integer flow of value k in the network graph.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size
k.

Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

Claim 2: Suppose the bipartite graph has a matching of size k .
Then there is an integer flow of value k in the network graph.

Consider the flow where the flow along the edges in the matching
is 1.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Figure: Network construction from Bipartite graph

Algorithm

Max-Matching(G)

- Construct the network G ′ using G as shown in Figure
- Execute the Ford-Fulkerson algorithm on G ′ to obtain flow f
- Let M be all bipartite edges with flow value 1
- return(M)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Algorithm

Max-Matching(G)

- Construct the network G ′ using G as shown in Figure
- Execute the Ford-Fulkerson algorithm on G ′ to obtain flow f
- Let M be all bipartite edges with flow value 1
- return(M)

What is the running time of the above algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Algorithm

Max-Matching(G)

- Construct the network G ′ using G as shown in Figure
- Execute the Ford-Fulkerson algorithm on G ′ to obtain flow f
- Let M be all bipartite edges with flow value 1
- return(M)

What is the running time of the above algorithm? O((m + n) · n)

Creating G ′ takes O(m + n) time.
Running the Ford-Fulkerson algorithm on G ′ takes O(n · (m + n))
time since the capacity of the cut (A,B) in G ′ where A = {s}, is n.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms


