COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow

Maximum flow

Algorithm

Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in Gr
- Augment flow along an s — t path and let ' be resulting flow
- Update f to f" and Gr to G
- return(f)

@ How do we prove that the flow returned by the Ford-Fulkerson
algorithm is the maximum flow?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", . ors f(€).

Definition (£ and f°!t)

Let S be a subset of vertices and f be a flow. Then

Fr(S)y= > f(e) and f(S)= Y f(e)

e into S e out of S

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow

Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", j.t o s F(€)-

Definition (" and f°Ut)

Let S be a subset of vertices and f be a flow. Then

fr(S)= D fle) and ()= 3 f(e)

e into S e out of S

Definition (s — t cut)

A partition of vertices (A, B) is called an s — t cut iff A contains s and
B contains t.

Definition (Capacity of s — t cut)

The capacity of an s — t cut (A, B) is defined as
C(A’ B) = Ze out of A C(e)' )

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms




Network Flow
Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", . o s f(€).

o Claim 1.1: For any s — t cut (A, B) and any s — ¢ flow f,
v(f) = fOUt(A) — Fi"(A).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", .. o< f(€).

o Claim 1.1: For any s — t cut (A, B) and any s — ¢ flow f,
v(f) = fOUt(A) — Fi"(A).

Proof of claim 1.1.

v(f) = fout({s}) — f_i”({s}) and for all other nodes
veAfoUt({v}) — f"({v})=0. So,

v(F) =D (F({v}) = F({v})) = F(A) — F7(A).

vEA

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", . ors f(€).

o Claim 1.1: For any s-t cut (A, B) and any s-t flow f,
v(f) = fOUt(A) — Fi"(A).

o Claim 1.2: Let f be any s-t flow and (A, B) be any s-t cut. Then
v(f) < C(A, B).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", . o s f(€).

o Claim 1.1: For any s-t cut (A, B) and any s-t flow f,
v(f) = fOUt(A) — Fi"(A).

o Claim 1.2: Let f be any s-t flow and (A, B) be any s-t cut. Then
v(f) < C(A, B).

Proof of claim 1.2.
v(f) = fOUt(A) — FiN(A) < FoUt(A) < C(A, B).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow

Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", . o s f(€).

o Claim 1.1: For any s-t cut (A, B) and any s-t flow f,
v(f) = fOUt(A) — Fi"(A).

o Claim 1.2: Let f be any s-t flow and (A, B) be any s-t cut. Then
v(f) < C(A, B).

o Claim 1.3: Let f be an s-t flow such that there is no s-t path in
Gr. Then there is an s-t cut (A*, B*) such that
v(f) = C(A*, B*). Furthermore, f is a flow with maximum value
and (A*, B*) is an s-t cut with minimum capacity.

[J

V.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow

Maximum flow

o Claim 1.3: Let f be an s-t flow such that there is no s-t path in
Gr. Then there is an s-t cut (A*, B*) such that
v(f) = C(A*, B*). Furthermore, f is a flow with maximum value
and (A*, B*) is an s-t cut with minimum capacity.

Proof of claim 1.3

o Let A* be all vertices reachable from s in the graph Gr (see figure
below). Then we have:

V(f) — f-out(A*) _ fin(A*)
faut(A*) -0
C(A*, B%)

b

A* (all vertices reachable from s in G 2

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Maximum flow

Theorem (Max-flow-min-cut theorem)

In every flow network, the maximum value of s-t flow is equal to
the minimum capacity of s-t cut.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow

Maximum flow

@ Summary:
o Ford-Fulkerson Algorithm:

o Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.

o Update the residual capacity of edges in the residual graph.

@ Repeat.

o Proof of correctness:

o The algorithm terminates (since the capacities are integers).
o Max-flow-min-cut theorem: In every flow network, the

maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow

Maximum flow

@ Summary:
o Ford-Fulkerson Algorithm:

o Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.

o Update the residual capacity of edges in the residual graph.

o Repeat.

o Proof of correctness:

@ The algorithm terminates (since the capacities are integers).
o Max-flow-min-cut theorem: In every flow network, the

maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

@ What if the capacities are not integers? Does the algorithm
terminate?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow

Maximum flow

@ Summary:
e Ford-Fulkerson Algorithm:

o Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.

o Update the residual capacity of edges in the residual graph.

o Repeat.

o Proof of correctness:

@ The algorithm terminates (since the capacities are integers).
o Max-flow-min-cut theorem: In every flow network, the

maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

@ What if the capacities are not integers? Does the algorithm
terminate?

o There is a network where the edges have non-integer capacities
where the Ford-Fulkerson algorithm does not terminate.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Applications of Network Flow )

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Definition (Matching in bipartite graphs)

A subset M of edges such that each node appears in at most one
edge in M.

Problem

Given a bipartite graph G = (L, R, E), design an algorithm to give
a maximum matching in the graph.

o Example:

L R

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph.

@ Consider the network graph below constructed from the bipartite
graph.

s t
All edges have capacities 1
L R

@ Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size k.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph.

o Consider the network graph below constructed from the bipartite
graph.

s t
All edges have capacities 1
L R

o Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size
k.

o Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph.

o Consider the network graph below constructed from the bipartite
graph.

s t
All edges have capacities 1
L R

@ Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size
k.

o Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

@ Claim 2: Suppose the bipartite graph has a matching of size k.
Then there is an integer flow of value k in the network graph.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph.

o Consider the network graph below constructed from the bipartite

graph.
s t
All edges have capacities 1
L R

o Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size

o Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

o Claim 2: Suppose the bipartite graph has a matching of size k.
Then there is an integer flow of value k in the network graph.

o Consider the flow where the flow along the edges in the matching
is 1.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow
Bipartite Matching

Problem
Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph.

s t
All edges have capacities 1
L R

Figure: Network construction from Bipartite graph

Algorithm

Max-Matching(G)
- Construct the network G’ using G as shown in Figure
- Execute the Ford-Fulkerson algorithm on G’ to obtain flow f
- Let M be all bipartite edges with flow value 1
- return(M)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms




Network Flow

Bipartite Matching

Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph. |
Max-Matching(G)

- Construct the network G’ using G as shown in Figure

- Execute the Ford-Fulkerson algorithm on G’ to obtain flow f

- Let M be all bipartite edges with flow value 1

- return(M)

@ What is the running time of the above algorithm?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



Network Flow

Bipartite Matching

Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph. |
Max-Matching(G)

- Construct the network G’ using G as shown in Figure

- Execute the Ford-Fulkerson algorithm on G’ to obtain flow f

- Let M be all bipartite edges with flow value 1

- return(M)

@ What is the running time of the above algorithm? O((m + n) - n)

o Creating G’ takes O(m + n) time.
o Running the Ford-Fulkerson algorithm on G’ takes O(n - (m + n))
time since the capacity of the cut (A, B) in G’ where A = {s}, is n.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



End

Ragesh Jaiswal, CSE, IITD COL351: Analysis a

Design of Algorithms



