#### COL702: Backtracking and Dynamic Programming

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

# FROM BACKTRACKING TO DYNAMIC PROGRAMMING

- Backtracking = recursive exhaustive local searches
- Dynamic Programming = Backtracking + Memoization

Memoization = store and re-use, like Fibonacci algorithm from intro

Basic principle: "If an algorithm is *recomputing* the same thing many times, we should *store and re-use* instead of recomputing."

# WEIGHTED EVENT SCHEDULING



## FORMAL SPECIFICATION

Instance:

Solution:

Constraints:

Objective:

## FORMAL SPECIFICATION

- Instance: List of n intervals I = (s, f, v), with values v > 0
- Solution: subset of intervals  $S = \{(s_1, f_1, v_1), (s_2, f_2, v_2) \dots (s_k, f_k, v_k)\}$
- Constraints: cannot pick intersecting intervals:  $s_1 < f_1 \le s_2 < f_2 \le \cdots . s_k \le f_k$
- Objective: maximize total value of intervals chosen:  $\Sigma v_i$

#### NO KNOWN GREEDY ALGORITHM

In fact, some people (Borodin, Nielsen, and Rackoff) have proved that no greedy algorithm even approximates the optimal solution.

Let's try back-tracking (as warm-up to dynamic programming)...

#### BACKTRACKING

- Sort events by start time. Call them  $I_1 \dots I_n$ .
- Pick first of these:  $I_1$ .
- Should we include  $I_1$  or not? Try both possibilities.

```
BTWES (I_1 \dots I_n):

If n=0 return 0

If n=1 return V_1

Exclude := BTWES(I_2 \dots I_n)

J:=2

Until (J > n or s<sub>J</sub> > f<sub>1</sub>) do:

J++

Include:= V_1+ BTWES(I_J \dots I_n)

Return Max(Include, Exclude)
```

## TIME IS HORRIBLE

O(2<sup>n</sup>) worst-case time, same as exhaustive search.

We could try to improve it, like we did for Maximum Independent Set.

But our goal is a dynamic programming algorithm, so improving the backtracking time is irrelevant.

$$I_1 = (1,5), V_1 = 4$$

$$I_2 = (2,4), V_2 = 3$$

$$I_3 = (3,7), V_3 = 5$$

$$I_4 = (4,9), V_4 = 6$$

$$I_5 = (5,8), V_5 = 3$$

$$I_6 = (6,11), V_6 = 4$$

$$I_7 = (9,13), V_7 = 5$$

$$I_8 = (10,12), V_8 = 3$$



#### CHARACTERIZE CALLS MADE

All of the recursive calls BTWES makes are to arrays of the form  $I_{K...n}$ , with K=1...n, or empty

So of the 2<sup>n</sup> recursive calls we might make, most are duplicates... there are only n+1 distinct possibilities!

- Just like Fibonacci numbers: many calls made exponentially often.
- Solution same: Create array to store and re-use answers, rather than repeatedly solving them.

#### DEFINE SUBPROBLEMS

The values needed are the solutions to the subproblems  $(I_K ... I_n)$  for all K = 1 ... n and the empty set. There are n + 1 subproblems of this form so we need an array of size n + 1.

- Let MV[1...n+1] be this array
- Let MV[K] hold the total weight of the maximum weight non-intersecting set of events from the sub-problem  $(I_K ... I_n)$
- We'll use MV[n+1] to hold the best weight for the empty list, 0.
- So K ranges from 1 to n+1.

#### SIMULATE RECURSION ON SUBPROBLEM

What happens when we run BTWES  $(I_K ... I_n)$ ?

```
BTWES (I_K \dots I_n)

If K=n+1 return 0

If K=n return V_n

Exclude:= BTWES(I_{K+1} \dots I_n)

J:=K+1

Until (J > n or s_J > f_K) do:

J++

Include:= V_K+ BTWES(I_J \dots I_n)

Return Max(Include, Exclude)
```

## REPLACE RECURSION WITH ARRAY/MATRIX

```
MV[n+1]:=0
MV[n]:=V_n
For K in the range 1 to n-1:
   Exclude:=MV[K+1]
   J:=K+1
   Until (J > n or s_J > f_K) do:
      J++
   Include:= V_K + MV[J]
   MV[K]:= Max(Include, Exclude)
```

Recall: MV[K] is the solution to the subproblem  $(I_K...I_n)$ 

# INVERT TOP-DOWN RECURSION ORDER TO GET BOTTOM UP ORDER

```
BTWES (I_K ... I_n)

If K=n+1 return 0

If K=n return V_n

Exclude:= BTWES(I_{K+1}... I_n)

J:=K+1

Until (J > n or s_J > f_K) do:

J++

Include:= V_K+ BTWES(I_J... I_n)

Return Max(Include, Exclude)
```

Top-down: recursive calls increase K, go from K=1 to K=n+1 Bottom-up: Need to fill in array from K=n+1 to K=1

#### ASSEMBLE INTO FINAL DP ALGORITHM

Fill in base cases of array. Fill in rest of array in bottom up order.

```
\begin{array}{l} \mathsf{DPWES}[I_1..\,I_n] \\ \mathsf{MV}[\mathsf{n}+1] := 0 \\ \mathsf{MV}[\mathsf{n}] := \mathsf{V}_\mathsf{n} \\ \mathsf{FOR} \ \mathsf{K}=\mathsf{n}-1 \ \mathsf{down} \ \mathsf{to} \ 1 \ \mathsf{do} : \\ \mathsf{Exclude} := \mathsf{MV}[\mathsf{K}+1] \\ \mathsf{J} := \mathsf{K}+1 \\ \mathsf{Until} \ (\mathsf{J} > \mathsf{n} \ \mathsf{or} \ \mathsf{s}_\mathsf{J} > \mathsf{f}_\mathsf{K}) \ \mathsf{do} : \\ \mathsf{J}++ \\ \mathsf{Include} := \mathit{V}_K \ + \ \mathsf{MV}[\mathsf{J}] \\ \mathsf{MV}[\mathsf{K}] := \ \mathsf{Max}(\mathsf{Include}, \ \mathsf{Exclude}) \\ \mathsf{Return} \ \mathsf{MV}[\mathsf{1}] \end{array}
```

Along with your pseudocode, must include a description in words of what your array holds: MV[K] is the maximum weight of all non-intersecting subsets of the events  $(I_K, ..., I_n)$  And MV[n+1]=0

| ■ I1 = (  | (1.5)     | \ \/1 | =4 |
|-----------|-----------|-------|----|
| _ , , _ , | $( \ \ )$ | /, V  | -4 |

$$\blacksquare$$
 12 = (2,4), V2=3

$$\blacksquare$$
 13 = (3, 7), V3=5

$$\blacksquare$$
 14 = (4,9), V4=6

$$-15 = (5,8), V5=3$$

|   | Include | Exclude | MV |
|---|---------|---------|----|
|   |         |         |    |
|   |         |         |    |
|   |         |         |    |
|   |         |         |    |
|   |         |         |    |
|   |         |         |    |
|   |         |         |    |
| 3 |         |         |    |
|   |         |         |    |

|                                                                                                                      | Include   | Exclude | MV |
|----------------------------------------------------------------------------------------------------------------------|-----------|---------|----|
| <ul> <li>I1 = (1,5), V1=4.</li> <li>I2 = (2,4), V2=3</li> <li>I3 = (3, 7), V3=5</li> <li>I4 = (4,9), V4=6</li> </ul> |           |         |    |
| -15 = (5,8), V5=3                                                                                                    | 3+MV[7]=8 | MV[6]=5 | 8  |
| ■ I6= (6,11), V6=4                                                                                                   | 4+MV[9]=4 | MV[7]=5 | 5  |
| ■ I7 =(9,13), V7=5                                                                                                   | 5+MV[9]=5 | MV[8]=3 | 5  |
| ■ I8= (10,12), V8=3                                                                                                  |           |         | 3  |
| , , , , , , , , , , , , , , , , , , ,                                                                                |           |         | 0  |

| <b>1</b> 1 | = ( | 1 | .5)              | . \ | /1 | =4. |
|------------|-----|---|------------------|-----|----|-----|
|            |     |   | $_{1} \cup _{1}$ | , v |    |     |

$$\blacksquare$$
 12 = (2,4), V2=3

$$\blacksquare$$
 13 = (3, 7), V3=5

$$\blacksquare$$
 14 = (4,9), V4=6

$$\blacksquare$$
 15 = (5,8), V5=3

#### Exclude

0

#### TRACING FORWARDS

| -1 | 1   | =   | (1  | 5   | ) | \/ | 1 | = 4 | 1 |  |
|----|-----|-----|-----|-----|---|----|---|-----|---|--|
|    | - 1 | _ ' | ( 1 | , 0 | " | V  |   |     | Т |  |

$$\blacksquare$$
 12 = (2,4), V2=3

$$\blacksquare$$
 13 = (3, 7), V3=5

$$-15 = (5,8), V5=3$$



None left

Best set: 2,4, 7, Total value: 3+6+5=14

## CORRECTNESS

Prove BT algorithm correct, and explain translation, to show DP=BT.

#### TIME ANALYSIS

DP: Fill in base cases of array. Fill in rest of array in bottom up order Time = size of array/matrix times time per entry

```
\begin{array}{l} \mathsf{DPWES}[I_1..I_n] \\ \mathsf{MV}[\mathsf{n}+1] := 0 \\ \mathsf{MV}[\mathsf{n}] := \mathsf{V}_\mathsf{n} \\ \mathsf{FOR} \ \mathsf{K} = \mathsf{n} - 1 \ \mathsf{down} \ \mathsf{to} \ 1 \ \mathsf{do} : \\ \mathsf{Exclude} := \mathsf{MV}[\mathsf{K}+1] \\ \mathsf{J} := \mathsf{K} + 1 \\ \mathsf{Until} \ (\mathsf{J} > \mathsf{n} \ \mathsf{or} \ \mathsf{s}_\mathsf{J} > \mathsf{f}_\mathsf{K}) \ \mathsf{do} : \\ \mathsf{J} + + \\ \mathsf{Include} := V_K + \mathsf{MV}[\mathsf{J}] \\ \mathsf{MV}[\mathsf{K}] := \mathsf{Max}(\mathsf{Include}, \ \mathsf{Exclude}) \\ \mathsf{Return} \ \mathsf{MV}[\mathsf{1}] \end{array}
```

#### TIME ANALYSIS

```
DP: Fill in base cases of array. Fill in rest of array in bottom up order
Time = size of array/matrix. O(n) times time per entry O(n) = O(n^2)
(Can you think of ways to speed this up for this example?)
\mathsf{DPWES}[I_1...I_n]
       MV[n+1]:=0
       MV[n]:=V_n
       FOR K=n-1 down to 1 do:
               Exclude:=MV[K+1]
               J := K + 1
                Until (J > n or s_J > f_K) do:
                       J++
               Include:= V_K + MV[J]
               MV[K]:= Max(Include, Exclude)
       Return MV[1]
```

#### DP = BT + MEMOIZE

Two simple ideas, but easy to get confused if you rush:

Where is the recursion? (Final algorithm is iterative, but based on recursion)

Have I made a decision? (Only conditionally, like BT, not fixed, like greedy)

If you don't rush, a surprisingly powerful and simple algorithm technique

One of the most useful ideas around

#### DYNAMIC PROGRAMMING

Dynamic programming is an algorithmic paradigm in which a problem is solved by:

- identifying a collection of subproblems
- tackling them one by one, smallest first, using the answers to small problems to help figure out larger ones, until they are all solved.

#### COL702: Backtracking and Dynamic Programming

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

#### DYNAMIC PROGRAMMING

Dynamic programming is an algorithmic paradigm in which a problem is solved by:

Identifying a collection of subproblems.

Tackling them one by one, smallest first, using the answers to small problems to help figure out larger ones, until they are all solved.

# DP STEPS (BEGINNER)

- 1. Design simple backtracking algorithm
- 2. Characterize subproblems that can arise in backtracking
- 3. Simulate backtracking algorithm on subproblems
- 4. Define array/matrix to hold different subproblems
- 5. Translate recursion from step 3 in terms of matrix positions: Recursive call becomes array position; return becomes write to array position
- 6. Invert top-down recursion order to get bottom up order
- 7: Assemble: Fill in base cases

In bottom-up order do:

Use step 5 to fill in each array position

Return array position corresponding to whole input

# DYNAMIC PROGRAMMING STEPS (EXPERT)

Step1: Define the subproblems

Step 2: Define the base cases

Step 3: Express subproblems recursively

Step 4: Order the subproblems

#### EITHER WAY

1. You MUST explain what each cell of the table/matrix means AS a solution to a subproblem.

That is, clearly define the subproblems.

2. You MUST explain what the recursion is in terms of a LOCAL, COMPLETE case analysis.

That is, explain how subproblems are solved using other, "smaller", subproblems.

Undocumented dynamic programing is indistinguishable from nonsense. Assumptions about optimal solution almost always wrong.

## LONGEST INCREASING SUBSEQUENCE

Given a sequence of distinct positive integers a[1],...,a[n]An increasing subsequence is a sequence  $a[i_1],...,a[i_k]$  such that  $i_1 < ... < i_k$  and  $a[i_1] < ... < a[i_k]$ .

For example: 15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4

5, 16, 20 is an increasing subsequence.

How long is the longest increasing subsequence?

## DYNAMIC PROGRAMMING: EXPERT MODE

What is a suitable notion of subproblem?

For example: 15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4

#### DYNAMIC PROGRAMMING: EXPERT MODE

#### Step1: Define the subproblems

L(k) = length of the longest increasing subsequence ending exactly at position k

#### **Step 2: Base Case**

L(1)=1

#### Step 3: Express subproblems recursively

 $L(k) = 1 + max(\{L(i): i < k, a_i < a_k\})$ 

#### **Step 4: Order the subproblems**

Solve them in the order L(1), L(2), L(3), ...

Try it out! a = [15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4].

## LONGEST INCREASING SUBSEQUENCE

Subproblem: L[k] = length of LIS ending exactly at position k

```
L[1] = 1

For k = 2 to n:

Len = 1

For i = 1 to k-1:

If a[i] < a[k] and Len < 1+L[i]:

Len = 1+L[i]

L[k] = Len

return max(L[1], L[2], ..., L[n])
```

## LONGEST INCREASING SUBSEQUENCE

Given a sequence of distinct positive integers a[1],...,a[n]An increasing subsequence is a sequence  $a[i_1],...,a[i_k]$  such that  $i_1 < ... < i_k$  and  $a[i_1] < ... < a[i_k]$ .

For example: 15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4

5, 16, 20 is an increasing subsequence.

How long is the longest increasing subsequence?

#### THE LONG WAY

- 1. Come up with simple backtracking algorithm
- 2. Characterize subproblems
- 3. Define matrix to store answers to the above
- 4. Simulate BT algorithm on subproblem
- 5. Replace recursive calls with matrix elements
- 6. Invert "top-down" order of BT to get "bottom-up" order
- 7. Assemble into DP algorithm:

Fill in base cases into matrix in bottom-up order Use translated recurrence to fill in each matrix element Return "main problem" answer (Trace-back to get corresponding solution)

## LONGEST INCREASING SUBSEQUENCE

What is a local decision?

More than one possible answer...

## LONGEST INCREASING SUBSEQUENCE

What is a local decision?

**Version 1**: For each element, is it in the subsequence?

Possible answers: Yes, No

**Version 2**: What is the first element in the subsequence? The second? Possible answers: 1...n.

Either way, we need to generalize the problem a bit to solve recursively.

## FIRST CHOICE, RECURSION

## Assume we're only allowed to use entries bigger than V.

(Initially, set V=-1, and branch on whether or not to include A[1].) We'll just return the length of the LIS.

```
BTLIS1(V, A[1...n])
    If n=0 then return 0
    If n=1 then if A[1] > V then return 1 else return 0
    OUT:= BTLIS(V, A[2..n]) {if we do not include A[1]}
    IF A[1] > V then IN:= 1+BTLIS(A[1],A[2..n]) else IN:= 0
    Return max (IN, OUT)
```

## EXAMPLE

A[1:12] = [15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4]

## WHAT DO SUBPROBLEMS LOOK LIKE?

Arrays in subcalls are:

V in subcalls are:

Total number of distinct subcalls:

#### SUBPROBLEMS

Array A[J..n], where J ranges from 1 to n V is either -1 or of the form A[K]

To simplify things, define A[0] = -1

Define

L[K,J] = (length of) LIS of A[J..n], with elements > A[K]

## SIMULATING RECURRENCE

```
BTLIS(A[K], A[J...n])

If J=n then if A[K] < A[n] return 1 else return 0

OUT:= BTLIS(A[K], A[J+1..n])

IF A[J] > A[K] then IN:= 1 + BTLIS(A[J], A[J+1..n]) else IN:= 0

Return max (IN, OUT)
```

#### TRANSLATE RECURRENCE IN TERMS OF MATRIX

```
BTLIS(A[K], A[J...n])
      If J=n then if A[K] < A[n] return 1 else return 0
      OUT:= BTLIS(A[K], A[J+1..n])
      IF A[J] > A[K] then IN:= 1 + BTLIS(A[J], A[J+1..n]) else IN:= 0
      Return max (IN, OUT)
Recall: L[K,J] = (length of) LIS of A[J..n], with elements > A[K]
      If A[K] < A[n] then L[K,n] := 1 else L[K,n] := 0
      OUT: = L[K,J+1]
      IF A[J] > A[K] then IN := 1 + L[J,J+1] else IN := 0
      L[K,J]:= max (IN, OUT)
```

#### INVERT TOP-DOWN ORDER TO GET BOTTOM-UP ORDER

Recall: L[K,J] = (length of) LIS of A[J..n], with elements > A[K]

As we recurse, J gets incremented, K sometimes increases

Bottom-up: J gets decremented, K any order

#### FILL IN MATRIX IN BOTTOM UP ORDER

```
A[0] := -1
For K=0 to n-1 do:
       IF A[n] > A[K] then L[K,n] := 1 else L[K,n] := 0
For J=n-1 downto 1 do:
       For K=0 to J-1 do:
             OUT := L[K, J+1]
             IF A[J] > A[K] then IN := 1 + L[J,J+1] else IN := 0
             L[K,J] := max(IN, OUT)
Return L[0,1]
Recall: L[K,J] = (length of) LIS of A[J..n], with elements > A[K]
```

## EXAMPLE

A[0:4] = [-1, 15, 8, 11, 2]

|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 0 |   |   |   |   |
| 1 |   |   |   |   |
| 2 |   |   |   |   |
| 3 |   |   |   |   |

Recall: L[K,J] = (length of) LIS of A[J..n], with elements > A[K]

#### TIME ANALYSIS

```
A[0] := -1
For K=0 to n-1 do:
      IF A[n] > A[K] then L[K,n] := 1 else L[K,n] := 0
For J=n-1 downto 1 do:
      For K=0 to J-1 do:
            OUT := L[K, J+1]
            IF A[J] > A[K] then IN := 1 + L[J,J+1] else IN := 0
            L[K,J] := max(IN, OUT)
Return L[0,1]
```

## LONGEST INCREASING SUBSEQUENCE

What is a local decision?

**Version 1**: For each element, is it in the subsequence?

Possible answers: Yes, No

**Version 2**: What is the first element in the subsequence? The second? Possible answers: 1...n.

Either way, we need to generalize the problem a bit to solve recursively.

# ANOTHER VIEW OF LONGEST INCREASING SUBSEQUENCE

Let's make a DAG out of our example...

15 18 8 11 5 12 16 2 20 9 10 4

## WHY DAGS ARE CANONICAL FOR DP

Consider a graph whose vertices are the distinct recursive calls an algorithm makes, and where calls are edges from the subproblem to the main problem.

This graph had better be a DAG or we're in deep trouble!

This graph should be small or DP won't help much.

Bottom-up order = topological sort

## BT TO DP: TREES TO DAGS

#### BT:

Create a tree of possible subproblems, where branching is based on all consistent next choices for local searches

#### DP:

Make this tree into a DAG by identifying paths that lead to same problems.

Array indices = names for vertices in this DAG

Expert's method: Skip directly to DAG.

## VERSION 2, BACKTRACKING

```
If the current position we've chosen is A[J], what is the next choice?
Possibilities: J+1,...n, none (need to check greater than A[J])
Again, set A[0]=-1 and start J=0
Only counting choices after A[J]
BTLIS2(A[J...n]) {LIS of A[J+1..n], assuming we've taken A[J]}
     IF n=J return 0
     Max := 0
     FOR K=J+1 TO n do:
           IF A[K] > A[J] THEN:
                 L:=BTLIS2(A[K..n])
                 IF Max < 1+L THEN Max := 1+L
     Return Max
```

#### WHAT ARE THE SUB-PROBLEMS?

```
BTLIS2(A[J...n]) {LIS of A[J+1..n], assuming we've taken A[J]}

IF n=J return 0

Max := 0

FOR K=J+1 TO n do:

IF A[K] > A[J] THEN:

L:= BTLIS2(A[K..n])

IF Max < 1+L THEN Max := 1+L

Return Max
```

Again, set A[0]=-1 and start J=0 What are the distinct recursive calls we make throughout this algorithm?

## DEFINE ARRAY AND TRANSLATE

Let M[J] = BTLIS2(A[J..n]), J=0...n

#### REPLACE RECURSION WITH ARRAY

```
BTLIS2(A[J...n]) {LIS of A[J+1..n], assuming we've taken A[J]}
      IF n=J return 0
      Max := 0
       FOR K=J+1 TO n do:
              IF A[K] > A[J] THEN:
                     L:= BTLIS2(A[K..n])
                     IF Max < 1+L THEN Max := 1+L
       Return Max
M[n] := 0
For J in 0 to n-1:
       Max:=0
        FOR K=J+1 TO n do:
                IF A[K] > A[J] THEN:
                       L:=M[K]
                       IF Max < 1+L THEN Max:= 1+L
       M[J]:= Max
```

## IDENTIFY TOP DOWN ORDER

When we make recursive calls, J is:

So bottom up order means J is:

#### FILL IN ARRAY IN BOTTOM-UP ORDER

```
DPLIS2(A[1..n])
     A[0] := -1
     M[n] := 0
      FOR J=n-1 downto 0 do:
            Max := 0
            FOR K=J+1 TO n do:
                  IF A[K] > A[J] THEN:
                        L:=M[K]
                        IF Max < 1+L THEN Max:= 1+L
            M[J] := Max
      Return M[0]
```

Recall: M[J] = (length of) LIS of A[J+1..n], assuming we've taken A[J]

## EXAMPLE

A: -1, 15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4

Recall: M[J] = (length of) LIS of A[J+1..n], assuming we've taken A[J]

## TIME ANALYSIS

```
DPLIS2(A[1..n])
     A[0] :=-1
     M[n] := 0
     FOR J=n-1 downto 0 do:
            Max := 0
            FOR K=J+1 TO n do:
                  IF A[K] > A[J] THEN:
                        L:=M[K]
                        IF Max < 1+L THEN Max:= 1+L
           M[J] := Max
     Return M[0]
```

## CORRECTNESS

Invariant:

M[J] is length of increasing sequence from A[J+1...n] with elements greater than A[J]

Strong induction on n-J

Base case: When J=n, no choices possible, M[n] = 0

Induction step: We try all possible values for first element.

## COL702: Backtracking and Dynamic Programming

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

## DYNAMIC PROGRAMMING

- DP = BT + memoization
- Memoization = store and re-use, like the Fibonnacci algorithm (from first week lectures)
- Two simple ideas, but easy to get confused if you rush:
  - Where is the recursion? (It disappears into the memoization, like the Fib. Example did). Have I made a decision? (only temporarily, like BT)
- If you don't rush, a surprisingly powerful and simple algorithm technique
- One of the most useful ideas around

## THE LONG WAY

- 1. Come up with simple back-tracking algorithm
- 2. Characterize sub-problems
- 3. Define matrix to store answers to the above
- 4. Simulate BT algorithm on sub-problem
- 5. Replace recursive calls with matrix elements
- 6. Invert "top-down" order of BT to get "bottom-up" order

#### FINAL ALGORITHM

- 1. Come up with simple back-tracking algorithm
- 2. Characterize sub-problems
- 3. Define matrix to store answers to the above
- 4. Simulate BT algorithm on sub-problem
- 5. Replace recursive calls with matrix elements
- 6. Invert "top-down" order of BT to get "bottom-up" order

- 7. Assemble into DP algorithm:
- Fill in base cases into matrix
- In bottom-up order do: Use translated recurrence to fill in each matrix element
- Return "main problem" answer
- (Trace-back to get corresponding solution)

## THE EXPERT'S WAY

- Define sub-problems and corresponding matrix
- Give recursion for sub-problems
- Find bottom-up order
- Assemble as in the long way:
  - Fill in base cases of the recursion
  - In bottom-up order do:
    - Fill in each cell of the matrix according to recursion
  - Return main case
  - (Traceback to find corresponding solution)

## EITHER WAY, A MUST

- You MUST explain what each cell of the matrix means AS a solution to a sub-problem
- You MUST explain what the recursion is in terms of a LOCAL, COMPLETE case analysis
- Undocumented dynamic programing is indistinguishable from nonsense. Assumptions about optimal solution almost always wrong.

## LONGEST COMMON SUBSEQUENCE

- General issue: Comparing strings
- Applications: Comparing versions of documents to highlight recent edits (diff), copyright infringement, plagiarism detection, genomics (comparing strands of DNA)
- Many variants for particular applications, but use same general idea.
- We'll look at one of the simplest, longest common subsequence

## WHY HAMMING DISTANCE IS INADEQUATE

<u>Hamming distance</u>: Line the two strings up and compare them character by character. Count the number of identical symbols (distance= number of different symbols).

- Example:
  - ALOHA
  - HALLOA No matches!!
- Hamming distance is not robust under small shifts, spacing, insertions
  - ALOHA
  - HALLOA3 matches

## LONGEST COMMON SUBSEQUENCE

- A subsequence of a string is a string that appears left to right within the word, but not necessarily consecutively
- The longest common subsequence (LCS) of two words is the largest string that is a subsequence of both words
- ALOHA
- HALLOA
- ALOA is a subsequence of both.

## RECURSION

- ALOHA
- HALLOA
- First letter mismatch: Must drop first letter from one or the other word
- ALOHA or LOHAALLOA
- First letter match: Can keep first letter, and find LCS in rest
- ALOHA LOHA OHA
- $\blacksquare$  ALLOA = A + LLOA = AL + LOA

## BT ALGORITHM

```
■ LCS(u_1, ..., u_n; v_1, ..., v_m)
■ IF n = 0 or m = 0 return 0
■ IF u_1 = v_1 return 1+ LCS(u_2, ..., u_n; v_2, ..., v_m)
■ ELSE return max(LCS(u_2, ..., u_n; v_1, ..., v_m), LCS(u_1, ..., u_n; v_2, ..., v_m))
```

# EXAMPLE



## SUBPROBLEMS

Say we start with words  $u_1 \dots, u_n$ 

$$v_1, \ldots, v_m$$

- In recursive calls, we recursively compute the LCS
- between one word of the form:
- and another word of the form:

## SUBPROBLEMS

Say we start with words  $u_1, \dots, u_n$   $v_1, \dots v_m$ 

- In recursive calls, we recurse on:  $u_I,\dots,u_n,I=1\dots n+1$  to:  $v_I,\dots,v_m,J=1\dots m+1$
- I = (I = n + 1): first word empty, I = m + 1: second word empty)
- Use matrix L[I, J]:= LCS( $u_I$ , ...,  $u_n$ ;  $v_I$ , ...,  $v_m$ )

#### BT ALGORITHM

```
• LCS(u_1, ..., u_n; v_1, ..., v_m)
LCS(u_I, ..., u_n; v_I, ..., v_m)
 IF n = 0 or m = 0 return 0
 IF or return 0
   IF u_1 = v_1 return 1+ LCS(u_2, ..., u_n; v_2, ..., v_m)
 IF return 1+ LCS (;
        ELSE return max(LCS(u_2, ..., u_n; v_1, ..., v_m),
                         LCS(u_1, ..., u_n; v_2, ..., v_m))
         ELSE return max(LCS( ;
                         LCS( ;
```

#### BT ALGORITHM

```
LCS(u_I, ..., u_n; v_I, ..., v_m)
To fill in L[I, I]
      IF I = n + 1 or J = m + 1 return 0
       Base cases: L[ , ] = L[ , ] = 0
      IF u_I = v_I return 1+ LCS(u_{I+1}, ..., u_n; v_{I+1}, ..., v_m)
       IF u_I = v_I THEN L[I, J]:= 1+
           ELSE return max(LCS(u_{I+1}, ..., u_n; v_I, ..., v_m),
                                LCS(u_I, \dots, u_n; v_{I+1}, \dots, v_m)
           ELSE L[I,J]: = max (L[ , ], L[ , ])
```

## FINAL RECURRENCES

- $\mathbf{L}[I,J] \equiv \max \text{ length of common subsequence between } u_I,\dots,u_n,$   $v_J,\dots,v_m$
- Base cases: L[m+1,J] = 0, L[I,n+1] = 0
- Recurrence: IF  $u_I = v_J$  THEN L[I,J]:= 1+ L[I+1,J+1]

  ELSE L[I,J]:= max (L[I+1,J], L[I,J+1])

# BOTTOM UP ORDER

Top down: I increases OR J increases

Bottom up: Both I and J decrease

#### **DP-VERSION**

```
\blacksquare DPLCS(u_1, ..., u_n; v_1, ..., v_m)
     Initialize L[1 ... n + 1, 1 ... m + 1]
     FOR I = 1 to n + 1 do: L[I, m + 1] := 0
     FOR J = 1 to m do: L[n + 1, J] := 0
     FOR I = n down to 1 do:
       FOR J = m down to 1 do:
         IF u_I = v_I THEN L[I, J] :=1+ L[I + 1, J + 1]
                        ELSE L[I, J] := max(L[I + 1, J], L[I, J + 1])
     Return L[1,1]
```

# EXAMPLE

|   | Н | А | L | L | 0 | А |   |
|---|---|---|---|---|---|---|---|
| A |   |   |   |   |   |   | 0 |
| L |   |   | 1 |   |   |   | C |
| 0 |   |   |   |   | 7 |   | 0 |
| Н |   |   |   |   |   |   | 0 |
| А |   |   |   |   |   |   | 0 |
|   | 0 | 0 | Ö | 0 | 0 | 0 | 0 |

# EXAMPLE

|   | Н   | А   | L   | L            | 0              | А            |   |
|---|-----|-----|-----|--------------|----------------|--------------|---|
| A | 4 — | 4   | 3 — | 3            | 2              | 1            | 0 |
| L | 3 — | 3 - | 3   | 3            | 2              | 1            | C |
| 0 | 2 — | 2 _ | 2 — |              | 3              | 1            | 0 |
| Н | 2   | 1 — | 1 - | <del>-</del> | + -            | 1            | 0 |
| А | 1 — | 1   | 1 — | 1 -          | <del>+</del> - | → 1 <b>\</b> | 0 |
|   | 0   | 0   | Ō   | 0            | 0              | 0            | 0 |

### SURPRISING RELATIONSHIP

■ [ABW, 2015]: "If a conjecture by Impagliazzo-Paturi about the worst-case complexity of SAT (famous NP-complete problem) is true, then there is no substantial improvement in this algorithm for LCS possible"

# SECONDARY STRUCTURE



RNA folds back on itself, forming chemical bonds between amino acids in the sequence

## SECONDARY STRUCTURE IS "OUTER PLANAR"

If we view the protein as a string, the secondary bonds form a matching on the characters of the string with a restriction: bonded pairs are either entirely inside or entirely outside other bonded pairs

ACGTAAAGCA7GCAAGCATTAAACCTGG

Strength of a bond between I and J depends on the two amino acids, Strength( $w_I, w_I$ ) (given as a table with 10 numbers, for the 10 pairs possible)

## MAX STRENGTH SECONDARY STRUCTURE

• Given  $w_1 \dots w_n$ , find the maximum possible strength of a secondary structure meeting the constraints of no intersecting bonds.

- Cases:
  - w<sub>1</sub> not matched
  - $w_1$  bonded to  $w_I$
- Combines DP with divide and conquer

#### BACKTRACKING VERSION

- Either  $w_1$  bonds to some  $w_I$ , I > 1 or remains unbonded.
- If it bonds to  $w_I$ , can only bond within  $2 \dots I 1$  and  $I + 1 \dots n$
- $\blacksquare$  BTSS( $w_1 \dots w_n$ )
- IF n = 0 or n = 1 return 0
- Max:= BTSS[ $w_2, ... w_n$ ] //(case when  $w_1$  unbonded)
- FOR I = 2 to n do:
- THISCASE:= strength( $w_1, w_I$ ) + BTSS( $w_2, ..., w_{I-1}$ ) + BTSS( $w_{I+1}, ..., w_n$ )
- IF THISCASE > Max THEN Max:=THISCASE
- Return Max

## SUBPROBLEMS

- Subproblems all have the form  $w_I, ..., w_J$ , consecutive subsequences
- As we recur, size = J I + 1 gets smaller.
- Bottom up: size gets larger
- Size=1, 0 : no bonds possible (Use J = I 1 for size 0)
- MS[I,J] : = max strength of secondary structure for  $w_I, ..., w_J$

#### DP ALGORITHM

```
\blacksquare DPSS(w_1 ... w_n)
     Initialize MS[1 ... n, 0 ... n]
     For I = 1 to n do:
         MS[I, I - 1] = 0; MS[I, I] = 0
     For K = 1 to n - 1 do:
         FOR I = 1 to n - K do:
             MS[I, I + K] := MS[I + 1, I + K]
         FOR L = I + 1 to I + K do:
            MS[I, I + K] := max(MS[I, I + K], Strength(w_I, w_L) + MS[I, L - 1] + MS[L + 1, I + K])
     Return MS[1, n]
```

#### TIME ANALYSIS

```
\blacksquare DPSS(w_1 ... w_n)
     Initialize MS[1 ... n, 0 ... n]
     For I = 1 to n do:
         MS[I, I - 1] = 0; MS[I, I] = 0
     For K = 1 to n - 1 do:
         FOR I = 1 to n - K do:
             MS[I, I + K] := MS[I + 1, I + K]
         FOR L = I + 1 to I + K do:
            MS[I, I + K] := max(MS[I, I + K], Strength(w_I, w_L) + MS[I, L - 1] + MS[L + 1, I + K])
     Return MS[1, n]
```

### BEST ALGORITHM

Bringman, Grandoni, Saha, Vassilevska-Williams [FOCS, 2016]:  $O(n^{2.86...})$  time algorithm for RNA secondary structure, using speeded-up min-plus product and improved matrix multiply algorithms