COL702: Backtracking and Dynamic Programming

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

FROM BACKTRACKING TO DYNAMIC

PROGRAMMING

Backtracking = recursive exhaustive local searches

Dynamic Programming = Backtracking + Memoization

Memoization = store and re-use, like Fibonacci algorithm from intro

Basic principle: “If an algorithm is recomputing the same thing many
times, we should store and re-use instead of recomputing.”

WEIGHTED EVENT SCHEDULING

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
— - fr r 1 1 1 1 1 1 |
|

FORMAL SPECIFICATION

Instance:

Solution:

Constraints:

Objective:

FORMAL SPECIFICATION

Instance: List of n intervals I = (s, f,v), with values v > 0
Solution: subset of intervals S = {(sy, f1, V1), (52, f2, V) .. (S, fx » Vi)}

Constraints: cannot pick intersecting intervals:s; < f{ < s, < f, < -+ .5
< fk

Objective: maximize total value of intervals chosen: X v;

NO KNOWN GREEDY ALGORITHM

In fact, some people (Borodin, Nielsen, and Rackoff) have proved that no
greedy algorithm even approximates the optimal solution.

Let’s try back-tracking (as warm-up to dynamic programming)...

BACKTRACKING

Sort events by start time. Call them I, ... [,,.
Pick first of these: I;.
Should we include I; or not? Try both possibilities.

BTWES (I, ... 1,,)):
If n=0 return 0
If n=1 return V;
Exclude := BTWES(/,..1,)
J:=2
Until (J > nor s; > f,) do:
J++
Include:= V;+ BTWES(/;..1,)
Return Max(Include, Exclude)

TIME IS HORRIBLE

O(2") worst-case time, same as exhaustive search.

We could try to improve it, like we did for Maximum Independent Set.

But our goal is a dynamic programming algorithm, so improving the
backtracking time is irrelevant.

EXAMPLE

I, = (1,5),V; =4
I, = (2,4),V, =3
I; = (3,7),V3=5
I, = (49),V,=6
Is = (58),Vs =3
I = (6,11),Vg =4
I, =(9,13),V, =5
Ig = (10,12),Vg =3

EXAMPLE

11 =(1,5), V1
12 = (2,4), V2
13 =(3,7), V3
14 = (4,9), V4=6
15 = (5,8), V5=3
6= (6,11), V6=4
17 =(9,13), V7=5
18= (10,12), V8=3

Distinct calls:

Oawbs

Iy g 15 8 13 814 8 15 g, 1. g 17. g Ig, NnONE

CHARACTERIZE CALLS MADE

All of the recursive calls BTWES makes are to arrays of the form
Iy ,, with K=1...n, or empty

So of the 2" recursive calls we might make, most are duplicates...
there are only n+1 distinct possibilities!

Just like Fibonacci numbers: many calls made exponentially often.

Solution same: Create array to store and re-use answers, rather than
repeatedly solving them.

DEFINE SUBPROBLEMS

The values needed are the solutions to the subproblems (Ig..I,) for all
K =1 ..n and the empty set. There are n + 1 subproblems of this form

so we need an array of size n + 1.

Let MV[1...n+1] be this array

Let MV[K] hold the total weight of the maximum weight non-
intersecting set of events from the sub-problem (Ig..1,)

We’'ll use MV[n+1] to hold the best weight for the empty list, O.
So K ranges from 1 to n+1.

SIMULATE RECURSION ON SUBPROBLEM

What happens when we run BTWES (I ...1,,)?

BTWES (I ...1,,)
If K=n+1 return O
If K=n return V_
Exclude:= BTWES(Ix,¢..1,)
J:=K+1
Until (J > n or s; > fy) do:
J++
Include:= Vig+ BTWES(J,.. 1)
Return Max(Include, Exclude)

REPLACE RECURSION WITH ARRAY/MATRIX

MV[n+1]:=0
MV[n]:= V,

For K in the range 1 to n-1:
Exclude:=MV[K+1]
J:=K+1
Until (J > nor s; > fy) do:
J++
Include:= Vi, + MV[J]
MV[K]:= Max(Include, Exclude)

Recall: MV[K] is the solution to the subproblem (I..I,)

INVERT TOP-DOWN RECURSION ORDER TO GET

BOTTOM UP ORDER

BTWES (I ... 1,,)
If K=n+1 return O
If K=n return V_
Exclude:= BTWES(Ix,1..1,)
J:=K+1
Until (J > nor s; > fx) do:
J++
Include:= Vi + BTWES(J,.. 1)
Return Max(Include, Exclude)

Top-down: recursive calls increase K, go from K=1 to K=n+1
Bottom-up: Need to fill in array from K=n+1 to K=1

ASSEMBLE INTO FINAL DP ALGORITHM

Fill in base cases of array. Fill in rest of array in bottom up order.

DPWES[I;..1,]

MV[n+1]:=0

MV[n]:= V,

FOR K=n-1 down to 1 do:
Exclude:=MV[K+1]
J:=K+1
Until (J > n or s, > fx) do:

J++
Include:= Vi + MV[J]
MV[K]:= Max(Include, Exclude)

Return MV[1]

Along with your pseudocode, must include a description in words of what your array holds:
MVI[K] is the maximum weight of all non-intersecting subsets of the events (Ig, ..., I,,)
And MV[n+1]=0

EXAMPLE

Include Exclude MV

11 =(1,5), V1=4
12 = (2,4), V2=3
13 = (3, 7), V3=5
14 = (4,9), V4=6
5 = (5,8), V5=3
6= (6,11), V6=4
17 =(9,13), V7=5
18= (10,12), V8=3

EXAMPLE

Include Exclude MV
11 =(1,5), V1=4.
12 = (2,4), V2=3
13 =(3,7), V3=5
14 = (4,9), V4=6
15 = (5,8), V5=3 3+MV[7]=8 MV[6]=5 8
6= (6,11), V6=4 4+MV[9]=4 MV[7]=5 5
|7 =(9,13), V7=5 5+MV[9]=5 MV[8]=3 5
18= (10,12), V8=3 3
0

EXAMPLE

Include Exclude MV
11 = (1,5), V1=4. 4+MV[5]=12 14
12 = (2,4), V2=3 3+MV[4]=14 MV[3]=11 14
13 = (3, 7), V3=5 5+MV[7]=10 1
14 = (4,9), V4= MV[5]=8 .
15 = (5,8), V5=3 MV[6]=5

6= (6,11), V6=4 4+MV[9]=4
17 =(9,13), V7=5 MVI8]=3
18= (10,12), V8=3

o W O 01

TRACING FORWARDS

Include Exclude MV
11 =(1,5), V1=4. 4+MV[5]=12 14
12 =(2,4), V2=3 MV[3]=11 14
13 =(3,7), V3=5 5+MV[7]=10 11
14 = (4,9), V4=6 MV[5]=8 y
15 = (5,8), Vo=3 S MV(e]=5

4+MV[9]=4

MV[8]=3

Include 7 goto 9
None left

17 =(9,13), V7=5
18= (10,12), V8=3

o W O o1 o

Best set: 2,4, 7, Total value: 3+6+5=14

CORRECTNESS

Prove BT algorithm correct, and explain translation, to show DP=BT.

TIME ANALY SIS

DP: Fill in base cases of array. Fill in rest of array in bottom up order
Time = size of array/matrix times time per entry

DPWES]I,..1,]

MV[n+1]:=0

MV[n]:= V,

FOR K=n-1 down to 1 do:
Exclude:=MV[K+1]
J:=K+1
Until (J > n or s; > fx) do:

J++
Include:= V, + MV[J]
MV[K]:= Max(Include, Exclude)

Return MV|[1]

TIME ANALY SIS

DP: Fill in base cases of array. Fill in rest of array in bottom up order
Time = size of array/matrix. O(n) times time per entry O(n) = O(n*2)
(Can you think of ways to speed this up for this example?)

DPWES][I;..1,]

MV[n+1]:=0

MV[n]:= V,

FOR K=n-1 down to 1 do:
Exclude:=MV[K+1]
J:=K+1
Until (J > nor s, > fy) do:

J++
Include:= Vi + MV[J]
MV[K]:= Max(Include, Exclude)

Return MV[1]

DP =BT + MEMOIZE

Two simple ideas, but easy to get confused if you rush:
Where is the recursion? (Final algorithm is iterative, but based on recursion)
Have | made a decision? (Only conditionally, like BT, not fixed, like greedy)

If you don’t rush, a surprisingly powerful and simple algorithm technique

One of the most useful ideas around

DYNAMIC PROGRAMMING

Dynamic programming is an algorithmic paradigm in which a problem is
solved by:

identifying a collection of subproblems

tackling them one by one, smallest first, using the answers to small
problems to help figure out larger ones, until they are all solved.

COL702: Backtracking and Dynamic Programming

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

DYNAMIC PROGRAMMING

Dynamic programming is an algorithmic paradigm in which a problem is
solved by:

ldentifying a collection of subproblems.
Tackling them one by one, smallest first, using the answers

to small problems to help figure out larger ones, until they are
all solved.

DP STEPS (BEGINNER)

Design simple backtracking algorithm

Characterize subproblems that can arise in backtracking
Simulate backtracking algorithm on subproblems

Define array/matrix to hold different subproblems

Translate recursion from step 3 in terms of matrix positions: Recursive
caII becomes array position; return becomes write to array position

6. Invert top-down recursion order to get bottom up order
7. Assemble: Fill in base cases
In bottom-up order do:
Use step 5 to fill in each array position
Return array position corresponding to whole input

O'I-b(JOI\)A

DYNAMIC PROGRAMMING STEPS (EXPERT)

Step1: Define the subproblems

Step 2: Define the base cases

Step 3: Express subproblems recursively

Step 4: Order the subproblems

EITHER WAY

1. You MUST explain what each cell of the table/matrix means AS a solution
to a subproblem.

That is, clearly define the subproblems.

2. You MUST explain what the recursion is in terms of a LOCAL, COMPLETE
case analysis.

That is, explain how subproblems are solved using other, “smaller”,
subproblems.

Undocumented dynamic programing is indistinguishable from nonsense.
Assumptions about optimal solution almost always wrong.

LONGEST INCREASING SUBSEQUENCE

Given a sequence of distinct positive integers a[1],...,a[n]

An increasing subsequence is a sequence ali4],...,a[iy] such that
1,<...<Il, and a[i{]<...<ali].

For example: 15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4
5, 16, 20 is an increasing subsequence.

How long is the longest increasing subsequence?

DYNAMIC PROGRAMMING: EXPERT MODE

What is a suitable notion of subproblem?

For example: 15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4

DYNAMIC PROGRAMMING: EXPERT MODE

Step1: Define the subproblems
L(k) = length of the longest increasing subsequence ending exactly at position k

Step 2: Base Case
L(1)=1

Step 3: Express subproblems recursively
L(k) = 1+max({L(i): i < k, a; < ay})

Step 4: Order the subproblems
Solve them in the order L(1), L(2), L(3), ...

Try it out! a=1[15,18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4].

LONGEST INCREASING SUBSEQUENCE

Subproblem: L[k] = length of LIS ending exactly at position k

L[1] = 1
For k = 2 to n:
Len = 1
Fori=1to k-1:
If a[i] < a[k] and Len < 1+L[i]:
Len = 1+L]Ji]
L[k] = Len

return max(L[1], L[2], ..., L[n])

LONGEST INCREASING SUBSEQUENCE

Given a sequence of distinct positive integers a[1],...,a[n]

An increasing subsequence is a sequence ali4],...,a[iy] such that
1,<...<Il, and a[i{]<...<ali].

For example: 15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4
5, 16, 20 is an increasing subsequence.

How long is the longest increasing subsequence?

NOoO Ok~ WN -

THE LONG WAY

. Come up with simple backtracking algorithm

. Characterize subproblems

. Define matrix to store answers to the above

. Simulate BT algorithm on subproblem

. Replace recursive calls with matrix elements

. Invert "top-down" order of BT to get "bottom-up"” order
. Assemble into DP algorithm:

Fill in base cases into matrix in bottom-up order

Use translated recurrence to fill in each matrix element
Return "main problem" answer

(Trace-back to get corresponding solution)

LONGEST INCREASING SUBSEQUENCE

What is a local decision?
More than one possible answer...

LONGEST INCREASING SUBSEQUENCE

What is a local decision?

Version 1: For each element, is it in the subsequence?
Possible answers: Yes, No

Version 2: What is the first element in the subsequence? The second?
Possible answers: 1...n.

Either way, we need to generalize the problem a bit to solve recursively.

FIRST CHOICE, RECURSION

Assume we're only allowed to use entries bigger than V.

(Initially, set V=-1, and branch on whether or not to include A[1].)
We'll just return the length of the LIS.

BTLIS1(V, A[1...n])
If n=0 then return 0
If n=1 then if A[1] > V then return 1 else return 0
OUT:= BTLIS(V, A[2..n]) {if we do not include A[1]}
IF A[1] > V then IN:= 1+BTLIS(A[1],A[2..n]) else IN:= 0
Return max (IN, OUT)

EXAMPLE

A[1:12] = [15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4]

WHAT DO SUBPROBLEMS LOOK LIKE?

Arrays in subcalls are:

V in subcalls are:

Total number of distinct subcalls:

SUBPROBLEMS

Array A[J..n], where J ranges from 1 to n
V is either -1 or of the form A[K]

To simplify things, define A[0] = -1

Define
L[K,J] = (length of) LIS of A[J..n], with elements > A[K]

SIMULATING RECURRENCE

BTLIS(A[K], A[J...n])
If J=n then if A[K] < A[n] return 1 else return O
OUT:= BTLIS(A[K], A[J+1..n])
IF A[J] > A[K] then IN:=1 + BTLIS(A[J], A[J+1..n]) else IN:= 0
Return max (IN, OUT)

TRANSLATE RECURRENCE IN TERMS OF MATRIX

BTLIS(A[K], A[J...n])
If J=n then if A[K] < A[n] return 1 else return O
OUT:= BTLIS(A[K], A[J+1..n])
IF A[J] > A[K] then IN:=1 + BTLIS(A[J], A[J+1..n]) else IN:= 0
Return max (IN, OUT)

Recall: L[K,J] = (length of) LIS of A[J..n], with elements > A[K]

If A[K] < A[n] then L[K,n] := 1 else L[K,n]:=0
OUT: = LIK,J+1]

IF A[J] > A[K] then IN:=1 + L[J,J+1] else IN: =0
L[K,J]:= max (IN, OUT)

INVERT TOP-DOWN ORDER TO GET BOTTOM-UP ORDER

Recall: L[K,J] = (length of) LIS of A[J..n], with elements > A[K]

As we recurse, J gets incremented, K sometimes increases

Bottom-up: J gets decremented, K any order

FILL IN MATRIX IN BOTTOM UP ORDER

A[0] := -1
For K=0 to n-1 do:
IF A[n] > A[K] then L[K,n] := 1 else L[K,n] :=0
For J=n-1 downto 1 do:
For K=0 to J-1 do:
OUT := L[K, J+1]
IF A[J] > A[K] then IN :=1 + L[J,J+1] else IN :=0
L[K,J] := max(IN, OUT)
Return L[0,1]

Recall: L[K,J] = (Iength of) LIS of A[J..n], with elements > A[K]

EXAMPLE

A[0:4] = [-1, 15, 8, 11, 2]

Recall: L[K,J] = (length of) LIS of A[J..n], with elements > A[K]

TIME ANALYSIS

A[0] := -1
For K=0 to n-1 do:
IF A[n] > A[K] then L[K,n] := 1 else L[K,n] :=0
For J=n-1 downto 1 do:
For K=0 to J-1 do:
OUT := L[K, J+1]
IF A[J] > A[K] then IN :=1 + L[J,J+1] else IN :=0
L[K,J] := max(IN, OUT)
Return L[0,1]

LONGEST INCREASING SUBSEQUENCE

What is a local decision?

Version 1: For each element, is it in the subsequence?
Possible answers: Yes, No

Version 2: What is the first element in the subsequence? The second?
Possible answers: 1...n.

Either way, we need to generalize the problem a bit to solve recursively.

ANOTHER VIEW OF LONGEST INCREASING

SUBSEQUENCE

Let’'s make a DAG out of our example...

15 18 8 11 3) 12 16 2 20 9 10 4

WHY DAGS ARE CANONICAL FOR DP

Consider a graph whose vertices are the distinct recursive calls an
algorithm makes, and where calls are edges from the subproblem to
the main problem.

This graph had better be a DAG or we're in deep trouble!
This graph should be small or DP won’t help much.

Bottom-up order = topological sort

BT TO DP: TREES TO DAGS

BT:

Create a tree of possible subproblems, where branching is based on all
consistent next choices for local searches

DP:

Make this tree into a DAG by identifying paths that lead to same
problems.

Array indices = names for vertices in this DAG

Expert’s method: Skip directly to DAG.

VERSION 2, BACKTRACKING

If the current position we've chosen is A[J], what is the next choice?
Possibilities: J+1,...n, none (need to check greater than A[J])

Again, set A[0]=-1 and start J=0

Only counting choices after A[J]

BTLIS2(A[J...n]) {LIS of A[J+1..n], assuming we’ve taken A[J]}
IF n=J return 0
Max := 0
FOR K=J+1 TO n do:
IF A[K] > A[J] THEN:

L:= BTLIS2(A[K..n])

IF Max < 1+L THEN Max := 1+L
Return Max

WHAT ARE THE SUB-PROBLEMS?

BTLIS2(A[J...n]) {LIS of A[J+1..n], assuming we’'ve taken A[J]}
IF n=J return O
Max := 0
FOR K=J+1 TO n do:
IF A[K] > A[J] THEN:

L:= BTLIS2(A[K..n])

IF Max < 1+L THEN Max := 1+L
Return Max

Again, set A[0]=-1 and start J=0
What are the distinct recursive calls we make throughout this algorithm?

DEFINE ARRAY AND TRANSLATE

Let M[J] = BTLIS2(A[J..n]), J=0...n

REPLACE RECURSION WITH ARRAY

BTLIS2(A[J...n]) {LIS of A[J+1..n], assuming we’ve taken A[J]}
IF n=J return O
Max := 0
FOR K=J+1 TO n do:
IF A[K] > A[J] THEN:
L:= BTLIS2(A[K..n])
IF Max < 1+L THEN Max := 1+L
Return Max
M[n] :=0
For J in O to n-1:
Max:=0
FOR K=J+1 TO n do:
IF A[K] > A[J] THEN:
L:= M[K]
IF Max < 1+L THEN Max:= 1+L
M[J]:= Max

IDENTIFY TOP DOWN ORDER

When we make recursive calls, J is:

So bottom up order means J is:

FILL IN ARRAY IN BOTTOM-UP ORDER

DPLIS2(A[1..n])

A[O0] :=-1

M[n] := 0

FOR J=n-1 downto 0 do:
Max := 0

FOR K=J+1 TO n do:
IF A[K] > A[J] THEN:
L:= M[K]
IF Max < 1+L THEN Max:= 1+L
M[J] := Max
Return M[O]

Recall: M[J] = (length of) LIS of A[J+1..n], assuming we've taken A[J]

EXAMPLE

A:-1,15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4

Recall: M[J] = (length of) LIS of A[J+1..n], assuming we've taken A[J]

TIME ANALYSIS

DPLIS2(A[1..n])

A[O0] :=-1

M[n] := 0

FOR J=n-1 downto 0 do:
Max := 0

FOR K=J+1 TO n do:
IF A[K] > A[J] THEN:
L:= M[K]
IF Max < 1+L THEN Max:= 1+L
M[J] := Max
Return M[O]

CORRECTNESS

Invariant:

M[J] is length of increasing sequence from A[J+1...n] with elements
greater than A[J]

Strong induction on n-J

Base case: When J=n, no choices possible, M[n] =0
Induction step: We try all possible values for first element.

COL702: Backtracking and Dynamic Programming

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

DYNAMIC PROGRAMMING

DP = BT + memoization

Memoization = store and re-use, like the Fibonnacci algorithm (from first week
lectures)

Two simple ideas, but easy to get confused if you rush:

= Where is the recursion? (It disappears into the memoization, like the Fib.
Example did). Have | made a decision? (only temporarily, like BT)

If you don’t rush, a surprisingly powerful and simple algorithm technique

One of the most useful ideas around

THE LONG WAY

Come up with simple back-tracking algorithm
Characterize sub-problems

Define matrix to store answers to the above

Simulate BT algorithm on sub-problem

Replace recursive calls with matrix elements

Invert "top-down" order of BT to get "bottom-up"” order

op Bl == B9) =

op Bl == B9) =

FINAL ALGORITHM

Come up with simple back-tracking algorithm
Characterize sub-problems

Define matrix to store answers to the above

Simulate BT algorithm on sub-problem

Replace recursive calls with matrix elements

Invert "top-down" order of BT to get "bottom-up"” order

7

Assemble into DP algorithm:

Fill in base cases into matrix

In bottom-up order do: Use translated recurrence to fill in each matrix
element

Return “main problem” answer

(Trace-back to get corresponding solution)

THE EXPERT'S WAY

Define sub-problems and corresponding matrix
Give recursion for sub-problems
Find bottom-up order

Assemble as in the long way:
= Fill in base cases of the recursion

* In bottom-up order do:
Fill in each cell of the matrix according to recursion

= Return main case
= (Traceback to find corresponding solution)

EITHER WAY, A MUST

You MUST explain what each cell of the matrix means AS a solution
to a sub-problem

You MUST explain what the recursion is in terms of a LOCAL,
COMPLETE case analysis

Undocumented dynamic programing is indistinguishable from
nonsense. Assumptions about optimal solution almost always wrong.

LONGEST COMMON SUBSEQUENCE

General issue: Comparing strings

Applications: Comparing versions of documents to highlight recent
edits (diff), copyright infringement, plagiarism detection, genomics
(comparing strands of DNA)

Many variants for particular applications, but use same general idea.
We’'ll look at one of the simplest, longest common subsequence

WHY HAMMING DISTANCE IS INADEQUATE

Hamming distance: Line the two strings up and compare them character
by character. Count the number of identical symbols (distance= number of
different symbols).

Example:
= ALOHA

= HALLOA
No matches!!

Hamming distance is not robust under small shifts, spacing, insertions
= ALOHA

= HALLOA
3 matches

LONGEST COMMON SUBSEQUENCE

A subsequence of a string is a string that appears left to right within
the word, but not necessarily consecutively

The longest common subsequence (LCS) of two words is the largest
string that is a subsequence of both words

ALOHA
HALLOA

ALOA is a subsequence of both.

RECURSION

ALOHA

HALLOA

First letter mismatch: Must drop first letter from one or the other
word

ALOHA or LOHA

ALLOA HALLOA

First letter match: Can keep first letter, and find LCS in rest
ALOHA LOHA OHA
ALLOA = A+ LLOA =AL + LOA

BT ALGORITHM

LCS(uq, .., Uy} Vi, en), Uiy)
IF n=0o0orm=0return 0
IF u; = vy return 1+ LCS(u,, ..., Uy Vo, oon, Uiy)
ELSE return max(LCS(u,, ..., uy; v, .., V), LCS(uq, ..., Uy} Vo, o, Vi)

EXAMPLE

ALOHA
HALLOA
/ max \
LOHA ALOHA
HALLOA ALLOA
/ \ 2(AL)+
max \
OHA LOHA
HALLOA ALLOA OHA
LOA
l max 34 A/ max \
HA OHA OHA LOHA
HALLOA ALLOA ALLOA LLOA /q(Lys

\ OHA

LOA

SUBPROBLEMS

Say we start with words uq ..., uy,

vl, nen vm

In recursive calls, we recursively compute the LCS
between one word of the form:
and another word of the form:

SUBPROBLEMS

Say we start with words uq, ..., u,
vl, Ty vm

In recursive calls, we recurse on: u;, ...,u,, I =1..n+1
torvy,...,vp,/J=1.m+1

(I =n+ 1: first word empty,] = m + 1: second word empty)

Use matrix L[I,]]:= LCS(uy, ..., uy; vy, s Uy)

BT ALGORITHM

LCS(uq, ..., upy; Ve, o, Upy)
LCS(uy, ..., un; vy, o, V)
IF n =0 orm =0 return 0

|F or return 0
IF u; = vy return 1+ LCS(u,, ..., Uy} Vo, .., Uiy
|F return 1+ LCS (;)

ELSE return max(LCS(u,, ..., uy; vy, ..., V),
LCS(uq, ..., Un; Vo, eon, Uy))

ELSE return max(LCS(;)
LCS(;))

BT ALGORITHM

LCS(uy, oo, Un; vy, o, Vi)
To fill in L[I,]]
IFI=n+1or/J=m+1returnO
Base cases: L[, |]=L[,]=0
IF u; = v, return 1+ LCS(u;41, oo, Ups Vg1, ooos Ump)
IF u, =v, THENLI[IJ]:= 1+
ELSE return max(LCS(uj4+1, «.., Un; vy, oo, V),
LCS(uy, ooy Un; Vig1) ons Um)
ELSE L[/,J]]:=max (L] ,],L[,]

FINAL RECURRENCES

L[I,]] = max length of common subsequence between uy, ..., u,,
U], ey Um

Base cases: L[m+ 1,J]1 =0, L[I,n+ 1] =0

Recurrence: IF u; =v, THENL[LJ]:=1+ L[l +1,] + 1]
ELSE L[/,/]:= max (L[l + 1,]], L[I,] + 1])

BOTTOM UP ORDER

Top down: I increases OR J increases

Bottom up: Both I and J decrease

DP-VERSION

DPLCS(uq, ..., Uy} V1, ..., Uiy)
Initialize L[1..n+1,1..m + 1]
FORI=1ton+1do:L[l,m+ 1]:=0
FORJ=1tomdo: L[n+1,/]:=0
FOR I =n down to 1 do:
FOR /] = m down to 1 do:
IF u;, =v, THENLI[IJ]:=1+ L[l +1,] + 1]
ELSE L[I,]] := max(L[I + 1,]], L[I,] + 1])
Return L[1,1]

EXAMPLE

o, O Oo| o

LLI
|
al
=
<
>
LLI

v1

—

—t+

—+

—4

—4

—-

—

—

—

SURPRISING RELATIONSHIP

[ABW, 2015]. “If a conjecture by Impagliazzo-Paturi about the worst-
case complexity of SAT (famous NP-complete problem) is true, then
there is no substantial improvement in this algorithm for LCS
possible’

SECONDARY STRUCTURE

cC"'u
G eeven ATS5
70U — A
C G
c—a UG ISL
c A
5’ splice site C_g‘”
iti B85 = A
recognltlori sequence -y us
S : G—C
Helix 11l s0_ A Helix lb(:A C&SUUU oo Helix Il
4] - 45 . & G A 5SS \\.-, G UA 95 100)
5'-=GGCAAUA UGAUC C 20U CAAAGAGAUUUCU |
111l A1l u Uy ERE YRRy
3'-CUGUUAUG _ACUAG, 1 U cCGUUUCUCUAAGGg C
45 40 AP A 55 15 10 5
/ ‘cu Helix la U2

Branch point
recognition sequence

RNA folds back on itself, forming chemical bonds between amino acids in the sequence

SECONDARY STRUCTURE IS "OUTER PLANAR”

If we view the protein as a string, the secondary bonds form a
matching on the characters of the string with a restriction: bonded
pairs are either entirely inside or entirely outside other bonded pairs

ACGTAAAGCATGCAAGCATTAAACCTGG

Strength of a bond between I and | depends on the two amino acids,
Strength(w;, w;) (given as a table with 10 numbers, for the 10 pairs possible)

MAX STRENGTH SECONDARY STRUCTURE

Given w;y ...w,, find the maximum possible strength of a secondary
structure meeting the constraints of no intersecting bonds.

Cases:
= w; hot matched
= w; bonded to w;

Combines DP with divide and conquer

BACKTRACKING VERSION

Either w; bonds to some w;, I > 1 or remains unbonded.
If it bonds to w;, can only bond within2...I—1and I+ 1..n

BTSS(wq ...w,)
IFn=0o0orn=1return O
Max:= BTSS[w,,..w,] //(case when w; unbonded)
FOR I = 2 ton do:

THISCASE:= strength(w,,w;) + BTSS(w,, ..., w;_{) +
BTSS(w;yq, ..., W)

IF THISCASE > Max THEN Max:=THISCASE
Return Max

SUBPROBLEMS

Subproblems all have the form wy, ..., w;, consecutive subsequences
As we recur, size =] — I + 1 gets smaller.

Bottom up: size gets larger

Size=1, 0 : no bonds possible (Use] =1 — 1 for size 0)

MSII,J] : = max strength of secondary structure for wy, ..., w;

DP ALGORITHM

DPSS(w; ...w,,)
Initialize MS[1 ...n,0 ...n]
ForI =1 to n do:
MS[I,I — 1] =0; MSJ[I, I]=0
For K=1ton—-1 do:
FORI=1ton—-K do:
MS[I,I + K] : = MS[I + 1,1 + K]
FORL=I+1tol+ K do:
MSI[I,I + K]:= max(MS][I,I + K], Strength(w;,w;) + MS[I,L — 1] + MS[L + 1,1 + K])
Return MS[1, n]

TIME ANALY SIS

DPSS(w; ...w,,)
Initialize MS[1 ...n,0 ...n]
ForI =1 to n do:
MS[I,I — 1] =0; MSJ[I, I]=0
For K=1ton—-1 do:
FORI=1ton—-K do:
MS[I,I + K] : = MS[I + 1,1 + K]
FORL=I+1tol+ K do:
MSI[I,I + K]:= max(MS][I,I + K], Strength(w;,w;) + MS[I,L — 1] + MS[L + 1,1 + K])
Return MS[1, n]

BEST ALGORITHM

Bringman, Grandoni, Saha, Vassilevska-Williams [FOCS, 2016]:
O(n*8%+) time algorithm for RNA secondary structure, using
speeded-up min-plus product and improved matrix multiply algorithms

