
Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

COL702: Backtracking and Dynamic Programming

SEARCH AND OPTIMIZATION PROBLEMS

Many problems involve finding the best solution from among a large
space of possibilities.

• Instance: What does the input look like?
• Solution format: What does an output look like?
• Constraints: What properties must a solution have?
• Objective function: What makes a solution better or worse?

GLOBAL SEARCH VS LOCAL SEARCHES

• Like greedy algorithms,
backtracking algorithms break the massive global search
for a solution, into a series of simpler local searches.

"Which edge do we take first? Then second? …”

• Unlike greedy algorithms, which guess the best local choice and
only consider this possibility,

backtracking uses exhaustive search to try out all
combinations of local decisions.

GLOBAL SEARCH VS LOCAL SEARCHES

• However, we can often use the constraints of the problem to
prune cases that are dead ends. Applying this recursively, we get
a substantial savings over exhaustive search.

• This might take a long time to do. What are some other ideas in
general?

The good:
Very general, applies to almost any search problem
Can lead to exponential improvement over exhaustive search
Often better as heuristic than worst-case analysis
FIRST STEP TO DYNAMIC PROGRAMMING

The bad:
Since it works for very hard problems, usually only improved

exponential time, not poly time
Hard to give exact time analysis

BACKTRACKING: PROS AND CONS

Given a graph with nodes representing people, with an edge between
any two people who are enemies, find the largest set of people such
that no two are enemies. In other words, given an undirected graph,
find the largest set of vertices such that no two are joined by an edge.

MAXIMAL INDEPENDENT SET

Given a graph with nodes representing people, with an edge between
any two people who are enemies, find the largest set of people such
that no two are enemies. In other words, given an undirected graph,
find the largest set of vertices such that no two are joined by an edge.
¡ Instance:

¡ Solution format:

¡ Constraint:

¡ Objective:

MAXIMAL INDEPENDENT SET

¡ Greedy approaches?

¡ One may be tempted to choose the person with the fewest enemies,
remove all of his enemies and recurse on the remaining graph.

¡ This is fast, but does not always find the best solution.

MAXIMAL INDEPENDENT SET

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

Greedy: all degree 3, pick any, say E

Neighbors (enemies) of E forced out of set

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

Greedy: all degree 3, pick any, say E

Neighbors (enemies) of E forced out of set

Lowest degree is now A

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

Many degree 2 vertices we could
choose next, say G

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

Many degree 2 vertices we could
choose next, say G

Can pick any remaining one

Solution found by greedy is size 4

BETTER SOLUTION

A

B C
D

E
F

G H
I

J

K L

¡ What is the solution space?
¡ How much is exhaustive search?
¡ What are the constraints?
¡ What is the objective?

MAXIMAL INDEPENDENT SET

¡ What is the solution space?
All subsets S of V
¡ How much is exhaustive search?
2^{|V|}
¡ What are the constraints?
For each edge e={u,v}, cannot have both u and v in S
¡ What is the objective?
|S|

MAXIMAL INDEPENDENT SET

¡ Backtracking: Do exhaustive search locally. Use constraints to simplify
problem along the way.

¡ What is a local decision? Do we pick vertex E or not…..

¡ What are the possible answers to this decision? Yes or No

¡ How do the answers affect the problem to be solved in the future?
If we pick E: Recurse on subgraph 𝐺 − 𝐸 − {𝐸 ’s neighbors} (and add 1)
If we don’t pick E: Recurse on subgraph 𝐺 − {𝐸}.

MAXIMAL INDEPENDENT SET

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

Local decision : Is E in S?
Possible answers: Yes, No

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

Local decision : Is E in S?
YES OR NO

MIS([A,B,C,D,E,F,G,H,I,J,K,L])=
(YES) 1 + MIS([A,B, G,H,I,J,K,L])
(NO) MIS([A,B,C,D, ,F,G,H,I,J,K,L])

A

B C
D

E
F

G H
I

J

K L

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

Local decision : Is E in S?
Case 1 : Yes
Consequences: Neighbors not in S

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

Local decision : Is E in S?
Case 1 : Yes
Consequences: Neighbors not in S

Claim: A is now in some largest IS

Go on to next local decision
Is G in S?

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

Local decision : Is E in S?
Case 1 : Yes
Consequences: Neighbors not in S

Claim: A is now in some largest IS

Go on to next local decision

Is G in S?

Case 1a: Yes

Other three symmetrical: Get one more

Best set for Case 1a: 4, e.g, A,G,E,J

BUT NOW WE BACKTRACK

A

B C
D

E
F

G H
I

J

K L

Local decision : Is E in S?
Case 1 : Yes
Consequences: Neighbors not in S

Claim: A is now in some largest IS

Claim: I, H in some smallest MIS in Case 1b

Go on to next local decision

Is G in S?

Case 1b: No

BUT NOW WE BACKTRACK

A

B C
D

E
F

G H
I

J

K L

Local decision : Is E in S?
Case 1 : Yes
Consequences: Neighbors not in S

Claim: I, H in some smallest MIS in Case 1b

Case 1 b: Get set of size 5

Claim: A is now in some largest IS

Go on to next local decision

Is G in S?

Case 1b: No

BACKTRACK AGAIN

A

B C
D

E
F

G H
I

J

K L

Case 1b is better than Case 1a, but we still don’t know
its optimal

Need to consider Case 2: E is not in S

BACKTRACK AGAIN

A

B C
D

E
F

G H
I

J

K L

Case 1b is better than Case 1a, but we still don’t
know its optimal

Need to consider Case 2: E is not in S

Case 2a: A is in S
F is in S
Cycle of 5 : get 2

So this case eventually gets 4
Now we KNOW Case 1b is best

AN EXAMPLE

A

B C
D

E
F

G H
I

J

K L

12 vertices means 4096 subsets

But in the end, we only needed 4 cases

(OK, I used some higher principles, e.g. symmetry
that our BT algorithm might not have)

MIS1(G= (V,E))
¡ IF |V|=0 return the empty set
¡ Pick vertex v
¡ S_1:= v + MIS1(G-v-N(v))
¡ S_2: = MIS1(G-v)
¡ IF |S_2| > |S_1| return S_2, else return S_1

CASE ANALYSIS AS RECURSION

MIS1(G= (V,E))
¡ IF |V|=0 return the empty set
¡ Pick vertex v
¡ S_1:= v + MIS1(G-v-N(v))
¡ S_2: = MIS1(G-v)
¡ IF |S_2| > |S_1| return S_2, else return S_1

Induction on n. Base case n=0: MIS1 correctly returns empty set.
Otherwise, use strong induction: S_1 is max ind set containing v,
S_2 max ind. set not containing v. Better of two is MIS in G.

CORRECTNESS

MIS1(G= (V,E))
¡ IF |V|=0 return the empty set
¡ Pick vertex v
¡ S_1:= v + MIS1(G-v-N(v))
¡ S_2: = MIS1(G-v)
¡ IF |S_2| > |S_1| return S_2, else return S_1

TIME ANALYSIS

MIS1(G= (V,E))
¡ IF |V|=0 return the empty set
¡ Pick vertex v:
¡ S_1:= v + MIS1(G-v-N(v))
¡ S_2: = MIS1(G-v)
¡ IF |S_2| > |S_1| return S_2, else return S_1 poly(n)

T(n)= 2 T(n-1) + poly(n)
¡ Idea: bottom-heavy, so exact poly(n) doesn’t affect asymptotic time
¡ T(n)=2^n

TIME ANALYSIS

Worst-case: T(n-1)
T(n-1)

WHAT IS THE WORST CASE FOR MIS1?

¡ An empty graph with no edges, i.e., the whole graph is an
independent set

¡ But then we should just return all vertices without trying cases
¡ More generally, if a vertex has no neighbors, the case when we

include it v+MIS(G-v) is always better than the case when we don’t
include it, MIS(G-v)

WHAT IS THE WORST CASE FOR MIS1?

MIS2(𝐺 = (𝑉, 𝐸))
¡ IF |𝑉| = 0 return the empty set
¡ Pick vertex 𝑣
¡ 𝑆!: = 𝑣 + 𝑀𝐼𝑆2(𝐺 − 𝑣 − 𝑁(𝑣))
¡ IF deg(𝑣)=0 return 𝑆!
¡ 𝑆": = 𝑀𝐼𝑆2(𝐺 − 𝑣)
¡ IF |𝑆"| > |𝑆!| return 𝑆", else return 𝑆!

¡ Correctness: If deg(𝑣) = 0, |𝑆"| < |𝑆!| so we’d return 𝑆! anyway
¡ So does same thing as MIS1

GETTING RID OF THAT STUPID WORST CASE

WHAT IS THE WORST CASE FOR MIS2?

If the graph is a line and we always pick the end, we recurse on one
line of size 𝑛 − 1 and one of size 𝑛 − 2

WHAT IS THE WORST CASE FOR MIS2?

𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(𝑛 − 2) + 𝑝𝑜𝑙𝑦(𝑛)

𝑇(𝑛) = 𝑂(𝐹𝑖𝑏(𝑛)) = 𝑂(2!.#$)

Still exponential but for medium sized n, makes huge difference

𝑛 = 80: 2%& = minute of computer time, 2'! = 16 million minutes

In the example, we actually argued that we should add vertices of
degree 1 as well.

Modify-the-solution proof:
¡ Say 𝑣 has one neighbor 𝑢 .
¡ Let 𝑆! be the largest independent set with 𝑣 and let 𝑆" be the largest

ind. set without 𝑣 .
¡ Let S′ = 𝑆" − {𝑢} + {𝑣}. 𝑆′ is an independent set, and is at least as

big as 𝑆", and contains 𝑣 . Thus, 𝑆! is at least as big as 𝑆′, which is at
least as big as 𝑆". So don’t bother computing 𝑆" in this case.

CAN WE DO BETTER?

MIS3(𝐺 = (𝑉, 𝐸))
¡ IF |𝑉| = 0 return the empty set
¡Pick vertex 𝑣
¡ 𝑆! ≔ 𝑣 + 𝑀𝐼𝑆3(𝐺 − 𝑣 − 𝑁(𝑣))
¡ IF deg(𝑣)=0 or 1 return 𝑆!
¡ 𝑆": = 𝑀𝐼𝑆3(𝐺 − 𝑣)
¡ IF |𝑆"| > |𝑆!| return 𝑆", else return 𝑆!

Correctness: If deg(𝑣) =0 or 1 |𝑆"| is at most |𝑆!|, so we’d return 𝑆! anyway, so
does same thing as MIS1

IMPROVED ALGORITHM

¡ 𝑇(𝑛) is at most 𝑇(𝑛 − 1) + 𝑇(𝑛 − 3) + small amount

¡ Similar to Fibonacci numbers, but a bit better, about
¡ 27.9: rather than 27.;: .

¡ 𝑛 = 80: 27.9:=2<=, less than a second.
¡ 𝑛 = 100: 297 = 16 minutes, 2;7=16,000 minutes
¡ So while still exponential, big win for moderate 𝑛

TIME ANALYSIS

IS THIS TIGHT?

¡ I don’t know whether there is any graph where MIS3 is that bad.
¡ Best known MIS algorithm around 2:/< by Robson, building on Tarjan

and Trojanowski. Does much more elaborate case analysis for small
degree vertices

¡ Interesting research question: is there a limit to improvements?
¡ This question= Exponential Time Hypothesis, has interesting

ramifications whether true or false

IS THIS TIGHT?

HOW BACKTRACKING HELPS

D?

C?C?C?C?

D?

B?

A?

B?

D?D?D? D? D?D?

HOW BACKTRACKING HELPS

D?

C?C?C?C?

D?

B?

A?

B?

D?D?D? D? D?D?

X X
X

X

HOW BACKTRACKING HELPS

D?

C?C?C?

B?

A?

B?

D?D?
X X

X
X

ORDER CAN BE ADAPTIVE

B?

D?C?D?

B?

A?

C?

C?D?
X X

X
X

¡ Basic: when constraints would be violated

¡ Subtler: when that choice is dominated by another; the other choice is
at least as likely to lead to a (good) solution (Need “modify-the-
solution” argument)

¡ Branch-and-bound: dynamically track “best-so-far” solution. If
current path cannot do better (using some function that bounds the
achievable best), then we can prune our path.

WHEN CAN WE PRUNE?

¡ Self-similarity: Problem+ choice = smaller problem of same type

¡ If we have self-similarity, it makes recursion in BT (and hence, DP)
very clean.

¡ But if we don’t have it, we can still use BT (and hence DP)
¡ Generalize the problem to keep partial solution
¡ Generalized problem will have self-similarity, original becomes

special case

“SELF-SIMILARITY”?

¡

3-COLORING

Local decision:
What color is A?
Possible answers:
AAA

EXAMPLE

A,A,A
BBB

GGG
FFF

EEEDDDCCC

EXAMPLE

A,A,A
BBB

GGG
FFF

EEEDDDCCC

All answers symmetric,
Just pick A

Implications:
¡ No red B or C
Next: node B

EXAMPLE

BB

GGG
FFF

EEEDDDCC

All answers symmetric,
Just pick B

¡ C must be blue

EXAMPLE

BB

GGG
FF

EEDDC

¡ E must be blue
¡ F must be green

CASE 1: D (CASE 2: D)

BB

GG
F

EDDC

¡ No colors for G,
¡ Failed search

CASE 1: D (CASE 2: D)

BB

F

EDDC

¡ E must be red

CASE 2: D

BB

GG
FF

EDDC

¡ G must be green

CASE 2: D

BB

G
FF

EDDC

¡ F must be red

CASE 2: D

BB

G
F

EDDC

¡ Search succeeded!

CASE 2: D

BB

G
F

EDDC

¡ This approach used partial information about the previous solution to
generalize the problem so we could solve it recursively

¡ CL(u)= list of possible colors for vertex u. Initially, CL(u) is
all three colors, but we’ll delete colors as we make recursive calls

The list 3-coloring problem, L3C(G,CL), adds the constraints that
C(u) must be in CL(u)

PARTIAL INFORMATION

L3C(G,CL)
¡ If |V|=0 return True
¡ If there is any v with |CL(v)|=0 return False
¡ If there is a v with CL(v)={c}, then :
¡ Delete c from CL(u) for each neighbor u of v
¡ Return L3C(G-{v},CL)
¡ If all vertices v have |CL(v)|=3, then pick some v and
¡ Delete R from CL(u) for each neighbor u of v
¡ Return L3C(G-{v},CL)

BACKTRACKING ALGORITHM

¡ Remaining case: the smallest size of CL(u) is 2
¡ Pick v with CL(v)={c_1,c_2}
¡ Let CL_1 be CL(u),

except that we delete c_1 from CL(u) for neighbors u of v
¡ Let CL_2 be CL(u),

except that we delete c_2 from CL(u) for neighbors u of v
¡ IF L3C(G-{v}, CL_1)= True: return True
¡ Return L3C(G-{v}, CL_2)

BACKTRACKING ALGORITHM CONTINUED

BACKTRACKING TIME ANALYSIS

THIS ALGORITHM

G, CL

G-v1,CL1 G-v1,CL2

G-{v1,v2},CL12G-v1-v2,CL11 G-{v1,v3},CL22G-{v1,v3}.CL21

TIME ANALYSIS CONT

¡ Dynamic Programming = Backtracking + Memoization
¡ Memoization = store and re-use, like the Fibonacci algorithm from first class

Two simple ideas, but easy to get confused if you rush:
1. Where is the recursion?
(It disappears into the memoization, like the Fib. example did.)
2. Have I made a decision?
(Only temporarily, like BT)

If you don’t rush, a surprisingly powerful and simple algorithm technique.

One of the most useful ideas around

TOWARDS DYNAMIC PROGRAMMING

