
Master Theorem
• How do you solve a recurrence of the form

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑂 𝑛!

We will use the master theorem.

Summation Lemma

Consider the summation

!
!"#

$

𝑟!

It behaves differently for different values of 𝑟.

Summation Lemma

Consider the summation

!
!"#

$

𝑟!

It behaves differently for different values of 𝑟.

If 𝑟 < 1 then this sum converges. This means that the sum is bounded above by some
constant 𝑐. Therefore

𝑖𝑓 𝑟 < 1, 𝑡ℎ𝑒𝑛 !
!"#

$

𝑟! < 𝑐 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 𝑠𝑜 !
!"#

$

𝑟! ϵ 𝑂(1)

Summation Lemma

Consider the summation

!
!"#

$

𝑟!

It behaves differently for different values of 𝑟.

If 𝑟 = 1 then this sum is just summing 1 over and over n times. Therefore

𝑖𝑓 𝑟 = 1, 𝑡ℎ𝑒𝑛 !
!"#

$

𝑟! = !
!"#

$

1 = 𝑛 + 1 ϵ 𝑂(𝑛)

Summation Lemma

Consider the summation

!
!"#

$

𝑟!

It behaves differently for different values of 𝑟.

If 𝑟 > 1 then this sum is exponential with base 𝑟.

𝑖𝑓 𝑟 > 1, 𝑡ℎ𝑒𝑛 !
!"#

$

𝑟! < 𝑐𝑟$ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛, 𝑠𝑜!
!"#

$

𝑟! ϵ 𝑂 𝑟$ 𝑐 >
𝑟

𝑟 − 1

Summation Lemma

Consider the summation

!
!"#

$

𝑟!

It behaves differently for different values of 𝑟.

!
!"#

$

𝑟! ϵ 9
𝑂 1 𝑖𝑓 𝑟 < 1
𝑂 𝑛 𝑖𝑓 𝑟 = 1
𝑂 𝑟$ 𝑖𝑓 𝑟 > 1

Master Theorem

Master Theorem: If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛:) for some constants
𝑎 > 0, 𝑏 > 1, 𝑑 ≥ 0 ,

Then

𝑇 𝑛 ϵ
𝑂 𝑛: 𝑖𝑓 𝑎 < 𝑏:

𝑂 𝑛: log 𝑛 𝑖𝑓 𝑎 = 𝑏:

𝑂 𝑛;<=! > 𝑖𝑓 𝑎 > 𝑏:

Master Theorem: Solving the recurrence

𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛:)
Size 𝑛

Size 𝑛/𝑏

Size 𝑛/𝑏%

Size 1

Depth log& 𝑛

1 subproblem

𝑎 subproblems

𝑎% subproblems

𝑎'()! $ subproblems

Master Theorem: Solving the recurrence

After 𝑘 levels, there are 𝑎! subproblems, each of size 𝑛/𝑏!.

So, during the 𝑘th level of recursion, the time complexity is

𝑂 $
&"

*
𝑎! = 𝑂 𝑎! $

&"
*

= 𝑂 𝑛*
𝑎
𝑏*

!

Master Theorem: Solving the recurrence

After 𝑘 levels, there are 𝑎! subproblems, each of size 𝑛/𝑏!.

So, during the 𝑘th level, the time complexity is 𝑂 $
&"

*
𝑎! = 𝑂 𝑎! $

&"
*

= 𝑂 𝑛*
𝑎
𝑏*

!

After log& 𝑛 levels, the subproblem size is reduced to 1, which usually is the size
of the base case.

So the entire algorithm is a sum of each level.

𝑇 𝑛 = 𝑂 𝑛* !
!"#

'()! $ 𝑎
𝑏*

!

Master Theorem: Proof

𝑇 𝑛 = 𝑂 𝑛" &
#$%

&'(!) 𝑎
𝑏"

#

Case 1: 𝑎 < 𝑏"

Then we have that *
+"
< 1 and the series converges to a constant so

𝑇 𝑛 = 𝑂 𝑛"

Master Theorem: Proof

𝑇 𝑛 = 𝑂 𝑛" &
#$%

&'(!) 𝑎
𝑏"

#

Case 2: 𝑎 = 𝑏"

Then we have that *
+"
= 1 and so each term is equal to 1

𝑇 𝑛 = 𝑂 𝑛" log+ 𝑛

Master Theorem: Proof

𝑇 𝑛 = 𝑂 𝑛" &
#$%

&'(!) 𝑎
𝑏"

#

Case 2: 𝑎 > 𝑏"

Then the summation is exponential and grows proportional to its last term
*
+"

&'(!)
so

𝑇 𝑛 = 𝑂 𝑛"
𝑎
𝑏"

&'(!)
= 𝑂 𝑛&'(! *

Master Theorem

Theorem: If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛:) for some constants
𝑎 > 0, 𝑏 > 1, 𝑑 ≥ 0 ,

Then

𝑇 𝑛 ϵ
𝑂 𝑛: 𝑖𝑓 𝑎 < 𝑏:

𝑂 𝑛: log 𝑛 𝑖𝑓 𝑎 = 𝑏:

𝑂 𝑛;<=! > 𝑖𝑓 𝑎 > 𝑏:

Top-heavy

Steady-state

Bottom-heavy

Master Theorem Applied to Multiply

The recursion for the runtime of Multiply is
T(n) = 4T(n/2) + cn

So we have that a=4, b=2, and d=1. In this case, 𝑎 > 𝑏: so

𝑇 𝑛 ϵ𝑂 𝑛;<=, F = 𝑂 𝑛G

Not any improvement of grade-school method.

𝑇 𝑛 ϵ
𝑂 𝑛* 𝑖𝑓 𝑎 < 𝑏*

𝑂 𝑛* log 𝑛 𝑖𝑓 𝑎 = 𝑏*

𝑂 𝑛'()! + 𝑖𝑓 𝑎 > 𝑏*

Master Theorem Applied to MultiplyKS

The recursion for the runtime of Multiply is
T(n) = 3T(n/2) + cn

So we have that a=3, b=2, and d=1. In this case, 𝑎 > 𝑏: so

𝑇 𝑛 ϵ𝑂 𝑛;<=, H = 𝑂 𝑛I.KL

An improvement on grade-school method!!!!!!

𝑇 𝑛 ϵ
𝑂 𝑛* 𝑖𝑓 𝑎 < 𝑏*

𝑂 𝑛* log 𝑛 𝑖𝑓 𝑎 = 𝑏*

𝑂 𝑛'()! + 𝑖𝑓 𝑎 > 𝑏*

Poll: What is the fastest known integer
multiplication time?
• 𝑂 𝑛/012

• 𝑂(𝑛 𝑙𝑜𝑔𝑛 (log 𝑙𝑜𝑔𝑛) 3)
• 𝑂(𝑛 𝑙𝑜𝑔𝑛 2^{log∗ 𝑛})
• 𝑂(𝑛 log 𝑛)
• O(n)

Poll: What is the fastest known integer
multiplication time? All have/will be correct
• 𝑂 𝑛/012 Kuratsuba
• 𝑂(𝑛 𝑙𝑜𝑔𝑛 log log 𝑛) Schonhage-Strassen, 1971
• 𝑂(𝑛 𝑙𝑜𝑔𝑛 2^{𝑐 log∗ 𝑛}) Furer, 2007
• 𝑂(𝑛 log 𝑛) Harvey and van der Hoeven, 2019
• O(n), you, tomorrow?

Can we do better than 𝑛!.#$?
• Could any multiplication algorithm have a faster asymptotic

runtime than 𝛩 𝑛5.78 ?
• Any ideas?????

Can we do better than 𝑛!.#$?
• What if instead of splitting the number in half, we split it

into thirds.

• x=
• y=

xL xM

yL yM

xR

yR

Can we do better than 𝑛!.#$?
• What if instead of splitting the number in half, we split it

into thirds.

• 𝑥 = 239/2𝑥; + 29/2𝑥< + 𝑥=
• 𝑦 = 239/2𝑦; + 29/2𝑦< + 𝑦=

Multiplying trinomials
• 𝑎𝑥3 + 𝑏𝑥 + 𝑐 𝑑𝑥3 + 𝑒𝑥 + 𝑓

Multiplying trinomials
• 𝑎𝑥3 + 𝑏𝑥 + 𝑐 𝑑𝑥3 + 𝑒𝑥 + 𝑓
= 𝑎𝑑𝑥> + 𝑎𝑒 + 𝑏𝑑 𝑥2 + 𝑎𝑓 + 𝑏𝑒 + 𝑐𝑑 𝑥3 + 𝑏𝑓 + 𝑐𝑒 𝑥
+ 𝑐𝑓

9 multiplications means 9 recursive calls.
Each multiplication is 1/3 the size of the original.

Multiplying trinomials
• 𝑎𝑥G + 𝑏𝑥 + 𝑐 𝑑𝑥G + 𝑒𝑥 + 𝑓
= 𝑎𝑑𝑥F + 𝑎𝑒 + 𝑏𝑑 𝑥H + 𝑎𝑓 + 𝑏𝑒 + 𝑐𝑑 𝑥G + 𝑏𝑓 + 𝑐𝑒 𝑥 + 𝑐𝑓

9 multiplications means 9 recursive calls.
Each multiplication is 1/3 the size of the original.

𝑇 𝑛 = 9𝑇
𝑛
3 + 𝑂(𝑛)

Multiplying trinomials
• 𝑎𝑥G + 𝑏𝑥 + 𝑐 𝑑𝑥G + 𝑒𝑥 + 𝑓
= 𝑎𝑑𝑥F + 𝑎𝑒 + 𝑏𝑑 𝑥H + 𝑎𝑓 + 𝑏𝑒 + 𝑐𝑑 𝑥G + 𝑏𝑓 + 𝑐𝑒 𝑥 + 𝑐𝑓

𝑇 𝑛 = 9𝑇
𝑛
3 + 𝑂(𝑛)

𝑇 𝑛 ϵ
𝑂 𝑛* 𝑖𝑓 𝑎 < 𝑏*

𝑂 𝑛* log 𝑛 𝑖𝑓 𝑎 = 𝑏*

𝑂 𝑛'()! + 𝑖𝑓 𝑎 > 𝑏*

a=9 9 > 3!
b=3 𝑇 𝑛 = 𝑂 𝑛"#$M %
d=1 𝑇 𝑛 = 𝑂 𝑛&

Multiplying trinomials
• 𝑎𝑥G + 𝑏𝑥 + 𝑐 𝑑𝑥G + 𝑒𝑥 + 𝑓
= 𝑎𝑑𝑥F + 𝑎𝑒 + 𝑏𝑑 𝑥H + 𝑎𝑓 + 𝑏𝑒 + 𝑐𝑑 𝑥G + 𝑏𝑓 + 𝑐𝑒 𝑥 + 𝑐𝑓

• There is a way to reduce from 9 multiplications down to just
5!!!

• Then the recursion becomes
• 𝑇 𝑛 = 5𝑇(𝑛/3) + O(n)

• So by the master theorem

Multiplying trinomials
• 𝑎𝑥G + 𝑏𝑥 + 𝑐 𝑑𝑥G + 𝑒𝑥 + 𝑓
= 𝑎𝑑𝑥F + 𝑎𝑒 + 𝑏𝑑 𝑥H + 𝑎𝑓 + 𝑏𝑒 + 𝑐𝑑 𝑥G + 𝑏𝑓 + 𝑐𝑒 𝑥 + 𝑐𝑓

• There is a way to reduce from 9 multiplications down to just
5!!!

• Then the recursion becomes
• 𝑇 𝑛 = 5𝑇(𝑛/3) + O(n)

• So by the master theorem T(n)=O(𝑛;<=- K) = 𝑂 𝑛I.FH

Dividing into k subproblems
• What happens if we divide into k subproblems each of

size n/k.

• (𝑎#./𝑥#./ + 𝑎#.0𝑥#.0 +⋯𝑎/𝑥 + 𝑎%)(𝑏#./𝑥#./ + 𝑏#.0𝑥#.0 +⋯𝑏/𝑥 + 𝑏%)

• How many terms are there? (multiplications.)

Dividing into k subproblems
• What happens if we divide into k subproblems each of size n/k.

• (𝑎!,-𝑥!,- + 𝑎!,%𝑥!,% +⋯𝑎-𝑥 + 𝑎#)(𝑏!,-𝑥!,- + 𝑏!,%𝑥!,% +⋯𝑏-𝑥 + 𝑏#)

• How many terms are there? (multiplications.)

• There are 𝑘G multiplications. The recursion is
𝑇 𝑛 = 𝑘G𝑇

𝑛
𝑘 + 𝑂 𝑛 ………𝑎 = 𝑘G, 𝑏 = 𝑘, 𝑑 = 1

𝑇 𝑛 = 𝑂(𝑛;<=1 N,) = 𝑂 𝑛G

Cook-Toom algorithm
• In fact, if you split up your number into k equally sized

parts, then you can combine them with 2k-1
multiplications instead of the 𝑘3 individual
multiplications.

• This means that you can get an algorithm that runs in

• 𝑇 𝑛 = (2𝑘 − 1)𝑇(𝑛/𝑘) + O(n)

Cook-Toom algorithm
• In fact, if you split up your number into k equally sized parts,

then you can combine them with 2k-1 multiplications instead
of the 𝑘G individual multiplications.

• This means that you can get an algorithm that runs in

• 𝑇 𝑛 = (2𝑘 − 1)𝑇(𝑛/𝑘) + O(n)

• 𝑇 𝑛 = 𝑂 𝑛
234(,167)
234 1 time!!!!

Cook-Toom algorithm
𝑇 𝑛 = (2𝑘 − 1)𝑇(𝑛/𝑘) + O(n)

• 𝑇 𝑛 = 𝑂 𝑛
!"# $%&'
!"# % time.

• So we can have a near-linear time algorithm if we take
k to be sufficiently large. The O(n) term in the recursion
takes a lot of time the bigger k gets. So is it worth it to
make k very large?

Divide and Conquer Trees
• Let’s say we have a full and balanced binary tree (all

parents have two children and all leaves are on the
bottom level.)

Divide and Conquer Trees
• Notice that each child’s subtree is half of the problem so

we get a nice divide and conquer structure.

Divide and Conquer Trees
• If the tree is uneven, we can still use the same strategy

but we need to take a bit of care when calculating
runtime.

Least common ancestor
• Given a binary tree with 𝑛 vertices, we wish to compute
𝐿𝐶𝐴(𝑥, 𝑦) for each pair of vertices 𝑥, 𝑦.

• 𝐿𝐶𝐴(𝑥, 𝑦) is the least common ancestor of 𝑥 and 𝑦. Or in
other words, the “youngest” common ancestor of 𝑥 and 𝑦.

• For example, the LCA of me and my brother is our parent.
The LCA of me and my uncle is my grandparent (his
parent.) A vertex can be its own ancestor so the LCA of
me and my father is my father.

Least common ancestor
• What pairs of vertices will have the root 𝑟 as their least

common ancestor?

Least common ancestor
• What pairs of vertices will have the root 𝑟 as their least

common ancestor?
• For each vertex 𝑣, set 𝑙𝑐𝑎 𝑣, 𝑟 = 𝑟.
• For each pair of vertices 𝑢, 𝑣 such that 𝑢 is in the left

subtree and 𝑣 is in the right subtree, set 𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟.
• Now what? Are we done?
• Recurse on the left and right subtrees!!!!!

Pseudocode
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)

Pseudocode (runtime)
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)

If the binary tree is balanced, then
each recursive call is of size $,-%
or roughly half.
How long does the non-recursive
part take?

Pseudocode (runtime)
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)

If the binary tree is balanced, then
each recursive call is of size $,-%
or roughly half.
How long does the non-recursive
part take?

𝑇 𝑛 = 2𝑇
𝑛 − 1
2

+ O n%

Using the master theorem with
a=2, b=2, d=2,

𝑇 𝑛 = 𝑂 𝑛%

Pseudocode (runtime uneven)
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)

If the binary tree is uneven then
the runtime recurrence is

𝑇 𝑛 = 𝑇 𝐿 + 𝑇 𝑅 + 𝑂 𝐿𝑅
Where 𝐿 is the size of the left
subrtree and 𝑅 is the size of the
right subtree.

What do you think the total
runtime will be? Take a guess and
we can check it!!!

Uneven DC runtime
• 𝑇 𝑛 = 𝑇 𝐿 + 𝑇 R + O LR
• We guess that it would take 𝑂 𝑛3 . So let’s try to prove

this using induction.
• Claim: 𝑇 𝑛 ≤ 𝑐𝑛3 for all 𝑛 ≥ 1 and for some constant 𝑐

that is bigger than 𝑇(1) and bigger than the coefficient in
the 𝑂(𝐿𝑅) term.

Uneven DC runtime
• Base case. 𝑇 1 < 𝑐(13). True by choice of 𝑐.
• Suppose that for some 𝑛 > 1, 𝑇 𝑘 < 𝑐𝑘3 for all 𝑘 such

that 1 ≤ 𝑘 < 𝑛.
• Then

𝑇 𝑛 < 𝑇 𝐿 + 𝑇 𝑅 + 𝑐𝐿𝑅 ≤ 𝑐𝐿3 + 𝑐𝑅3 + 𝑐𝐿𝑅
< 𝑐𝐿3 + 𝑐𝑅3 + 2𝑐𝐿𝑅 = 𝑐 𝐿 + 𝑅 3 = 𝑐 𝑛 − 1 3 < 𝑐𝑛3

Make Heap
• Problem: Given a list of n elements, form a heap

containing all elements.

Divide and conquer strategy
• Assume 𝑛 = 2D − 1. (Add blank elements if needed)

• Divide the list into two lists of size 9E53 and a left-over
element

• Make heaps with both (in sub-trees of root)
• Put left-over element at root.
• “Trickle down” top element to reinstate heap property

Time analysis
• To solve one problem, we solve two problems of half the

size, and then spend constant time per depth of the tree.

• T(n) = T() + O()

Time analysis
• To solve one problem, we solve two problems of half the

size, and then spend constant time per depth of the tree.

• T(n) = 2 T(n/2) + O(log n)
• Doesn’t fit master theorem.

Time analysis: sandwiching
• To solve one problem, we solve two problems of half the

size, and then spend constant time per depth of the tree.

• T(n) = 2 T(n/2) + O(log n)

• Define L(n) =2 T(n/2) + O(1), H(n) = 2T(n/2) +𝑂 𝑛
'
$

• L(n) < T(n) < H(n)
• Apply Master Theorem: Both L(n) and H(n) are O(n),
• So T(n) is O(n)

minimum distance
• Given a list of coordinates, [𝑥5, 𝑦5 , … , 𝑥9, 𝑦9], find the

distance between the closest pair.

• Brute force solution?
• min = 0
• for i from 1 to n-1:
• for j from i+1 to n:

• if min > distance(𝑥9 , 𝑦9 , (𝑥: , 𝑦:))

• return min

Example
𝑦

𝑥𝑥#

Example
𝑦

𝑥
𝑥#

Divide and conquer
• Partition the points by x, according to whether they are to

the left or right of the median
• Recursively find the minimum distance points on the two

sides.
• Need to compare to the smallest “cross distance”

between a point on the left and a point on the right
• Only need to look at “close” points

Combine
• How will we use this information to find the distance of

the closest pair in the whole set?
• We must consider if there is a closest pair where one

point is in the left half and one is in the right half.
• How do we do this?
• Let 𝑑 = min(𝑑;, 𝑑=) and compare only the points (𝑥H, 𝑦H)

such that 𝑥I − 𝑑 ≤ 𝑥H and 𝑥H ≤ 𝑥I + 𝑑.

Example
𝑦

𝑥
𝑥#

𝑃;

Combine
• How will we use this information to find the distance of the

closest pair in the whole set?
• We must consider if there is a closest pair where one point is

in the left half and one is in the right half.
• How do we do this?
• Let 𝑑 = min(𝑑V, 𝑑W) and compare only the points (𝑥X , 𝑦X) such

that 𝑥Y − 𝑑 ≤ 𝑥X and 𝑥X ≤ 𝑥Y + 𝑑.

• Worst case, how many points could this be?

• Given a point 𝑥, 𝑦 ∈ 𝑃!, let’s look in a 2𝑑×𝑑 rectangle with that point
at its upper boundary:

• There could not be more than 8 points total because if we divide the rectangle into 8 !
"
× !

"
squares then there

can never be more than one point per square.
• Why???

Combine step

• So instead of comparing (𝑥, 𝑦) with every other point in 𝑃# we only have to compare it with at
most a constant c points lower than it (smaller y)

• To gain quick access to these points, let’s sort the points in 𝑃# by 𝑦 values.
• The points above must be in the c points before our current point in this sorted list

• Now, if there are 𝑘 vertices in 𝑃# we have to sort the vertices in 𝑂(𝑘log 𝑘) time and make at
most c𝑘 comparisons in 𝑂(𝑘) time for a total combine step of 𝑂 𝑘 log 𝑘 .

• But we said in the worst case, there are 𝑛 vertices in 𝑃# and so worst case, the combine step
takes 𝑂(𝑛 log 𝑛) time.

Combine step

• But we said in the worst case, there are 𝑛 vertices in 𝑃# and so worst case, the combine step
takes 𝑂(𝑛 log 𝑛) time.

• Runtime recursion:
𝑇 𝑛 = 2𝑇

𝑛
2
+ 𝑂(𝑛 log 𝑛)

This is T(n) = O(n (log n)^2)

Pre-processing : Sort by both x and y, keep pointers between sorted lists Maintain sorting in
recursive calls reduces to T(n) =2 T(n/2) +O(n), so T(n) is O(n log n)

Time analysis

