L
Master Theorem

- How do you solve a recurrence of the form
n
_ = d
T(n) = aT (b) + O(n)

We will use the master theorem.

e
Summation Lemma

Consider the summation

n
2.
k=0

It behaves differently for different values of r._

e
Summation Lemma

Consider the summation

n
2,
k=0
It behaves differently for different values of r.

-then this sum converges. This means that the sum is bounded above by some

constant c. Therefore
n n

if r<l1, then Zrk <c for all n so Zrke 0(1)

k=0 k=0

e
Summation Lemma

Consider the summation

n
2,
k=0
It behaves differently for different values of r.

-then this sum is just summing 1 over and over n times. Therefore
n

n
if r=1, theank=21=n+160(n)
k=0

k=0

e
Summation Lemma

Consider the summation

n
2,
k=0
It behaves differently for different values of r.

-then this sum is exponential with base r.
n

n

r
if r>1,then Z rk < cr™ for alln, SOZ rke o™ (c >)

k=0 k=0

e
Summation Lemma

Consider the summation

n
2.
k=0

It behaves differently for different values of r._

0(1) if r<i1

Zrke 0(n) if r=1
k=0 o(r™) if r>1

SR
Master Theorem

Master Theorem: If T(n) = aT(n/b) + 0(n%) for some constants
a>0,b>1,d=0,

Then
p
0(n%) if a<b?

T(n)e4 0(nlogn) if a = b
O(n'°8») if a > b?

\

Master Theorem: Solving the recurrence

T(n) = aT(n/b) + 0(n%)

1 subproblem Size n

A
a subproblems Size n/b
Size n/b?
a? subproblems
Depth log, n
/“\‘ /“} e e e e J]CB Size 1
%

al°8» ™ subproblems

L
Master Theorem: Solving the recurrence

After k levels, there are a* subproblems, each of size n/b¥.

So, during the kth level of recursion, the time complexity is

o)) e =0 (@ G))
~o(n(z2))

Master Theorem: Solving the recurrence

After k levels, there are a* subproblems, each of size n/b*.

d d
So, during the kth level, the time complexity is O <(1) >ak =0 (ak (1))

=o(n(Gs))

After log, n levels, the subproblem size is reduced to 1, which usually is the size
of the base case.

So the entire algorithm is a sum of each level.
logp n

T(n) = 0| n¢ Z (I;id)k

k=0

e
Master Theorem: Proof

logp n q <k
T(n) = 0| n¢ Z (b_d)
k=0
Case 1: a < b?

Then we have that ,;Ld < 1 and the series converges to a constant so
T(n) = 0(n%)

e
Master Theorem: Proof

k=0

logp n q <k
T(n) = 0| n¢ Z (b_d)
Case 2: a = b“

Then we have that ,;Ld = 1 and so each term is equal to 1
T(n) = 0(n%log, n)

e
Master Theorem: Proof

logp n q <k
T(n) = 0| n¢ Z (b_d)
k=0
Case 2: a > b¢

Then the summation is exponential and grows proportional to its last term

a \1og8p 1
(Ga) so

T(n) =0 (nd (l%)logb n) — o(nlogb a)

SR
Master Theorem

Theorem: If T(n) = aT(n/b) + 0(n%) for some constants
a>0,b>1,d =0,

Then

rO(nd) lf a < bd Top-heavy
T(n)e< O(nd log n) lf a = bd Steady-state
O(n'°8> %) if a > b4

Bottom-heavy

\

Master Theorem Applied to Multiply

The recursion for the runtime of Multiply is
T(n) =4T(n/2) + cn

So we have that a=4, b=2, and d=1. In this case, a
T(n)e0(n'°82%) = 0(n?)

Not any improvement of grade-school method.

(O(nd) if a<b?

T(n)e{ 0(n%logn) if a = b?

kO(nlogb @) if a>b?

> b% so

Master Theorem Applied to MultiplyKS

fO(nd) if a<b®

T(n)e{ 0(n?logn) if a = b?

The recursion for the runtime of Multiply is 0(n°8) if a > b
\

T(n) =3T(n/2) + cn
So we have that a=3, b=2, and d=1. In this case, a > b? so

T(n)EO(nlogz 3) — 0(Tl1'58)

B e ...
Poll: What is the fastest known integer

multiplication time?
O(nlogB)

- 0(nlogn (log(logn))?)

- 0(nlogn 2™{log™ n})

- O(nlogn)

- O(n)

Poll: What is the fastest known integer
multiplication time? All have/will be correct
0(n'°93) Kuratsuba
O(nlogn loglogn) Schonhage-Strassen, 1971
O(nlogn 2*{clog™n}) Furer, 2007
O(nlogn) Harvey and van der Hoeven, 2019
O(n), you, tomorrow?

L
Can we do better than nl->8?

- Could any multiplication algorithm have a faster asymptotic
runtime than @ (n'°8)?

Can we do better than nl->8?

- What if instead of splitting the number in half, we split it
into thirds.

- x= I T T
. y=- I T T

Can we do better than nl->8?

- What if instead of splitting the number in half, we split it
into thirds.

cx = 223x; + 2™3%,, + xp
Yy =22y + 2™y + yp

e
Multiplying trinomials
- (ax? + bx + c)(dx? + ex +)

Multiplying trinomials

(ax? + bx + ¢)(dx? + ex + f)
= adx* + (ae + bd)x3 + (af + be + cd)x? + (bf + ce)x
+ cf

9 multiplications means 9 recursive calls.
Each multiplication is 1/3 the size of the original.

..., B i EEhF-:HLl
Multiplying trinomials

- (ax? + bx + c)(dx* + ex + f)
= adx* + (ae + bd)x> + (af + be + cd)x* + (bf + ce)x + cf

9 multiplications means 9 recursive calls.
Each multiplication is 1/3 the size of the original.

T(n) =9T (g) +0(n)

..., B i EEhF-:HLl
Multiplying trinomials

- (ax? + bx + c)(dx* + ex + f)
= adx* + (ae + bd)x> + (af + be + cd)x? + (bf + ce)x + cf

T(n) =9T (g) + 0(n)

a=9 9> 31
b=3 T(n) = 0(n'°83 9)
d=1 T(n) = 0(n%)

Multiplying trinomials

(ax? + bx + c)(dx* + ex + f)
= adx* + (ae + bd)x> + (af + be + cd)x? + (bf + ce)x + cf

There is a way to reduce from 9 multiplications down to just
Sl

Then the recursion becomes
T(n) =5T(n/3) + O(n)

So by the master theorem

Multiplying trinomials

(ax? + bx + c)(dx* + ex + f)
= adx* + (ae + bd)x> + (af + be + cd)x? + (bf + ce)x + cf

There is a way to reduce from 9 multiplications down to just
Sl

Then the recursion becomes
T(n) =5T(n/3) + O(n)

So by the master theorem T(n)=0(n!°83 %) = 0(n'*3)

..., B i EEhF-:HLl
Dividing into k subproblems

- What happens if we divide into k subproblems each of
size n/k.

s (A1 x® Y+ ap_x® % 4 agx + ag) (bro1 XY + by x*7% + - byx + by)

- How many terms are there? (multiplications.)

Dividing into k subproblems

What happens if we divide into k subproblems each of size n/k.
(Ao X+ ap_x* 2 + a4+ ag) (b1 x* ™1 + by _,x*7% 4+ --- byx + by)
How many terms are there? (multiplications.)

There are k% multiplications. The recursion is

n
T(n)=k2T(E)+0(n) a=k%Lb=kd=1

T(n) = 0(nl°8c¥*) = 0(n?)

Cook-Toom algorithm

In fact, if you split up your number into k equally sized
parts, then you can combine them with 2k-1
multiplications instead of the k# individual
multiplications.

This means that you can get an algorithm that runs in

T(n) = (2k — DT (n/k) + O(n)

Cook-Toom algorithm

In fact, if you split up your number into k equally sized parts,
then you can combine them with 2k-1 multiplications instead
of the k? individual multiplications.

This means that you can get an algorithm that runs in
T(n) = 2k — 1)T(n/k) + O(n)

log(2k—-1)

T(n)=0(n log k)time!!!!

Cook-Toom algorithm
T(n) = (2k — DT (n/k) + O(n)

log 2k—-1

T(n) = O(nw) time.

So we can have a near-linear time algorithm if we take
k to be sufficiently large. The O(n) term in the recursion

takes a lot of time the bigger k gets. So is it worth it to
make K very large?

Divide and Conquer Trees

Let’'s say we have a full and balanced binary tree (all
parents have two children and all leaves are on the
bottom level.)

R —_e_lLBti=zrriiprt.
Divide and Conquer Trees

- Notice that each child’s subtree is half of the problem so
we get a nice divide and conquer structure.

Divide and Conquer Trees

If the tree is uneven, we can still use the same strategy
but we need to take a bit of care when calculating
runtime.

| east common ancestor

Given a binary tree with n vertices, we wish to compute
LCA(x,y) for each pair of vertices x, y.

LCA(x,y) is the least common ancestor of x and y. Or in
other words, the “youngest” common ancestor of x and y.

For example, the LCA of me and my brother is our parent.
The LCA of me and my uncle is my grandparent (his
parent.) A vertex can be its own ancestor so the LCA of
me and my father is my father.

e
| east common ancestor

- What pairs of vertices will have the root r as their least
common ancestor?

| east common ancestor

What pairs of vertices will have the root r as their least
common ancestor?

For each vertex v, set lca(v,r) = .

For each pair of vertices u, v such that u is in the left
subtree and v is in the right subtree, set lca(u,v) =r.

Now what? Are we done?

L
Pseudocode

Def LCA(r):

Lsubtree = explore(r.Ic)

Rsubtree = explore(r.rc)

for all vertices u in Lsubtree:
lca(u,r) =r

for all vertices v in Rsubtree:
lca(r,v) =r

for all vertices u in Lsubtree:
for all vertices v in Rsubtree:

lca(u,v) =r
LCA(r.Ic)
LCA(r.rc)

..., B i EEhF-:HLl
Pseudocode (runtime)

If the binary tree is balanced, then
each recursive call is of size 7%1
or roughly half.

How long does the non-recursive
part take?

Def LCA(r):

Lsubtree = explore(r.Ic)

Rsubtree = explore(r.rc)

for all vertices u in Lsubtree:
lca(u,r) =r

for all vertices v in Rsubtree:
lca(r,v) =r

for all vertices u in Lsubtree:
for all vertices v in Rsubtree:

lca(u,v) =r
LCA(r.Ic)
LCA(r.rc)

..., B i EEhF-:HLl
Pseudocode (runtime)

If the binary tree is balanced, then
each recursive call is of size ’%1
or roughly half.

How long does the non-recursive

Def LCA(r):
Lsubtree = explore(r.Ic)
Rsubtree = explore(r.rc)
for all vertices u in Lsubtree:

part take?
lca(u,r) =r
for all vertices v in Rsubtree: n—1
calr,v) — 1 T(n) =27 (=) + 0(n?)
for all vertices u in Lsubtree:
for all vertices v in Rsubtree: Using the master theorem with
lca(u,v) =r a=2, b=2, d=2,

LCA(r.Ilc) T(n) = O(le)
LCA(r.rc)

..., B i EEhF-:HLl
Pseudocode (runtime uneven)

If the binary tree is uneven then

Def LCA(r): :)
the runtime recurrence is
Lsubtree = explore(r.Ic) T(n) = T(L) + T(R) + O(LR)
Rsubtree = explore(r.rc) Where L is the size of the left
for all vertices u in Lsubtree: subrtree and R is the size of the
lca(u,r) =r right subtree.

for all vertices v in Rsubtree:

lca(r,v) =71 What do you think the total
runtime will be? Take a guess and
we can check it!!!

for all vertices u in Lsubtree:
for all vertices v in Rsubtree:
lca(u,v) =r
LCA(r.Ic)
LCA(r.rc)

Uneven DC runtime

T(n) =T()+ T(R) + O(LR)
We guess that it would take 0(n?). So let’s try to prove
this using induction.

Claim: T(n) < cn? for all n > 1 and for some constant c
that is bigger than T (1) and bigger than the coefficient in
the O(LR) term.

Uneven DC runtime

Base case. T(1) < ¢(1%). True by choice of c.

Suppose that for some n > 1, T(k) < ck? for all k such
that1 < k < n.
Then
T(n) <T(L) +T(R)+ cLR < cL? + cR? + cLR
< cL?+ cR? 4+ 2cLR = c(L+ R)? = c(n—1)? < cn?

R —_e_lLBti=zrriiprt.
Make Heap

- Problem: Given a list of n elements, form a heap
containing all elements.

Divide and conquer strategy

Assume n = 2% — 1. (Add blank elements if needed)

Divide the list into two lists of size n7—1 and a left-over
element

Make heaps with both (in sub-trees of root)
Put left-over element at root.
“Trickle down” top element to reinstate heap property

e s .6 i A’
Time analysis

- To solve one problem, we solve two problems of half the
size, and then spend constant time per depth of the tree.

~T(n)=T() +0O()

Time analysis

To solve one problem, we solve two problems of half the
size, and then spend constant time per depth of the tree.

T(n)= 2T(n/2) +0O(logn)
Doesn’t fit master theorem.

Time analysis: sandwiching

To solve one problem, we solve two problems of half the
size, and then spend constant time per depth of the tree.

T(n)= 2T(n/2) +0O(logn)

Define L(n) =2 T(n/2) + O(1), H(n) = 2T(n/2) +0(n&})
L(n) < T(n) < H(n)

Apply Master Theorem: Both L(n) and H(n) are O(n),
So T(n) is O(n)

minimum distance

Given a list of coordinates, [(x1, 1), ..., (x5, ¥)], find the
distance between the closest pair.

Brute force solution?
min =0
for i from 1 to n-1:

for j from i+1 to n:
if min > distance((x;, ¥;), (xj,y;))

return min

Divide and conquer

Partition the points by x, according to whether they are to
the left or right of the median

Recursively find the minimum distance points on the two
sides.

Need to compare to the smallest “cross distance”
between a point on the left and a point on the right

Only need to look at “close” points

L
Combine

- How will we use this information to find the distance of
the closest pair in the whole set?

- We must consider if there is a closest pair where one
point is in the left half and one is in the right half.

- How do we do this?

- Let d = min(d;, dg) and compare only the points (x;, y;)
such that x,,, —d < x; and x; < x,,, + d.

L
Combine

- How will we use this information to find the distance of the
closest pair in the whole set?

- We must consider if there is a closest pair where one point is
in the left half and one is in the right half.

- How do we do this?

- Let d = min(d;, dg) and compare only the points (x;, y;) such
that x,, —d < x; and x; < x,,, + d.

- Worst case, how many points could this be?

R —_e_lLBti=zrriiprt.
Combine step

- Given a point (x,y) € B, let’'s look in a 2d xd rectangle with that point
at its upper boundary:

v

- There could not be more than 8 points total because if we divide the rectangle into 8 % xg squares then there
can never be more than one point per square.
- Why???

R —_e_lLBti=zrriiprt.
Combine step

- So instead of comparing (x, y) with every other point in B,, we only have to compare it with at
most a constant ¢ points lower than it (smaller y)

- To gain quick access to these points, let’s sort the points in B,, by y values.
- The points above must be in the ¢ points before our current point in this sorted list

- Now, if there are k vertices in P,, we have to sort the vertices in O(klog k) time and make at
most ck comparisons in 0 (k) time for a total combine step of O(k logk).

- But we said in the worst case, there are n vertices in P,, and so worst case, the combine step
takes O(nlogn) time.

e s .6 i A’
Time analysis

- But we said in the worst case, there are n vertices in P,, and so worst case, the combine step
takes O(nlogn) time.

- Runtime recursion:
T(n) = 2T (E) + O(nlogn)
2
This is T(n) = O(n (log n)*2)

Pre-processing : Sort by both x and y, keep pointers between sorted lists Maintain sorting in
recursive calls reduces to T(n) =2 T(n/2) +O(n), so T(n) is O(n log n)

