
Master Theorem
• How do you solve a recurrence of the form

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑂 𝑛!

We will use the master theorem.



Summation Lemma

Consider the summation

!
!"#

$

𝑟!

It behaves differently for different values of 𝑟.



Summation Lemma

Consider the summation

!
!"#

$

𝑟!

It behaves differently for different values of 𝑟.

If 𝑟 < 1 then this sum converges. This means that the sum is bounded above by some 
constant 𝑐. Therefore

𝑖𝑓 𝑟 < 1, 𝑡ℎ𝑒𝑛 !
!"#

$

𝑟! < 𝑐 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 𝑠𝑜 !
!"#

$

𝑟! ϵ 𝑂(1)



Summation Lemma

Consider the summation

!
!"#

$

𝑟!

It behaves differently for different values of 𝑟.

If 𝑟 = 1 then this sum is just summing 1 over and over n times. Therefore

𝑖𝑓 𝑟 = 1, 𝑡ℎ𝑒𝑛 !
!"#

$

𝑟! = !
!"#

$

1 = 𝑛 + 1 ϵ 𝑂(𝑛)



Summation Lemma

Consider the summation

!
!"#

$

𝑟!

It behaves differently for different values of 𝑟.

If 𝑟 > 1 then this sum is exponential with base 𝑟.

𝑖𝑓 𝑟 > 1, 𝑡ℎ𝑒𝑛 !
!"#

$

𝑟! < 𝑐𝑟$ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛, 𝑠𝑜!
!"#

$

𝑟! ϵ 𝑂 𝑟$ 𝑐 >
𝑟

𝑟 − 1



Summation Lemma

Consider the summation

!
!"#

$

𝑟!

It behaves differently for different values of 𝑟.

!
!"#

$

𝑟! ϵ 9
𝑂 1 𝑖𝑓 𝑟 < 1
𝑂 𝑛 𝑖𝑓 𝑟 = 1
𝑂 𝑟$ 𝑖𝑓 𝑟 > 1



Master Theorem

Master Theorem: If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛:) for some constants 
𝑎 > 0, 𝑏 > 1, 𝑑 ≥ 0 ,

Then

𝑇 𝑛 ϵ
𝑂 𝑛: 𝑖𝑓 𝑎 < 𝑏:

𝑂 𝑛: log 𝑛 𝑖𝑓 𝑎 = 𝑏:

𝑂 𝑛;<=! > 𝑖𝑓 𝑎 > 𝑏:



Master Theorem: Solving the recurrence

𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛:)
Size 𝑛

Size 𝑛/𝑏

Size 𝑛/𝑏%

Size 1

Depth log& 𝑛

1 subproblem

𝑎 subproblems

𝑎% subproblems

𝑎'()! $ subproblems



Master Theorem: Solving the recurrence

After 𝑘 levels, there are 𝑎! subproblems, each of size 𝑛/𝑏!.

So, during the 𝑘th level of recursion, the time complexity is

𝑂 $
&"

*
𝑎! = 𝑂 𝑎! $

&"
*

= 𝑂 𝑛*
𝑎
𝑏*

!



Master Theorem: Solving the recurrence

After 𝑘 levels, there are 𝑎! subproblems, each of size 𝑛/𝑏!.

So, during the 𝑘th level, the time complexity is 𝑂 $
&"

*
𝑎! = 𝑂 𝑎! $

&"
*

= 𝑂 𝑛*
𝑎
𝑏*

!

After log& 𝑛 levels, the subproblem size is reduced to 1, which usually is the size 
of the base case.

So the entire algorithm is a sum of each level.

𝑇 𝑛 = 𝑂 𝑛* !
!"#

'()! $ 𝑎
𝑏*

!



Master Theorem: Proof

𝑇 𝑛 = 𝑂 𝑛" &
#$%

&'(! ) 𝑎
𝑏"

#

Case 1: 𝑎 < 𝑏"

Then we have that *
+"
< 1 and the series converges to a constant so

𝑇 𝑛 = 𝑂 𝑛"



Master Theorem: Proof

𝑇 𝑛 = 𝑂 𝑛" &
#$%

&'(! ) 𝑎
𝑏"

#

Case 2: 𝑎 = 𝑏"

Then we have that *
+"
= 1 and so each term is equal to 1

𝑇 𝑛 = 𝑂 𝑛" log+ 𝑛



Master Theorem: Proof

𝑇 𝑛 = 𝑂 𝑛" &
#$%

&'(! ) 𝑎
𝑏"

#

Case 2: 𝑎 > 𝑏"

Then the summation is exponential and grows proportional to its last term 
*
+"

&'(! )
so

𝑇 𝑛 = 𝑂 𝑛"
𝑎
𝑏"

&'(! )
= 𝑂 𝑛&'(! *



Master Theorem

Theorem: If 𝑇(𝑛) = 𝑎𝑇(𝑛/𝑏) + 𝑂(𝑛:) for some constants 
𝑎 > 0, 𝑏 > 1, 𝑑 ≥ 0 ,

Then

𝑇 𝑛 ϵ
𝑂 𝑛: 𝑖𝑓 𝑎 < 𝑏:

𝑂 𝑛: log 𝑛 𝑖𝑓 𝑎 = 𝑏:

𝑂 𝑛;<=! > 𝑖𝑓 𝑎 > 𝑏:

Top-heavy

Steady-state

Bottom-heavy



Master Theorem Applied to Multiply

The recursion for the runtime of Multiply is 
T(n) = 4T(n/2) + cn

So we have that a=4, b=2, and d=1. In this case, 𝑎 > 𝑏: so

𝑇 𝑛 ϵ𝑂 𝑛;<=, F = 𝑂 𝑛G

Not any improvement of grade-school method.

𝑇 𝑛 ϵ
𝑂 𝑛* 𝑖𝑓 𝑎 < 𝑏*

𝑂 𝑛* log 𝑛 𝑖𝑓 𝑎 = 𝑏*

𝑂 𝑛'()! + 𝑖𝑓 𝑎 > 𝑏*



Master Theorem Applied to MultiplyKS

The recursion for the runtime of Multiply is 
T(n) = 3T(n/2) + cn

So we have that a=3, b=2, and d=1. In this case, 𝑎 > 𝑏: so

𝑇 𝑛 ϵ𝑂 𝑛;<=, H = 𝑂 𝑛I.KL

An improvement on grade-school method!!!!!!

𝑇 𝑛 ϵ
𝑂 𝑛* 𝑖𝑓 𝑎 < 𝑏*

𝑂 𝑛* log 𝑛 𝑖𝑓 𝑎 = 𝑏*

𝑂 𝑛'()! + 𝑖𝑓 𝑎 > 𝑏*



Poll:  What is the fastest known integer 
multiplication time?
• 𝑂 𝑛/012

• 𝑂(𝑛 𝑙𝑜𝑔𝑛 (log 𝑙𝑜𝑔𝑛) 3)
• 𝑂(𝑛 𝑙𝑜𝑔𝑛 2^{log∗ 𝑛})
• 𝑂(𝑛 log 𝑛)
• O(n)



Poll:  What is the fastest known integer 
multiplication time? All have/will be correct
• 𝑂 𝑛/012 Kuratsuba    
• 𝑂(𝑛 𝑙𝑜𝑔𝑛 log log 𝑛 ) Schonhage-Strassen, 1971
• 𝑂(𝑛 𝑙𝑜𝑔𝑛 2^{𝑐 log∗ 𝑛}) Furer, 2007
• 𝑂(𝑛 log 𝑛) Harvey and van der Hoeven, 2019
• O(n), you, tomorrow?  



Can we do better than 𝑛!.#$?
• Could any multiplication algorithm have a faster asymptotic 

runtime than 𝛩 𝑛5.78 ? 
• Any ideas?????



Can we do better than 𝑛!.#$?
• What if instead of splitting the number in half, we split it 

into thirds.

• x=
• y=

xL xM

yL yM

xR

yR



Can we do better than 𝑛!.#$?
• What if instead of splitting the number in half, we split it 

into thirds.

• 𝑥 = 239/2𝑥; + 29/2𝑥< + 𝑥=
• 𝑦 = 239/2𝑦; + 29/2𝑦< + 𝑦=



Multiplying trinomials
• 𝑎𝑥3 + 𝑏𝑥 + 𝑐 𝑑𝑥3 + 𝑒𝑥 + 𝑓



Multiplying trinomials
• 𝑎𝑥3 + 𝑏𝑥 + 𝑐 𝑑𝑥3 + 𝑒𝑥 + 𝑓
= 𝑎𝑑𝑥> + 𝑎𝑒 + 𝑏𝑑 𝑥2 + 𝑎𝑓 + 𝑏𝑒 + 𝑐𝑑 𝑥3 + 𝑏𝑓 + 𝑐𝑒 𝑥
+ 𝑐𝑓

9 multiplications means 9 recursive calls.
Each multiplication is 1/3 the size of the original.



Multiplying trinomials
• 𝑎𝑥G + 𝑏𝑥 + 𝑐 𝑑𝑥G + 𝑒𝑥 + 𝑓
= 𝑎𝑑𝑥F + 𝑎𝑒 + 𝑏𝑑 𝑥H + 𝑎𝑓 + 𝑏𝑒 + 𝑐𝑑 𝑥G + 𝑏𝑓 + 𝑐𝑒 𝑥 + 𝑐𝑓

9 multiplications means 9 recursive calls.
Each multiplication is 1/3 the size of the original.

𝑇 𝑛 = 9𝑇
𝑛
3 + 𝑂(𝑛)



Multiplying trinomials
• 𝑎𝑥G + 𝑏𝑥 + 𝑐 𝑑𝑥G + 𝑒𝑥 + 𝑓
= 𝑎𝑑𝑥F + 𝑎𝑒 + 𝑏𝑑 𝑥H + 𝑎𝑓 + 𝑏𝑒 + 𝑐𝑑 𝑥G + 𝑏𝑓 + 𝑐𝑒 𝑥 + 𝑐𝑓

𝑇 𝑛 = 9𝑇
𝑛
3 + 𝑂(𝑛)

𝑇 𝑛 ϵ
𝑂 𝑛* 𝑖𝑓 𝑎 < 𝑏*

𝑂 𝑛* log 𝑛 𝑖𝑓 𝑎 = 𝑏*

𝑂 𝑛'()! + 𝑖𝑓 𝑎 > 𝑏*

a=9 9 > 3!
b=3 𝑇 𝑛 = 𝑂 𝑛"#$M %
d=1 𝑇 𝑛 = 𝑂 𝑛&



Multiplying trinomials
• 𝑎𝑥G + 𝑏𝑥 + 𝑐 𝑑𝑥G + 𝑒𝑥 + 𝑓
= 𝑎𝑑𝑥F + 𝑎𝑒 + 𝑏𝑑 𝑥H + 𝑎𝑓 + 𝑏𝑒 + 𝑐𝑑 𝑥G + 𝑏𝑓 + 𝑐𝑒 𝑥 + 𝑐𝑓

• There is a way to reduce from 9 multiplications down to just 
5!!!

• Then the recursion becomes
• 𝑇 𝑛 = 5𝑇(𝑛/3) + O(n)

• So by the master theorem



Multiplying trinomials
• 𝑎𝑥G + 𝑏𝑥 + 𝑐 𝑑𝑥G + 𝑒𝑥 + 𝑓
= 𝑎𝑑𝑥F + 𝑎𝑒 + 𝑏𝑑 𝑥H + 𝑎𝑓 + 𝑏𝑒 + 𝑐𝑑 𝑥G + 𝑏𝑓 + 𝑐𝑒 𝑥 + 𝑐𝑓

• There is a way to reduce from 9 multiplications down to just 
5!!!

• Then the recursion becomes
• 𝑇 𝑛 = 5𝑇(𝑛/3) + O(n)

• So by the master theorem T(n)=O(𝑛;<=- K) = 𝑂 𝑛I.FH



Dividing into k subproblems
• What happens if we divide into k subproblems each of 

size n/k.

• (𝑎#./𝑥#./ + 𝑎#.0𝑥#.0 +⋯𝑎/𝑥 + 𝑎%)(𝑏#./𝑥#./ + 𝑏#.0𝑥#.0 +⋯𝑏/𝑥 + 𝑏%)

• How many terms are there? (multiplications.)



Dividing into k subproblems
• What happens if we divide into k subproblems each of size n/k.

• (𝑎!,-𝑥!,- + 𝑎!,%𝑥!,% +⋯𝑎-𝑥 + 𝑎#)(𝑏!,-𝑥!,- + 𝑏!,%𝑥!,% +⋯𝑏-𝑥 + 𝑏#)

• How many terms are there? (multiplications.)

• There are 𝑘G multiplications. The recursion is 
𝑇 𝑛 = 𝑘G𝑇

𝑛
𝑘 + 𝑂 𝑛 ………𝑎 = 𝑘G, 𝑏 = 𝑘, 𝑑 = 1

𝑇 𝑛 = 𝑂(𝑛;<=1 N,) = 𝑂 𝑛G



Cook-Toom algorithm
• In fact, if you split up your number into k equally sized 

parts, then you can combine them with 2k-1 
multiplications instead of the 𝑘3 individual 
multiplications.

• This means that you can get an algorithm that runs in

• 𝑇 𝑛 = (2𝑘 − 1)𝑇(𝑛/𝑘) + O(n)



Cook-Toom algorithm
• In fact, if you split up your number into k equally sized parts, 

then you can combine them with 2k-1 multiplications instead 
of the 𝑘G individual multiplications.

• This means that you can get an algorithm that runs in

• 𝑇 𝑛 = (2𝑘 − 1)𝑇(𝑛/𝑘) + O(n)

• 𝑇 𝑛 = 𝑂 𝑛
234(,167)
234 1 time!!!!



Cook-Toom algorithm
𝑇 𝑛 = (2𝑘 − 1)𝑇(𝑛/𝑘) + O(n)

• 𝑇 𝑛 = 𝑂 𝑛
!"# $%&'
!"# % time.

• So we can have a near-linear time algorithm if we take 
k to be sufficiently large. The O(n) term in the recursion 
takes a lot of time the bigger k gets. So is it worth it to 
make k very large?



Divide and Conquer Trees
• Let’s say we have a full and balanced binary tree (all 

parents have two children and all leaves are on the 
bottom level.) 



Divide and Conquer Trees
• Notice that each child’s subtree is half of the problem so 

we get a nice divide and conquer structure.



Divide and Conquer Trees
• If the tree is uneven, we can still use the same strategy 

but we need to take a bit of care when calculating 
runtime.



Least common ancestor
• Given a binary tree with 𝑛 vertices, we wish to compute 
𝐿𝐶𝐴(𝑥, 𝑦) for each pair of vertices 𝑥, 𝑦.

• 𝐿𝐶𝐴(𝑥, 𝑦) is the least common ancestor of 𝑥 and 𝑦. Or in 
other words, the “youngest” common ancestor of 𝑥 and 𝑦.

• For example, the LCA of me and my brother is our parent. 
The LCA of me and my uncle is my grandparent (his 
parent.) A vertex can be its own ancestor so the LCA of 
me and my father is my father.



Least common ancestor
• What pairs of vertices will have the root 𝑟 as their least 

common ancestor?



Least common ancestor
• What pairs of vertices will have the root 𝑟 as their least 

common ancestor?
• For each vertex 𝑣, set 𝑙𝑐𝑎 𝑣, 𝑟 = 𝑟.
• For each pair of vertices 𝑢, 𝑣 such that 𝑢 is in the left 

subtree and 𝑣 is in the right subtree, set 𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟.
• Now what? Are we done?
• Recurse on the left and right subtrees!!!!!



Pseudocode
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)



Pseudocode (runtime)
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)

If the binary tree is balanced, then 
each recursive call is of size $,-%
or roughly half.
How long does the non-recursive 
part take?



Pseudocode (runtime)
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)

If the binary tree is balanced, then 
each recursive call is of size $,-%
or roughly half.
How long does the non-recursive 
part take?

𝑇 𝑛 = 2𝑇
𝑛 − 1
2

+ O n%

Using the master theorem with 
a=2, b=2, d=2,

𝑇 𝑛 = 𝑂 𝑛%



Pseudocode (runtime uneven)
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)

If the binary tree is uneven then 
the runtime recurrence is

𝑇 𝑛 = 𝑇 𝐿 + 𝑇 𝑅 + 𝑂 𝐿𝑅
Where 𝐿 is the size of the left 
subrtree and 𝑅 is the size of the 
right subtree.

What do you think the total 
runtime will be? Take a guess and 
we can check it!!!



Uneven DC runtime
• 𝑇 𝑛 = 𝑇 𝐿 + 𝑇 R + O LR
• We guess that it would take 𝑂 𝑛3 . So let’s try to prove 

this using induction.
• Claim: 𝑇 𝑛 ≤ 𝑐𝑛3 for all 𝑛 ≥ 1 and for some constant 𝑐

that is bigger than 𝑇(1) and bigger than the coefficient in 
the 𝑂(𝐿𝑅) term.



Uneven DC runtime
• Base case. 𝑇 1 < 𝑐(13). True by choice of 𝑐.
• Suppose that for some 𝑛 > 1, 𝑇 𝑘 < 𝑐𝑘3 for all 𝑘 such 

that 1 ≤ 𝑘 < 𝑛.
• Then

𝑇 𝑛 < 𝑇 𝐿 + 𝑇 𝑅 + 𝑐𝐿𝑅 ≤ 𝑐𝐿3 + 𝑐𝑅3 + 𝑐𝐿𝑅
< 𝑐𝐿3 + 𝑐𝑅3 + 2𝑐𝐿𝑅 = 𝑐 𝐿 + 𝑅 3 = 𝑐 𝑛 − 1 3 < 𝑐𝑛3



Make Heap
• Problem: Given a list of n elements, form a heap 

containing all elements.



Divide and conquer strategy
• Assume 𝑛 = 2D − 1. (Add blank elements if needed)

• Divide the list into two lists of size 9E53 and a left-over 
element

• Make heaps with both (in sub-trees of root) 
• Put left-over element at root.
• “Trickle down” top element to reinstate heap property



Time analysis
• To solve one problem, we solve two problems of half the 

size, and then spend constant time per depth of the tree.

• T(n) =     T(    )  + O(         )



Time analysis
• To solve one problem, we solve two problems of half the 

size, and then spend constant time per depth of the tree.

• T(n) =    2 T(  n/2  )  + O(log n  )  
• Doesn’t fit master theorem.



Time analysis: sandwiching
• To solve one problem, we solve two problems of half the 

size, and then spend constant time per depth of the tree.

• T(n) =    2 T(  n/2  )  + O(log n  )  

• Define L(n) =2 T(n/2) + O(1), H(n) = 2T(n/2) +𝑂 𝑛
'
$

• L(n) < T(n) < H(n)  
• Apply Master Theorem:  Both L(n) and H(n) are O(n),
• So T(n) is O(n)  



minimum distance
• Given a list of coordinates, [ 𝑥5, 𝑦5 , … , 𝑥9, 𝑦9 ], find the 

distance between the closest pair.

• Brute force solution?
• min = 0
• for i from 1 to n-1:
• for j from i+1 to n:

• if min > distance( 𝑥9 , 𝑦9 , (𝑥: , 𝑦:))

• return min



Example
𝑦

𝑥𝑥#



Example
𝑦

𝑥
𝑥#



Divide and conquer
• Partition the points by x, according to whether they are to 

the left or right of the median
• Recursively find the minimum distance points on the two 

sides.
• Need to compare to the smallest “cross distance”  

between a point on the left and a point on the right
• Only need to look at “close” points



Combine
• How will we use this information to find the distance of 

the closest pair in the whole set?
• We must consider if there is a closest pair where one 

point is in the left half and one is in the right half.
• How do we do this?
• Let 𝑑 = min(𝑑;, 𝑑=) and compare only the points (𝑥H, 𝑦H)

such that 𝑥I − 𝑑 ≤ 𝑥H and 𝑥H ≤ 𝑥I + 𝑑.



Example
𝑦

𝑥
𝑥#

𝑃;



Combine
• How will we use this information to find the distance of the 

closest pair in the whole set?
• We must consider if there is a closest pair where one point is 

in the left half and one is in the right half.
• How do we do this?
• Let 𝑑 = min(𝑑V, 𝑑W) and compare only the points (𝑥X , 𝑦X) such 

that 𝑥Y − 𝑑 ≤ 𝑥X and 𝑥X ≤ 𝑥Y + 𝑑.

• Worst case, how many points could this be?



• Given a point 𝑥, 𝑦 ∈ 𝑃!, let’s look in a 2𝑑×𝑑 rectangle with that point 
at its upper boundary:

• There could not be more than 8 points total because if we divide the rectangle into 8 !
"
× !

"
squares then there 

can never be more than one point per square.
• Why???

Combine step



• So instead of comparing (𝑥, 𝑦) with every other point in 𝑃# we only have to compare it with at 
most a constant c points lower than it (smaller y)

• To gain quick access to these points, let’s sort the points in 𝑃# by 𝑦 values.
• The points above must be in the c points before our current point in this sorted list

• Now, if there are 𝑘 vertices in 𝑃# we have to sort the vertices in 𝑂(𝑘log 𝑘) time and make at 
most c𝑘 comparisons in 𝑂(𝑘) time for a total combine step of 𝑂 𝑘 log 𝑘 .

• But we said in the worst case, there are 𝑛 vertices in 𝑃# and so worst case, the combine step 
takes 𝑂(𝑛 log 𝑛) time.

Combine step



• But we said in the worst case, there are 𝑛 vertices in 𝑃# and so worst case, the combine step 
takes 𝑂(𝑛 log 𝑛) time.

• Runtime recursion:
𝑇 𝑛 = 2𝑇

𝑛
2
+ 𝑂(𝑛 log 𝑛)

This is T(n) = O(n (log n)^2) 

Pre-processing :  Sort by both x and y, keep pointers between sorted lists  Maintain sorting in 
recursive calls reduces to T(n) =2 T(n/2) +O(n), so T(n)  is O(n log n)

Time analysis


