COL702: Advanced Data Structures and Algorithms

Ragesh Jaiswal

CSE, IIT Delhi

Kruskal using DSDS

- Kruskal's algorithm uses a sequence of DSDS operations.
- The usual strategy for calculating the running time:
 - Count the number of each operation and multiply it with the worst-case times for these operations.
- <u>Advantage</u>: Easy
- <u>Disadvantage</u>: Pessimistic estimate
 - Each Find/Union operation may not take the same time.
 - Even more serious for data structures that get dynamically restructured.

Amortized Analysis

- Starting from a base configuration of the dynamic data structure, we are interested in finding the time for a sequence of *m* operations.
- <u>Amortized analysis</u>: Instead of computing the worst-case running time of an operation, compute the <u>amortized time</u> (*how much does a "typical" operation cost instead of the worst-case time*).
 - <u>Averaging method</u>: Let T be the total time for a sequence of m operations. Then, the amortized time for an operation is $\frac{T}{m}$.
 - <u>Accounting method</u>: Distribute the cost of a few time-taking operations among many fast operations.

Amortized analysis: Accounting method

- Accounting method:
 - Open a bank account at the very beginning.
 - Every operation has an associated payment. Every basic computational step is charged one unit of money.
 - If the payment exceeds the computational steps involved in the operation, the extra money goes to the bank account (to be used later).
 - On the other hand, if the steps involved are more than the payment, one can pay the difference from the bank account.
 - The bank balance should be ≥ 0 at every step.
 - The payment associated with an operation is the amortized time for that operation.
 - As long as the bank balance does not become negative, the sum of amortized time is an upper bound on the sum of real times of the operations.

Accounting for path-compression

- The bank account money is stored in the tree nodes.
- *Money restructuring*: When the parent ru is made the parent of root rv, half the money in rv is moved to ru. Rounding is done using one unit of extra payment.
- <u>Makeset(u)</u>:
 - *Payment*: **3** units. One unit is used to pay for setting up the node. Two units are stored in the node.
- <u>Union-by-rank(*ru*, *rv*)</u>:
 - *Payment*: 2 units. One unit for changing pointer. One unit for rounding.
- <u>Find(u)</u>: Pull out one unit of money stored at all nodes whose pointer changes on executing the Find(u) operation.
 - Payment: Number of "broke" nodes.

Accounting for path-compression

- The bank account money is stored in the tree nodes.
- *Money restructuring*: When the parent ru is made the parent of root rv, half the money in rv is moved to ru. Rounding is done using one unit of extra payment.
- <u>Makeset(u)</u>:
 - *Payment*: **3** units. One unit is used to pay for setting up the node. Two units are stored in the node.
- <u>Union-by-rank(*ru*, *rv*):</u>
 - *Payment*: 2 units. One unit for changing pointer. One unit for rounding.
- <u>Find(u)</u>: Pull out one unit of money stored at all nodes whose pointer changes on executing the Find(u) operation.
 - Payment: Number of "broke" nodes.
- Amortized time for Find and Union: O(number of broke nodes)

- <u>Note 1</u>: rank[u] does not necessarily store the depth of the tree rooted at u.
- Lemma 1: A root node with rank r holds at least $2 \cdot \left(\frac{3}{2}\right)'$ units of money.
- *Note 2:* Rank of a non-root node does not change.
- <u>Corollary of Lemma 1</u>: At the time when a node with rank r becomes a non-root, it has accumulated at least $\left(\frac{3}{2}\right)^r$ amount of money.

- <u>Lemma 2</u>: The following three properties hold:
 - a) rank[parent[u]] > rank[u] for any non-root node u.
 - b) Every time a node *u* spends one unit of money, the rank of its parent increases.
 - c) If a node v of rank r has gone broke, $rank[parent[v]] \ge \left(\frac{3}{2}\right)'$.

- <u>Lemma 2</u>: The following three properties hold:
 - a) rank[parent[u]] > rank[u] for any non-root node u.
 - b) Every time a node *u* spends one unit of money, the rank of its parent increases.
 - c) If a node v of rank r has gone broke, $rank[parent[v]] \ge \left(\frac{3}{2}\right)'$.
- <u>Theorem 1</u>: The number of broke vertices in the path from any node to the root of its tree is $O(\log_{\frac{3}{2}}^* n)$.

- <u>Lemma 2</u>: The following three properties hold:
 - a) rank[parent[u]] > rank[u] for any non-root node u.
 - b) Every time a node *u* spends one unit of money, the rank of its parent increases.
 - c) If a node v of rank r has gone broke, $rank[parent[v]] \ge \left(\frac{3}{2}\right)'$.
- <u>Theorem 1</u>: The number of broke vertices in the path from any node to the root of its tree is $O(\log_{\frac{3}{2}}^{*}n)$.
- Running time of Kruskal's algorithm using DSDS with pathcompression: $|E| \cdot O(\log^* |V|)$.