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Kruskal using DSDS

• Kruskal’s algorithm uses a sequence of DSDS operations. 
• The usual strategy for calculating the running time:
• Count the number of each operation and multiply it with the worst-case times 

for these operations.

• Advantage: Easy
• Disadvantage: Pessimistic estimate
• Each Find/Union operation may not take the same time. 
• Even more serious for data structures that get dynamically restructured.



Amortized Analysis

• Starting from a base configuration of the dynamic data structure, we 
are interested in finding the time for a sequence of 𝑚 operations.
• Amortized analysis: Instead of computing the worst-case running time 

of an operation, compute the amortized time (how much does a 
“typical” operation cost instead of the worst-case time).
• Averaging method: Let 𝑇 be the total time for a sequence of 𝑚 operations. 

Then, the amortized time for an operation is !
"

.
• Accounting method: Distribute the cost of a few time-taking operations 

among many fast operations.



Amortized analysis: Accounting method
• Accounting method:
• Open a bank account at the very beginning.
• Every operation has an associated payment. Every basic computational step is 

charged one unit of money.
• If the payment exceeds the computational steps involved in the operation, 

the extra money goes to the bank account (to be used later).
• On the other hand, if the steps involved are more than the payment, one can 

pay the difference from the bank account.
• The bank balance should be ≥ 0 at every step.
• The payment associated with an operation is the amortized time for that 

operation. 
• As long as the bank balance does not become negative, the sum of amortized 

time is an upper bound on the sum of real times of the operations.



DSDS with path compression
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Figure �.�: An example graph for the com-
prehenshion quiz.

Figure �.�: The parent of all intermedi-
ate nodes in the path from u to root a is
changed to a on the call to Find(u).

weights are restricted to numbers within a fixed range, in which case
we can employ linear time sorting algorithms such as bucket/counting
sort. In the following section, we will see an even better disjoint-set forest
implementation of DSDS, which will be of independent interest, meaning
that it can be looked at independently of Kruskal’s algorithm. This will
also allow us to go over amortised analysis that you may have seen in your
data structures course. (Impagliazzo-Jaiswal)

Comprehension quiz �.�.�

Consider the graph given in Figure �.�. In this question, you are asked to simulate the execution of
Kruskal using the union-by-rank tree-based implementation of DSDS. The edges are considered
in sorted order, and this order is also given in the figure. You are asked to give the arrays parent
and rank after considering every edge. The entries after the first edge (A,D) have already been
provided to get you started.

parent rank

A B C D E F G A B C D E F G

(A,D) A B C A E F G 1 0 0 0 0 0 0
(E,G)
(A, B)
(A, C)
(B, C)
(B, E)
(D ,G)
(D , E)
(E, F)
(F,G)
(C, F)

(Note that there may be more than one correct answer for this question.)

�.� Disjoint-set forest with path compression
Find(u)
· if (parent[u] ⇤ u)return(u)
· parent[u] ⇤ Find(parent[u])
· return(parent[u]))The next implementation of DSDS uses an additional idea of path-

compression in the union-by-rank disjoint-set forest implementation. The
main idea is that while chasing the parent pointers during a Find(u)
operation, make the root node the parent of all nodes in the path from u to
the root. This can be done using a small modification in the pseudocode
for Find operation, as shown on the side margin. Figure �.� shows path
compression while performing a Find(u) operation. In some sense, this
compresses the path, hence the name path-compression. The advantage
is that the next time a Find operation is performed, the time to reach
the root node may be shorter because of the compression. To quantify
this advantage, we need to do an amortised time analysis which we briefly
mentioned in an earlier chapter.

We do a worst-case analysis when analysing the time complexity of data
structure operations. This means that the time it takes for operations to
execute in the worst case is regarded as the time for those operations.
These worst-case times get added up when calculating the time for a
sequence of m operations. There may be significant differences in the
time spent on the same operation at various stages in data structures
that get dynamically restructured, such as our current example of a
disjoint-set forest with path compression. Given this, multiplying the
worst-case time estimate of an operation with the number of times it is
performed may be far from tight and does not give an accurate picture of
the running time. This is particularly prominent in cases where only a few
operations in a sequence of m operations have a large running time. This
is precisely where the idea of amortised analysis helps. For a sequenceDRAFT
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Figure �.�: Execution of Kruskal’s using a
union-by-rank-based tree implementation
of DSDS.

The next implementation is also tree-based. The only difference from the
previous implementation is that we perform the Union operation using
union-by-rank. In this implementation, in addition to maintaining the
parent array, we also maintain a rank array that for element u ends up
storing the height of the subtree rooted at node u (see Exercise �.�). Recall
that the height of a tree is the distance of the root from the farthest leaf.
When merging two trees with roots ru , rv, we always make the root of
the higher tree the parent of the other. Note that this does not increase
the height, except when both trees have the same height, in which case
the height increases by one. For clarity, we give the pseudocode for
the operations on the side margin. Figure �.� shows the execution of
Kruskal’s algorithm using this representation.

Makeset(S)
· For every u 2 S:

· parent[u] ⇤ u; rank[u] ⇤ 0

Find(u)
· if (parent[u] ⇤ u)return(u)
· return(Find(parent[u]))

Union(u , v)
· ru ⇤Find(u); rv ⇤Find(v)
· Union-by-rank(ru , rv)

Union-by-rank(ru , rv)
· if (rank[ru] > rank[rv])

· parent[rv] ⇤ ru
· if (rank[ru] < rank[rv])

· parent[ru] ⇤ rv
· if (rank[ru] ⇤ rank[rv])

· parent[rv] ⇤ ru
· rank[ru] ⇤ rank[ru] + 1

Exercise �.�: Based on the way the ranks
are initialised and updated, argue that
for any node u, rank[u] always stores the
height of the tree rooted at u.

What is the maximum height of a tree during the execution of Kruskal’s
algorithm using union-by-rank disjoint-set forest implementation of
DSDS? Here is a short argument showing that no tree can grow to a
height more than O(log |V |) – every time the height of the tree to which a
node belongs increases by one, the size of its tree becomes at least double, which
means that the height cannot increment more than O(log |V |) times. A more
formal argument is given below.

Lemma �.�.� When using union-by-rank disjoint-set forest implementation
of DSDS in Kruskal’s algorithm, the maximum height of a tree is O(log |V |).

Proof. We prove the following statement using induction on the number
of union operations performed: "if the rank of any root node is r, then the tree
rooted at this node has at least 2r elements." Let P(i) denote the proposition
that the statement holds after i Union operations are performed.

I Base case: P(0) trivially holds since all nodes are roots of their trees
and have rank 0.

I Inductive step: Assuming P(i � 1) holds, we will show that P(i) holds.
Suppose in the ith step, two trees with roots ru and rv are merged.
If their ranks do not match, then the rank of the root of the merged
tree does not change from before taking the union. So, the statement
still holds. On the other hand, if rank[ru] ⇤ rank[rv], then the rank
of the root of the merged tree increases by one. However, in this case,
since the trees rooted at ru and rv both have at least 2r elements
(from induction hypothesis), the resulting merged tree will have at least
2r + 2r ⇤ 2r+1 elements. So, the statement also holds in this case.

We conclude that the statement holds at every step of Kruskal’s algorithm.
This implies that no tree can have a height more than log |V |.

From the above lemma, we get that the complexity of both Find and
Union operations is O(log |V |). Given this, the running time of Kruskal’s
algorithm is O(|E | log |V |). Note that this matches the running time of
sorting edges by weight which is an essential component of Kruskal’s
algorithm. So, the DSDS data structure is not a bottleneck factor in the
running time as in previous implementations. Does this mean that there
is no further incentive to optimise the operations of the DSDS data
structure? In general, yes, but in certain special circumstances where
sorting can be done in linear time, it does make sense to be ready with a
better DSDS implementation. One such special scenario is when the edge
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weights are restricted to numbers within a fixed range, in which case
we can employ linear time sorting algorithms such as bucket/counting
sort. In the following section, we will see an even better disjoint-set forest
implementation of DSDS, which will be of independent interest, meaning
that it can be looked at independently of Kruskal’s algorithm. This will
also allow us to go over amortised analysis that you may have seen in your
data structures course. (Impagliazzo-Jaiswal)
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Consider the graph given in Figure �.�. In this question, you are asked to simulate the execution of
Kruskal using the union-by-rank tree-based implementation of DSDS. The edges are considered
in sorted order, and this order is also given in the figure. You are asked to give the arrays parent
and rank after considering every edge. The entries after the first edge (A,D) have already been
provided to get you started.
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main idea is that while chasing the parent pointers during a Find(u)
operation, make the root node the parent of all nodes in the path from u to
the root. This can be done using a small modification in the pseudocode
for Find operation, as shown on the side margin. Figure �.� shows path
compression while performing a Find(u) operation. In some sense, this
compresses the path, hence the name path-compression. The advantage
is that the next time a Find operation is performed, the time to reach
the root node may be shorter because of the compression. To quantify
this advantage, we need to do an amortised time analysis which we briefly
mentioned in an earlier chapter.

We do a worst-case analysis when analysing the time complexity of data
structure operations. This means that the time it takes for operations to
execute in the worst case is regarded as the time for those operations.
These worst-case times get added up when calculating the time for a
sequence of m operations. There may be significant differences in the
time spent on the same operation at various stages in data structures
that get dynamically restructured, such as our current example of a
disjoint-set forest with path compression. Given this, multiplying the
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performed may be far from tight and does not give an accurate picture of
the running time. This is particularly prominent in cases where only a few
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Accounting for path-compression
• The bank account money is stored in the tree nodes.
• Money restructuring: When the parent 𝑟𝑢 is made the parent of root 
𝑟𝑣, half the money in 𝑟𝑣 is moved to 𝑟𝑢. Rounding is done using one 
unit of extra payment.
• Makeset(𝑢): 
• Payment: 3 units. One unit is used to pay for setting up the node. Two units 

are stored in the node.

• Union-by-rank(𝑟𝑢, 𝑟𝑣): 
• Payment: 2 units. One unit for changing pointer. One unit for rounding.

• Find(𝑢): Pull out one unit of money stored at all nodes whose pointer 
changes on executing the Find(𝑢) operation.
• Payment: Number of “broke” nodes.



Accounting for path-compression
• The bank account money is stored in the tree nodes.
• Money restructuring: When the parent 𝑟𝑢 is made the parent of root 
𝑟𝑣, half the money in 𝑟𝑣 is moved to 𝑟𝑢. Rounding is done using one 
unit of extra payment.
• Makeset(𝑢): 
• Payment: 3 units. One unit is used to pay for setting up the node. Two units 

are stored in the node.
• Union-by-rank(𝑟𝑢, 𝑟𝑣): 
• Payment: 2 units. One unit for changing pointer. One unit for rounding.

• Find(𝑢): Pull out one unit of money stored at all nodes whose pointer 
changes on executing the Find(𝑢) operation.
• Payment: Number of “broke” nodes.

• Amortized time for Find and Union: O(number of broke nodes)



Number of broke nodes
• Note 1: rank[u] does not necessarily store the depth of the tree 

rooted at 𝑢.

• Lemma 1: A root node with rank 𝑟 holds at least 2 ⋅ !
"

#
units of 

money.
• Note 2: Rank of a non-root node does not change.

• Corollary of Lemma 1: At the time when a node with rank 𝑟 becomes 
a non-root, it has accumulated at least !

"

#
amount of money.



Number of broke nodes

• Lemma 2: The following three properties hold:
a) 𝑟𝑎𝑛𝑘 𝑝𝑎𝑟𝑒𝑛𝑡 𝑢 > 𝑟𝑎𝑛𝑘[𝑢] for any non-root node 𝑢.
b) Every time a node 𝑢 spends one unit of money, the rank of its parent 

increases.

c) If a node 𝑣 of rank 𝑟 has gone broke, 𝑟𝑎𝑛𝑘 𝑝𝑎𝑟𝑒𝑛𝑡 𝑣 ≥ #
$

%
.
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• Theorem 1: The number of broke vertices in the path from any node 
to the root of its tree is 𝑂(log!

"

∗ 𝑛).
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• Theorem 1: The number of broke vertices in the path from any node 
to the root of its tree is 𝑂(log!

"

∗ 𝑛).

• Running time of Kruskal’s algorithm using DSDS with path-
compression: E ⋅ 𝑂(log∗ |𝑉|).


