DIVIDE AND CONQUER

Divide and Conquer

- Break a problem into similar subproblems
- Solve each subproblem recursively
- Combine

Above its weight class

- Divide and conquer is a very simple idea
- But it has far more than its share of the miraculous algorithms
- Examples
- Strassen Matrix Multiplication
- Karatsuba multiplication
- Fast Fourier Transform
- Linear time select

Multiplying Binomials

- if you want to multiply two binomials
- $(a x+b)(c x+d)=a c x^{2}+a d x+b c x+b d$
- It requires ? 4 multiplications. $a c, a d, b c, b d$

Multiplying Binomials

- if you want to multiply two binomials
- $(a x+b)(c x+d)=a c x^{2}+(a d+b c) x+b d$
- It requires 4 multiplications. $a c, a d, b c, b d$
- If we assume that addition is cheap (has short runtime.) Then we can improve this by only doing 3 multiplications:

$$
a c, b d,(a+b)(c+d)
$$

Multiplying Binomials

- Reducing the number of multiplications from 4 to 3 may not seem very impressive when calculating asymptotics.
- If this was only a part of a bigger algorithm, it may be an improvement.

Multiplying Binary numbers

	1	1	0	1
\times	1	0	1	1

				1	1	0	1		(1101 times 1)
	0	1	1	0	1	0	0		
(1101 times 1, shifted once)									
+	1	1	0	1					(1101 times 0, shifted twice) (1101 times 1, shifted thrice)
1	0	0	0	1	1	1	1		

Divide and conquer multiply

- Say we want to multiply 10100110 and 10110011
- How can we divide the problem into sub-problems?
- Remember, we want much smaller sub-problems

Multiplying large binary numbers

- $10100110=166=1010 * 2^{4}+0110=10 * 16+6$
- $10110011=179=1011^{*} 2^{4}+0011=11^{*} 16+3$
- 10100110*10110011 = (10*16+6)(11*16+3)=110*256 + 6*11*16 + 3*10*16 + 3* 6

Multiplying Binary numbers (DC)

- Suppose we want to multiply two n-bit numbers together where n is a power of 2 .
- One way we can do this is by splitting each number into their left and right halves which are each $\mathrm{n} / 2$ bits long

Multiplying Binary numbers (DC)

- Suppose we want to multiply two n-bit numbers together where n is a power of 2 .
- One way we can do this is by splitting each number into their left and right halves which are each $n / 2$ bits long
- $x=2^{n / 2} x_{L}+x_{R}$
- $y=2^{n / 2} y_{L}+y_{R}$

Multiplying Binary numbers (DC)

$$
\begin{aligned}
& x=2^{n / 2} x_{L}+x_{R} \\
& y=2^{n / 2} y_{L}+y_{R}
\end{aligned}
$$

- $x y=\left(2^{\frac{n}{2}} x_{L}+x_{R}\right)\left(2^{\frac{n}{2}} y_{L}+y_{R}\right)$
- $x y=2^{n} x_{L} y_{L}+2^{\frac{n}{2}}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}$

Algorithm multiply

- function multiply (x,y):
- Input: n-bit integers x and y
- Output: the product xy
- If $\mathrm{n}=1$: return xy
- x_{L}, x_{R} and y_{L}, y_{R} are the left-most and right-most $\mathrm{n} / 2$ bits of x and y , respectively.
- $P_{1}=$ multiply $\left(x_{L}, y_{L}\right)$
- $P_{2}=\operatorname{multiply}\left(x_{L}, y_{R}\right)$
- $P_{3}=\operatorname{multiply}\left(x_{R}, y_{L}\right)$
- $P_{4}=\operatorname{multiply}\left(x_{R}, y_{R}\right)$
- $\operatorname{return}\left(P_{1} * 2^{n}+\left(P_{2}+P_{3}\right) * 2^{\frac{n}{2}}+P_{4}\right)$

Algorithm

- Runtime analysis:
- Let $T(n)$ be the runtime of the multiply algorithm.
- Then $T(n)=4 T\left(\frac{n}{2}\right)+O(n)$

Total time

n bits, cn time

Total

- One top level : cn
- 4 depth 1: cn/2 *4
- 16 depth 2: cn/4 * 16
- 64 depth 3: cn/8 * 64
- 4^{t} depth $t: \frac{c n}{2^{t}} * 4^{t}=c n * 2^{t}$
- Max level : $\mathrm{t}=\log \mathrm{n},\left(\mathrm{cn} / 2^{\log n}\right)^{*} 4^{\log n}=c * 2^{\log n} * 2^{\log n}=c n^{2}$

Total time

- cn $\left(1+2+4+8+\ldots 2^{\log n}\right)=O\left(c n^{2}\right)$
- Because in a geometric series with ratio other than 1, largest term dominates order.

Multiplication

Andrey Kolmogorov 1903-1987

Insight: replace one (of the 4) multiplications by (linear time) subtraction

Algorithm multiply KS

- function multiplyKS (x,y)
- Input: n-bit integers x and y
- Output: the product xy
- If $\mathrm{n}=1$: return xy
- x_{L}, x_{R} and y_{L}, y_{R} are the left-most and right-most $\mathrm{n} / 2$ bits of x and y , respectively.
- $R_{1}=$ multiplyKS $\left(x_{L}, y_{L}\right)$
- $R_{2}=$ multiplyKS $\left(x_{R}, y_{R}\right)$
- $R_{3}=\operatorname{multiplyKS}\left(\left(x_{L}+x_{R}\right),\left(y_{L}+y_{R}\right)\right)$
- $\operatorname{return}\left(R_{1} * 2^{n}+\left(R_{3}-R_{1}-R_{2}\right) * 2^{\frac{n}{2}}+R_{2}\right)$

Correctness multiply KS

- Correctness: by strong induction on n, the number of bits of x and y.
- Base Case: $n=1$ then return xy (could make a table of possibilities.)
- Inductive hypothesis:

Correctness multiply KS

- Correctness: by strong induction on n, the number of bits of \mathbf{x} and y.
- Base Case: $n=1$ then return xy (could make a table of possibilities.)
- Inductive hypothesis: For some $n>1$, assume that multiplyKS(x,y) returns the correct product xy whenever x has k digits and y has k digits for any $1 \leq k<n$.
- Then by the IH: $R_{1}=x_{L} y_{L}, R_{2}=x_{R} y_{R}, R_{3}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$

Correctness multiply KS

- Then by the IH:
- $R_{1}=x_{L} y_{L}, R_{2}=x_{R} y_{R}, R_{3}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)=x_{L} y_{L}+x_{R} y_{R}+x_{L} y_{R}+x_{R} y_{L}$
- And the algorithm returns: $R_{1} * 2^{n}+\left(R_{3}-R_{1}-R_{2}\right) * 2^{\frac{n}{2}}+R_{2}$ $R_{1} * 2^{n}+\left(R_{3}-R_{1}-R_{2}\right) * 2^{\frac{n}{2}}+R_{2}=$
$x_{L} y_{L} * 2^{n}+\left(x_{L} y_{R}+x_{R} y_{L}\right) * 2^{\frac{n}{2}}+x_{R} y_{R}=$
$\left(x_{L} * 2^{\frac{n}{2}}+x_{R}\right)\left(y_{L} * 2^{\frac{n}{2}}+y_{R}\right)=$
$x y$

Algorithm multiplyKS

- Runtime
- Let $\mathrm{T}(\mathrm{n})$ be the runtime of the multiply algorithm.
- Then
- $T(n)=3 T\left(\frac{n}{2}\right)+O(n)$

Total time

n bits, cn time

n/2 bits, cn/2 time

3 vs 4

- Since we are pruning the tree recursively, replacing 4 recursive calls instead of 3 reduces the size of the tree more than a constant factor.

Total

- One top level : cn
- 4 depth 1: cn/2 *3
- 16 depth 2: cn/4 * 9
- 64 depth 3: cn/8 * 27
- 4^{t} depth $t: \frac{c n}{2^{t}} * 3^{t}=c n *(1.5)^{t}$
- Max level : $\mathrm{t}=\log \mathrm{n}$

Total time

- cn $\left(1+1.5+2.25+\ldots(1.5)^{\log n}\right)=O\left(3^{\log n}\right)$
- Because in a geometric series with ratio other than 1, largest term dominates order.
- But what is $3^{\log n}$?

Simplifying

$3^{\log n}=\left(2^{\log 3}\right)^{\log n}=2^{\{\log n * \log 3\}}=\left(2^{\{\log n\}}\right)^{\log 3}=n^{\log 3}=n^{\{1.58 \ldots\}}$

- So total time is $O\left(n^{\log 3}\right)$

Master Theorem

- How do you solve a recurrence of the form

$$
T(n)=a T\left(\frac{n}{b}\right)+O\left(n^{d}\right)
$$

We will use the master theorem.

