
Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

COL702: Advanced Data Structures and Algorithms

¡ You are running a cookie conference and you have a collection of
events (or talks) that each has a start time and a finish time.

¡ Oh no!!! You only have one conference room!!!

¡ Your goal is to schedule the most events possible that day such that
no two events overlap.

EVENT SCHEDULING

EVENT SCHEDULING

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1

14

3
4

5
6

7
9

10
11

12
13

2

8

¡ Instance:

¡ Solution format:

¡ Constraints:

¡ Objective:

EVENT SCHEDULING SPECIFICATION

Your goal is to schedule the most events possible that day such that no
two events overlap.

¡ Brute Force: Say that there are n events.
¡ Let’s check all possibilities. How would we do that?

EVENT SCHEDULING

¡ Your goal is to schedule the most events possible that day such that
no two events overlap.

¡ Brute Force: Say that there are n events.
¡ Let’s check all possibilities. How would we do that?

¡ Go through all subsets of events. Check if it is a valid schedule, i.e.,
no conflicts, and count the number of events.

¡ Take the maximum out of all valid schedules.
¡ (How many subsets are there?)

EVENT SCHEDULING

¡ Your goal is to schedule the most events possible that day such that
no two events overlap.

¡ Exponential is too slow. Let’s think of some greedy strategies:

EVENT SCHEDULING

¡ Your goal is to schedule the most events possible that day such that
no two events overlap.

¡ Exponential is too slow. Let’s try some greedy strategies:
§ Shortest duration
§ Earliest start time
§ Fewest conflicts
§ Earliest end time

EVENT SCHEDULING

SHORTEST DURATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

EARLIEST START TIME

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

FEWEST CONFLICTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

COUNTEREXAMPLE FOR FEWEST CONFLICTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

EARLIEST FINISH TIME

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

EARLIEST FINISH TIME

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

¡ Your goal is to schedule the most events possible that day such that
no two events overlap.

¡ Exponential is too slow. Let’s try some greedy strategies:
§ Shortest duration
§ Earliest start time
§ Fewest conflicts
§ Earliest end time (We can’t find a counterexample!!)

¡ Let’s try to prove it works!!!

EVENT SCHEDULING

What does it mean for a greedy algorithm correctly solve a problem?

¡ I: problem instance

¡ GS: greedy solution to I

¡ OS: any other solution to I (for instance, an optimal solution)

¡ We need to show that GS is at least as good as OS.

¡ Tricky part: OS is an arbitrary solution. We don’t know much about it.

PROVING OPTIMALITY

We’ll see a number of general methods to prove optimality:

§ Modify-the-solution, aka Exchange: most general

§ Greedy-stays-ahead: often the most intuitive

§ Greedy-achieves-the-bound: also used in approximation, LP, network
flow

§ Unique-local-optimum: dangerously close to a common fallacy

Which one to use is up to you.

TECHNIQUES TO PROVE OPTIMALITY

Don’t think about the entire greedy solution.
Just prove that: the first move of the greedy algorithm isn’t incorrect.

General structure of modify-the-solution:

1. Prove an Exchange/Modification Lemma: There is an optimal solution
that agrees with the greedy algorithm’s first decision.

2. Then use this as part of an inductive proof that the greedy solution is
optimal.

STRATEGY: MODIFY-THE-SOLUTION

General structure of modify-the-solution:

1. Let 𝑔 be the first choice the greedy algorithm makes.

2. Let 𝑂𝑆 be any solution that does not contain 𝑔.

3. Show how to transform 𝑂𝑆 into a different solution 𝑂𝑆′ that chooses 𝑔, and is at least
as good as 𝑂𝑆.

4. Use 1-3 in an inductive argument. 𝑂𝑆! agrees with the first greedy choice, 𝑂𝑆" the
first two, and so on, until 𝑂𝑆# agrees with all choices, and

Value(𝑂𝑆) ≤ Value(𝑂𝑆!) ≤ Value(𝑂𝑆")….≤ Value(𝑂𝑆# = 𝐺𝑆)

STRATEGY: MODIFY-THE-SOLUTION

Let 𝐸 = {𝐸! , … 𝐸"} be the set of all events with 𝑠# , 𝑓# the start and finish times of 𝐸# .

Say 𝐸! is the event with the earliest finish time.
The first greedy decision is to include 𝐸! .

Modification Lemma: If 𝑂𝑆 is a legal schedule that does not include 𝐸! then there is a
schedule 𝑂𝑆′ that does include 𝐸! such that |𝑂𝑆’| ≥ 𝑂𝑆 .

§ How to prove this?

EARLIEST FINISH TIME

OS:

MODIFY-THE-SOLUTION CONT.

𝐽! 𝐽"

𝐸!

𝐽#

Agenda: define 𝑂𝑆’ such that
§ 𝑂𝑆’ contains 𝐸!
§ 𝑂𝑆’ has no overlaps
§ |𝑂𝑆’| ≥ |𝑂𝑆|

First greedy decision

𝑂𝑆’ = ???

OS:

DEFINE 𝑂𝑆′

𝐽! 𝐽"

𝐸!

𝐽#

First greedy decision

𝑂𝑆’ = 𝑂𝑆 ∪ 𝐸# – {𝐽#}

𝑂𝑆′ HAS NO OVERLAPS

JI

J2E1 Jk

𝑂𝑆’ = 𝑂𝑆 ∪ 𝐸# – {𝐽#}

Only new place for overlaps: we need to show Finish(𝐸#) ≤ Start(𝐽$)

𝑂𝑆′ HAS NO OVERLAPS

JI

J2E1 Jk

Only new place for overlaps: we need to show Finish(𝐸#) ≤ Start(𝐽$)

𝑂𝑆’ = 𝑂𝑆 ∪ 𝐸# – {𝐽#}

Finish(𝐸#) ≤ Finish(𝐽#) ≤ Start(𝐽$)

𝑂𝑆′ IS AT LEAST AS GOOD AS 𝑂𝑆

JI

J2E1 Jk

| 𝑂𝑆’ |= | 𝑂𝑆 |

𝑂𝑆’ = 𝑂𝑆 ∪ 𝐸# – {𝐽#}

This completes the proof of the Modification Lemma: If 𝑂𝑆 is a legal schedule not containing 𝐸!
then there is a schedule 𝑂𝑆′ containing 𝐸! such that |𝑂𝑆’| ≥ 𝑂𝑆 .

The greedy solution is optimal for every set of events.

Proof by strong induction on 𝑛 , the number of events.
§ Base Case: 𝑛 = 0 or 𝑛 = 1. Any choice works.

§ General case: Assume greedy is optimal for any 𝑘 events for 0 ≤ 𝑘 ≤ 𝑛 − 1. Our goal is
to show Greedy is optimal for any 𝑛 events.

Let 𝐺𝑆 be the greedy solution. Then
𝐺𝑆 = 𝐸! + 𝐺𝑆(Events’)

where Events’ are the events that don’t conflict with 𝐸!.

Let 𝑂𝑆 be any other solution. Apply the Modification Lemma to 𝑂𝑆 to get 𝑂𝑆’, where
𝑂𝑆’ = 𝐸! + Some solution for Events’

Applying the inductive hypothesis,
|𝐺𝑆| = 1 + |𝐺𝑆(Events’)| ≥ 1 + |Some solution for Events’| = |𝑂𝑆’| ≥ |𝑂𝑆|

INDUCTIVE PROOF OF CORRECTNESS

MODIFICATION LEMMA:
Let g be the first greedy decision. Let 𝑂𝑆 be any legal solution that
does not pick g. Then there is a solution 𝑂𝑆’ that does pick g and 𝑂𝑆’
is at least as good as 𝑂𝑆 . (Note: we only use greedy to define g.
Otherwise, 𝐺𝑆 does not directly appear).

GENERAL MTS TEMPLATE: MODIFICATION LEMMA

MODIFICATION LEMMA:
Let g be the first greedy decision. Let 𝑂𝑆 be any legal solution that
does not pick g. Then there is a solution 𝑂𝑆’ that does pick g and 𝑂𝑆’
is at least as good as 𝑂𝑆 .

¡ 1. State what we know: Definition of g. 𝑂𝑆 meets constraints.
¡ 2. Define 𝑂𝑆’ from 𝑂𝑆 , g
¡ 3. Prove that 𝑂𝑆’ meets constraints. Use 1, 2.
¡ 4. Compare value/cost of 𝑂𝑆’ to 𝑂𝑆 . Use 2, sometimes 1.

GENERAL MTS TEMPLATE: PROOF OF LEMMA

MODIFICATION LEMMA: Let g be the first greedy decision. Let 𝑂𝑆 be any
legal solution that does not pick g. Then there is a solution 𝑂𝑆’ that does
pick g and S is at least as good as 𝑂𝑆 .

Using this Lemma, prove by induction on instance size that greedy is
optimal.
Induction step:
¡ 1. Let g be first greedy decision. Let I’ be the rest of problem given g.
¡ 2. 𝐺𝑆 = g + 𝐺𝑆(I’)
¡ 3. 𝑂𝑆 is any legal solution.
¡ 4. 𝑂𝑆’ is defined from 𝑂𝑆 by the Lemma (if 𝑂𝑆 does not include g).
¡ 5. 𝑂𝑆 ’ = g + some solution on I’.
¡ 6. Induction: 𝐺𝑆(I’) at least as good as some solution on I’.
¡ 7. 𝐺𝑆 is at least as good as 𝑂𝑆 ’, which is at least as good as 𝑂𝑆 .

GENERAL MTS TEMPLATE: INDUCTION

Design an algorithm that uses the greedy choice of picking the next
available event with the earliest finish time.

§ Instance: 𝑛 events each with a start and end time

§ Solution format: List of events

§ Constraints: Events can’t overlap

§ Objective: Maximize the number of events

EVENT SCHEDULING IMPLEMENTATION

Design an algorithm that uses the greedy choice of picking the next available
event with the earliest finish time.

¡ Initialize a Queue 𝑆
¡ Sort the intervals by finish time (let 𝑠! , 𝑓! be the start and finish times of 𝐸!)
¡ Put the first event 𝐸" in 𝑆
¡ Set 𝐹 = 𝑓"
¡ For 𝑖 = 2 … 𝑛 :

§ If 𝑠" ≥ 𝐹:
§ enqueue(𝐸" , 𝑆)
§ 𝐹 = 𝑓"

¡ Return 𝑆

EVENT SCHEDULING

Compare all of GS to all of OS, instead of just first greedy move

OS

ANOTHER STRATEGY: GREEDY STAYS AHEAD

JI J2

E1

Jk

GS

ELE2 E3

Show GS is at least as good as OS, in some suitable sense, every step of the way.

OS

GREEDY STAYS AHEAD

JI J2

E1

Jk

GS

ELE2 E3

Claim: Finish(𝐸%) ≤ Finish(𝐽%)

Proof by induction on i. True for 𝐸#, because it is the first to finish.
𝐸%&#: This is the interval starting after Finish(𝐸%) with the earliest end time.
𝐽%&# also begins after Finish(𝐸%), since Finish(𝐽%) ≥ Finish(𝐸%).
Therefore Finish(𝐽%&#) ≥ Finish(𝐸%&#).

¡ Assume greedy weren’t optimal, |GS| < |OS|.

¡ Let L = |GS|.
¡ By Lemma, Finish(𝐸') ≤ Finish(𝐽') ≤ Start(𝐽'&#)
¡ Then greedy wouldn’t end with 𝐸' , contradiction.

GREEDY STAYS AHEAD: CONCLUSION

§ Define a measure of progress.

§ Order the decisions in OS to line up with GS.

§ Prove by induction that the “progress” after the i’th decision in GS is
at least as big as after the i’th decision in OS

§ Conclude that GS is at least as good as OS.

GREEDY STAYS AHEAD: TEMPLATE

Suppose you have a conference to plan with 𝑛 events and you have an
unlimited supply of rooms. How can you assign events to rooms in such
a way as to minimize the number of rooms?

Brute Force:
¡ Certainly you won’t need more than 𝑛 rooms.
¡ So how many ways can you assign 𝑛 events to 𝑛 rooms?

EVENT SCHEDULING WITH MULTIPLE ROOMS

Suppose you have a conference to plan with 𝑛 events and you have an
unlimited supply of rooms. How can you assign events to rooms in such
a way as to minimize the number of rooms?

Ideas for a greedy algorithm?

EVENT SCHEDULING WITH MULTIPLE ROOMS

EVENT SCHEDULING

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Suppose you have a conference to plan with 𝑛 events and you have an
unlimited supply of rooms. How can you assign events to rooms in such
a way as to minimize the number of rooms?

¡ Greedy choice:
§ Number each room from 1 to 𝑛.
§ Sort the events by earliest start time.
§ Put the first event in room 1.
§ For events 2…𝑛, put each event in the smallest numbered room that is available.

EVENT SCHEDULING WITH MULTIPLE ROOMS

Some general methods to prove optimality:

§ Modify-the-solution, aka Exchange: most general

§ Greedy-stays-ahead: often the most intuitive

§ Greedy-achieves-the-bound: also used in approximation, LP, network
flow

§ Unique-local-optimum: dangerously close to a common fallacy

Which one to use is up to you.

TECHNIQUES TO PROVE OPTIMALITY

1. Logically determine a bound on the value of the solution that must
be satisfied by any valid answer.

2. Then show that the greedy strategy achieves this bound and
therefore is optimal.

ACHIEVES-THE-BOUND

¡ Let 𝑡 be any time during the conference.
¡ Let 𝐵(𝑡) be the set of events taking place at time 𝑡 .

Bounding Lemma: Any valid schedule requires at least |𝐵 𝑡 | rooms.

Proof:
There are |𝐵 𝑡 | events taking place at time 𝑡 .
They all need to be in different rooms.
So we need at least |𝐵 𝑡 | rooms.

¡ Let 𝐿 = 𝑚𝑎𝑥 |𝐵 𝑡 | over all t.
¡ Then 𝐿 is a lower bound on the number of rooms needed.

ACHIEVES-THE-BOUND

EVENT SCHEDULING

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Achieves-the-Bound Lemma: Let 𝑘 be the number of rooms picked by
the greedy algorithm. Then at some point 𝑡 , 𝐵 𝑡 ≥ 𝑘 . In other words
there are at least 𝑘 events happening at time 𝑡 .

Proof:
Let 𝑡 be the starting time of the first event to be scheduled in room 𝑘.
Then by the greedy choice, room 𝑘 was the least number room
available at that time.
This means at time 𝑡 , there was an event happening in rooms room 1,
room 2, …, room 𝑘 − 1. And plus an event happening in room 𝑘
Therefore 𝐵 𝑡 ≥ 𝑘 .

ACHIEVES-THE-BOUND

¡ Let 𝐺𝑆 be the greedy solution.
¡ Let 𝑂𝑆 be any other schedule.

¡ Let L = max |B(t)| over all t.

¡ By the Bounding lemma, Cost(𝑂𝑆) ≥ L.
¡ By the achieves-the-bound lemma, Cost(𝐺𝑆) = |B(t)| ≤ L for some t.
¡ Putting the two together, Cost(𝐺𝑆) ≤ Cost(𝑂𝑆).

CONCLUSION: GREEDY IS OPTIMAL

The way it works:
¡ Argue that when the greedy solution reaches its peak cost, it reveals a

bound.
¡ Then show this bound is also a lower bound on the cost of any other

solution.
¡ So we are showing : Cost(𝐺𝑆) ≤ Bound ≤ Cost (𝑂𝑆)

This is a proof technique that does not work in all cases.

ACHIEVES-THE-BOUND

