COL702:Advanced Data Structures and Algorithms

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

Paths in graphs

The classic 15-puzzle explore(G,a):

4

1 T
D 6. e/

8

QRO [iRls]:

1

13 | 14 || 15

Graph G = (V,E)

V = {configurations of puzzle}
E: edges between neighboring configurations 0 0

Finds a path from a to i.
But this isn’t the shortest possible path!

Distances in graphs

Distance between two nodes Physical model:
= length of shortest path between them Vertex — ping-pong ball
Edge — piece of string

distance O
distance 1
dist(a,e) = ?
dist(d,g) = ?
distance 2
Suppose we want to compute
distances from some starting node s
to all other nodes in G.
Strategy: layer-by-layer distance 3

first, nodes at distance O
then, nodes at distance 1
then, nodes at distance 2, etc.

Breadth-first search

Suppose we have seen all nodes at
distance < d.

How to get the next layer?

Solution:
A node is at distance d+1 if:

it is adjacent to some node at
distance d

it hasn’t been seen yet

procedure bfs (G, s)
input: graph G = (V,E); node s in V
output: for each node u, dist[u] 1is

set to its distance from s

for u in V:

dist[u] = o©
dist[s] = 0
Q = [s] // queue containing just s

while Q is not empty:
u = eject(Q)
for each edge (u,v) in E:
if dist[v] = o0:
inject(Q,v)
dist[v] = dist[u]+1l

BFS example

procedure bfs (G, s)

for u in V:

dist[u] = ©
prev[u] = nil
dist[s] = 0
Q = [s] // queue containing just s

while Q is not empty:
u = eject(Q)
for each edge (u,v) in E:
if dist[v] = :
inject(Q,v)
dist[v] = dist[u]+1

prev[v] = u

Queue Distances
al/b|c|di e |f
[a] 0 |[oco|o0|oo|o0| 00
[bcd] 0 (1 (1|1 ||
[cd] 0 (1 (1|1 ||
[de] 0(1 (1|1 |2 |
[e] 0(1 (1|1 |2 |
[f] o1 (11|12 |3
[o1 (11|12 |3

Shortest path tree

Why does BFS work?

procedure bfs (G, s)

for u in V:

dist[u] = ®©
dist[s] = 0
Q = [s]

while Q is not empty:
u = eject(Q)
for each edge (u,v) in E:
if dist[v] = :
inject(Q,v)
dist[v] = dist[u]+1

Claim For any distance d = 0,1,2,..., there is

a point in time at which:

(i) all nodes at distance < d have their

dist[] values correctly set

(ii) all other nodes have dist[] = oo
(ifi) the queue Q contains exactly the

nodes at distance d

Running time: O(V + E), like DFS

Two search strategies

Breadth-first

BFS treats all edges as having the
same length.
This is rarely true in applications.

Denote the length of edge e = (u,v)
by I(e) or I, or I(u,v)

Edge lengths

CALIFORNIA

Game;"ilkf..)

)
Ft. Bragg’\’

i
g
Cloverdale *
1

San Raf%al- /

Ha
Palo/Alto

Ivionters
Carme‘\v
Big Sul\'

!

Pacific L
Ocean

LEGEND
(:6_5) National Highway|

Major Road

@ State Capital
e Major Town
* __ Other Town

Map notto Scale

Road Network

o awilits /" Chi
f j_} Wi C ico

' Middle Stone
Santa Rosa c,hsmgaWoodland
Napg

Vle;o

«Salinas

\ San Lucas

%:n M;g

Paso Robles.,

Morro Bay’

Santa Marid.-
Lampb_

San Miguel

Santa Ros&?a C

Copyright © 2008-09 www.mapsofworld.com

OREGON

{“Mt.Shasta B~ -
Alturas
+Adin h

/
Madeline
| /

§usanvi|/lb

Waav.erviile_, :
L I Burney
LRe(!dmg
Red Bluff 2
Corning/, Mineral _
/
| /

lows T orovillé D"W.‘

Lakn!.Ilarysvnlle

o com]’mekoe ,

Aubi
it Tary{n City

) SACWENTO Placerville™ | NEVEDA

San Francisco, 0 Qo:ﬁ:;mt‘éffé “ackson \\
d;
éa'ra(;yManus

San J&:&o@)

engsls Camp. Bﬂdgepon
nora

°""'° “Yosemita Village
Marced | L
Los Eanos
‘s Madera
\eFresno

« Giant F orest |

y

Bishop
\ L} " Big Prne
b R
Sc Castl
b Coalmga-qanford Indepeng\:yn:a ot
‘sLone Pine
* Keeler

+*Cartago’
CImED Furnﬁm\\
Creek

»Visalia
cnoaameTula'O %

omépo U
| A Y
Shoshone’
1 } \
- Mojave/ \
o
< Baker \\

¥ —~
] Barstow /7~ \
-Lanca_slar e 15)

¥
-Oxfcm‘R
“. Pasadena “=sLudlow

an Bermardino [T 7
Rlv.ﬂ’ns Redlands A(n'boy

nta Ana
N

Long Boa‘l:hLQ

Santa Nicolas %M?a
S‘@n Clementé

".Sprinéé
“sIndio

T8 Brawley
. O 7 !EICemro\

Cal x:co

Y| MEXICO b ¢

49 i,

»=z

COL702:Advanced Data Structures and Algorithms

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

BFS treats all edges as having the
same length.
This is rarely true in applications.

Denote the length of edge e = (u,v)
by I(e) or I, or I(u,v)

Edge lengths

CALIFORNIA

Game;"ilkf..)

)
Ft. Bragg’\’

i
g
Cloverdale *
1

San Raf%al- /

Ha
Palo/Alto

Ivionters
Carme‘\v
Big Sul\'

!

Pacific L
Ocean

LEGEND
(:6_5) National Highway|

Major Road

@ State Capital
e Major Town
* __ Other Town

Map notto Scale

Road Network

o awilits /" Chi
f j_} Wi C ico

' Middle Stone
Santa Rosa c,hsmgaWoodland
Napg

Vle;o

«Salinas

\ San Lucas

%:n M;g

Paso Robles.,

Morro Bay’

Santa Marid.-
Lampb_

San Miguel

Santa Ros&?a C

Copyright © 2008-09 www.mapsofworld.com

OREGON

{“Mt.Shasta B~ -
Alturas
+Adin h

/
Madeline
| /

§usanvi|/lb

Waav.erviile_, :
L I Burney
LRe(!dmg
Red Bluff 2
Corning/, Mineral _
/
| /

lows T orovillé D"W.‘

Lakn!.Ilarysvnlle

o com]’mekoe ,

Aubi
it Tary{n City

) SACWENTO Placerville™ | NEVEDA

San Francisco, 0 Qo:ﬁ:;mt‘éffé “ackson \\
d;
éa'ra(;yManus

San J&:&o@)

engsls Camp. Bﬂdgepon
nora

°""'° “Yosemita Village
Marced | L
Los Eanos
‘s Madera
\eFresno

« Giant F orest |

y

Bishop
\ L} " Big Prne
b R
Sc Castl
b Coalmga-qanford Indepeng\:yn:a ot
‘sLone Pine
* Keeler

+*Cartago’
CImED Furnﬁm\\
Creek

»Visalia
cnoaameTula'O %

omépo U
| A Y
Shoshone’
1 } \
- Mojave/ \
o
< Baker \\

¥ —~
] Barstow /7~ \
-Lanca_slar e 15)

¥
-Oxfcm‘R
“. Pasadena “=sLudlow

an Bermardino [T 7
Rlv.ﬂ’ns Redlands A(n'boy

nta Ana
N

Long Boa‘l:hLQ

Santa Nicolas %M?a
S‘@n Clementé

".Sprinéé
“sIndio

T8 Brawley
. O 7 !EICemro\

Cal x:co

Y| MEXICO b ¢

49 i,

»=z

Extending BFS

Suppose G has positive integral (i) G’ has unit-length edges
edge lengths (i) For the “real” nodes,

distance in G = distance in G
Sorun BFS on G’ !

Problem: efficiency

If edge lengths in G are large:

(i) G’ is enormous

(i) BFS wastes a lot of time computing
distances to dummy nodes we don’t care

about

Extending BFS

First 99 time steps: BFS (on G’) slowly
advances along a—b and a—c. Boring!

Can we snooze and have an alarm wake
up us whenever BFS reaches a real node?

Alarm for each real node: estimated time
of arrival based on edges currently being
traversed.

T=0 set alarms for b (500), c (100)
snooze

T=100 wake up, BFSisatc
set alarms for b (300), d (700)
snooze

T=300 wakeup, BFSisatb
set alarm for d (500)
snooze

T=500 wakeup, BFSisatd

dist[c] = 100
dist[b] = 300
dist[d] = 500

Alarm clock algorithm

(Given graph G and starting node s) How to implement alarm?

Answer: priority queue (aka heap)

set an alarm for node s at time O

if the next alarm goes off at time T, for node u: A priority queue H stores:
distance[u] = T - a set of elements (our nodes)
for each edge (u,v) in E: -associated key values (alarm times)
if no alarm for v, set one for T + I(u,v) and supports these operations:
if there is an alarm for v, but later than _ _
T + I(u,v), then reset to this earlier time insert(H,x) insert new set a new
element into H alarm
Exactly simulates BFS on G'... deletemin(H) return element which alarm
we no longer need to construct G’! with smallest key is going off
value, remove next?
from H
decreasekey(H,x) allow x’s key allow alarm
value to be to be reset
decreased to an earlier
time
makequeue(S) make a queue initialize
out of the alarms

elements in S
(and their keys)

Dijkstra’s algorithm

procedure dijkstra(G,1,s)

input: graph G = (V,E); node s;
positive edge lengths 1.

output: for each node u, dist[u] 1is
set to its distance from s

for u in V:
dist[u] = ©
dist[s] = 0
H = makequeue (V) // key = dist[]

while H is not empty:
u = deletemin (H)
for each edge (u,v) in E:
if dist[v] > dist[u] + 1l(u,v):
dist[v] = dist[u] + 1(u,v)

decreasekey (H, V)

Another example

procedure dijkstra(G,1,s)

for u in V:
dist[u] = ©
prev[u] = nil

dist[s] = 0

H = makequeue (V) // key = dist[] 0

while H is not empty:
u = deletemin (H)
for each edge (u,v) in E:
if dist[v] > dist[u] + 1l(u,v):
dist[v] = dist[u] + 1(u,v)

prev([v] = u

decreasekey (H, V)

Running time

procedure dijkstra(G,1,s)

for u in V:
dist[u] = ©
dist[s] = 0
H = makequeue (V) // key = dist[]

while H is not empty:
u = deletemin (H)

for each edge (u,v) in E:

if dist[v] > dist[u] + 1l(u,v):

dist[v] = dist[u] + 1l(u,v)
decreasekey (H, V)

Time:
O(V+E)+

V x deletemin +
V x insert +

E x decreasekey

COL702:Advanced Data Structures and Algorithms

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

Running time

procedure dijkstra(G,1,s)

for u in V:
dist[u] = ©
dist[s] = 0
H = makequeue (V) // key = dist[]

while H is not empty:
u = deletemin (H)
for each edge (u,v) in E:
if dist[v] > dist[u] + 1l(u,v):

dist[v] = dist[u] + 1l(u,v)
decreasekey (H, V)

Time:
O(V+E)+

V x deletemin +
V x insert +

E x decreasekey

Depends on priority queue
Implementation:
eg. binary heap O(E log V)

Linked list implementation

Linked list, unordered

insert:
decreasekey:

deletemin:

Binary heap
Complete binary tree: filled in
row by row, left-to-right

Rule: each node’s value is
smaller than that of its children

Height <log, n + 1

Binary heap

insert(7)

decreasekey(19 -> 6)

deletemin

d-ary heap

Same as a binary heap, but with
d children...

height:
insert

deletemin

Running time of Dijkstra’s algorithm

insert, deletemin V x deletemin +
decreasekey (V+E) x insert
linked list O(1) O(V) O(V?)
binary heap O(log V) O(log V) O((V+E) log V)
d-ary heap O(logq V) O(d logq V) O((dV + E) logq V)
Fibonacciheap O(1) amortized O(log V) O(E + V log V)

Which is best depends on sparsity of graph: ratio E/V (average degree).

Linked list vs. binary heap d-ary heap

Dense graph: E = £(V?) Best choice d ~ E/V
Linked list is better: O(V?) Dense: O(V?)

Sparse graph: E = O(V) Sparse: O(V log V)
Binary heap is better: O(V log V) Intermediate: E = V1*¢

O(E/c), linear!

Dijkstra and negative edges

procedure dijkstra(G,1,s)

for u in V:

dist[u]
dist|[s]
H

0
makequeue (V)

o0

// key = dist][]
while H is not empty:
u = deletemin (H)
for each edge (u,v) in E:
if dist[v] > dist[u] + 1l(u,v):
dist[v] = dist[u] + 1l(u,v)
decreasekey (H, V)

Basic principle of Dijkstra’s algorithm:
the shortest path to any node only
goes through nodes that are closer by.

Not true if negative edges are present!

In Dijkstra’s algorithm, dist[] values:

(i) are never too small

(i) get changed only when updating
along an edge:

procedure update (edge (u,v))
if dist[v] > dist[u] + 1l(u,v):
dist[v] = dist[u] + 1(u,v)

