
Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

COL702:Advanced Data Structures and Algorithms

Paths in graphs

The classic 15-puzzle

Graph G = (V,E)
V = {configurations of puzzle}
E: edges between neighboring configurations

c

a g

e

b f

j
d

ih

a

b

c

d e

f h

i

explore(G,a):

Finds a path from a to i.
But this isn’t the shortest possible path!

Distances in graphs

Distance between two nodes
= length of shortest path between them

c

a g

e

b f

j
d

ih

a

bcd

e f

h i

distance 0

distance 1

distance 2

distance 3

Physical model:
Vertex – ping-pong ball
Edge – piece of string

dist(a,e) = ?
dist(d,g) = ?

Suppose we want to compute
distances from some starting node s
to all other nodes in G.
Strategy: layer-by-layer

first, nodes at distance 0
then, nodes at distance 1
then, nodes at distance 2, etc.

Breadth-first search

Suppose we have seen all nodes at
distance ! d.
How to get the next layer?

Solution:
A node is at distance d+1 if:

it is adjacent to some node at
distance d

it hasn’t been seen yet

procedure bfs(G,s)

input: graph G = (V,E); node s in V
output: for each node u, dist[u] is

set to its distance from s

for u in V:
dist[u] = "

dist[s] = 0
Q = [s] // queue containing just s

while Q is not empty:
u = eject(Q)
for each edge (u,v) in E:

if dist[v] = ":
inject(Q,v)
dist[v] = dist[u]+1

a b c d e f

BFS example
procedure bfs(G,s)

for u in V:
dist[u] = "
prev[u] = nil

dist[s] = 0
Q = [s] // queue containing just s
while Q is not empty:

u = eject(Q)
for each edge (u,v) in E:

if dist[v] = ":
inject(Q,v)
dist[v] = dist[u]+1
prev[v] = u

c

a

e

b f

d

Queue
Distances

[a] 0 " " " " "

[bcd] 0 1 1 1 " "

[cd] 0 1 1 1 " "

[de] 0 1 1 1 2 "

[e] 0 1 1 1 2 "

[f]
[]

0 1 1 1 2 3
0 1 1 1 2 3

c

a

e

b f

d
Shortest path tree

Why does BFS work?
procedure bfs(G,s)

for u in V:
dist[u] = "

dist[s] = 0
Q = [s]
while Q is not empty:

u = eject(Q)

for each edge (u,v) in E:
if dist[v] = ":

inject(Q,v)
dist[v] = dist[u]+1

Claim For any distance d = 0,1,2,..., there is
a point in time at which:
(i) all nodes at distance ! d have their

dist[] values correctly set
(ii) all other nodes have dist[] = "
(iii) the queue Q contains exactly the

nodes at distance d
Running time: O(V + E), like DFS

Two search strategies

c

a

e

b f

d

c

a

e

b f

dc

a

e

b f

d

Depth-first Breadth-first

Edge lengths

BFS treats all edges as having the
same length.
This is rarely true in applications.

Denote the length of edge e = (u,v)
by l(e) or le or l(u,v)

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

COL702:Advanced Data Structures and Algorithms

Edge lengths

BFS treats all edges as having the
same length.
This is rarely true in applications.

Denote the length of edge e = (u,v)
by l(e) or le or l(u,v)

Extending BFS

b

c

da

5 2

2

61

b

c

d

a

Suppose G has positive integral
edge lengths

Simple trick: add dummy nodes

G

G’

(i) G’ has unit-length edges
(ii) For the “real” nodes,

distance in G = distance in G’
So run BFS on G’ !

Problem: efficiency

b

c

da

500 200

200

600100

If edge lengths in G are large:
(i) G’ is enormous
(ii) BFS wastes a lot of time computing
distances to dummy nodes we don’t care
about

Extending BFS
b

c

da

500 200

200

600100

a d

b

c

G

G’

First 99 time steps: BFS (on G’) slowly
advances along a—b and a—c. Boring!

Can we snooze and have an alarm wake
up us whenever BFS reaches a real node?

T = 0 set alarms for b (500), c (100)
snooze

T = 100 wake up, BFS is at c
set alarms for b (300), d (700)
snooze

T = 300 wake up, BFS is at b
set alarm for d (500)
snooze

T = 500 wake up, BFS is at d

dist[c] = 100
dist[b] = 300
dist[d] = 500

Alarm for each real node: estimated time
of arrival based on edges currently being
traversed.

Alarm clock algorithm
(Given graph G and starting node s)

set an alarm for node s at time 0
if the next alarm goes off at time T, for node u:

distance[u] = T
for each edge (u,v) in E:

if no alarm for v, set one for T + l(u,v)
if there is an alarm for v, but later than
T + l(u,v), then reset to this earlier time

Exactly simulates BFS on G’...
we no longer need to construct G’!

b

c

da

500 200

200

600100

G

How to implement alarm?
Answer: priority queue (aka heap)

A priority queue H stores:
- a set of elements (our nodes)
-associated key values (alarm times)
and supports these operations:

insert(H,x) insert new
element into H

set a new
alarm

deletemin(H) return element
with smallest key
value, remove
from H

which alarm
is going off
next?

decreasekey(H,x) allow x’s key
value to be
decreased

allow alarm
to be reset
to an earlier
time

makequeue(S) make a queue
out of the
elements in S
(and their keys)

initialize
alarms

Dijkstra’s algorithm
procedure dijkstra(G,l,s)

input: graph G = (V,E); node s;
positive edge lengths le

output: for each node u, dist[u] is
set to its distance from s

for u in V:
dist[u] = "

dist[s] = 0
H = makequeue(V) // key = dist[]

while H is not empty:
u = deletemin(H)
for each edge (u,v) in E:
if dist[v] > dist[u] + l(u,v):

dist[v] = dist[u] + l(u,v)
decreasekey(H,v)

a

b

c e

d

g

f2

6

1 5

1

15 1 3 2

Another example
procedure dijkstra(G,l,s)

for u in V:
dist[u] = "
prev[u] = nil

dist[s] = 0
H = makequeue(V) // key = dist[]

while H is not empty:
u = deletemin(H)

for each edge (u,v) in E:
if dist[v] > dist[u] + l(u,v):

dist[v] = dist[u] + l(u,v)
prev[v] = u
decreasekey(H,v)

a

b

c e

d
4

2

1

5

1
4

3

2

3

Running time
procedure dijkstra(G,l,s)

for u in V:
dist[u] = "

dist[s] = 0
H = makequeue(V) // key = dist[]

while H is not empty:
u = deletemin(H)
for each edge (u,v) in E:

if dist[v] > dist[u] + l(u,v):
dist[v] = dist[u] + l(u,v)
decreasekey(H,v)

Time:
O(V + E) +
V x deletemin +
V x insert +
E x decreasekey

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

COL702:Advanced Data Structures and Algorithms

Running time
procedure dijkstra(G,l,s)

for u in V:
dist[u] = "

dist[s] = 0
H = makequeue(V) // key = dist[]

while H is not empty:
u = deletemin(H)
for each edge (u,v) in E:

if dist[v] > dist[u] + l(u,v):
dist[v] = dist[u] + l(u,v)
decreasekey(H,v)

Time:
O(V + E) +
V x deletemin +
V x insert +
E x decreasekey

Depends on priority queue
implementation:
eg. binary heap O(E log V)

Linked list implementation

Linked list, unordered

g a d

insert:

decreasekey:

deletemin:

Binary heap

Complete binary tree: filled in
row by row, left-to-right

Rule: each node’s value is
smaller than that of its children

Height ! log2 n + 1

3

810

181612 15

13 19 25

Binary heap

insert(7)

decreasekey(19 -> 6)

deletemin

3

810

181612 15

13 19 25

d-ary heap
Same as a binary heap, but with
d children...

height:

insert

deletemin

Running time of Dijkstra’s algorithm
insert,
decreasekey

deletemin V x deletemin +
(V+E) x insert

linked list O(1) O(V) O(V2)

binary heap O(log V) O(log V) O((V+E) log V)

d-ary heap O(logd V) O(d logd V) O((dV + E) logd V)

Fibonacci heap O(1) amortized O(log V) O(E + V log V)

Which is best depends on sparsity of graph: ratio E/V (average degree).

Linked list vs. binary heap

Dense graph: E = £(V2)
Linked list is better: O(V2)

Sparse graph: E = O(V)
Binary heap is better: O(V log V)

d-ary heap

Best choice d # E/V
Dense: O(V2)
Sparse: O(V log V)
Intermediate: E = V1+c

O(E/c), linear!

Dijkstra and negative edges
procedure dijkstra(G,l,s)

for u in V:
dist[u] = "

dist[s] = 0
H = makequeue(V) // key = dist[]

while H is not empty:
u = deletemin(H)
for each edge (u,v) in E:

if dist[v] > dist[u] + l(u,v):
dist[v] = dist[u] + l(u,v)
decreasekey(H,v)

Basic principle of Dijkstra’s algorithm:
the shortest path to any node only
goes through nodes that are closer by.

Not true if negative edges are present!

a

b

c

6

8

-6

In Dijkstra’s algorithm, dist[] values:
(i) are never too small
(ii) get changed only when updating

along an edge:

procedure update(edge (u,v))
if dist[v] > dist[u] + l(u,v):

dist[v] = dist[u] + l(u,v)

