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Paths in graphs

The classic 15-puzzle explore(G,a):
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Graph G = (V,E)

V = {configurations of puzzle}
E: edges between neighboring configurations 0 0

Finds a path from a to i.
But this isn’t the shortest possible path!



Distances in graphs

Distance between two nodes Physical model:
= length of shortest path between them Vertex — ping-pong ball
Edge — piece of string

distance O
distance 1
dist(a,e) = ?
dist(d,g) = ?
distance 2
Suppose we want to compute
distances from some starting node s
to all other nodes in G.
Strategy: layer-by-layer distance 3

first, nodes at distance O
then, nodes at distance 1
then, nodes at distance 2, etc.




Breadth-first search

Suppose we have seen all nodes at
distance < d.

How to get the next layer?

Solution:
A node is at distance d+1 if:

it is adjacent to some node at
distance d

it hasn’t been seen yet

procedure bfs (G, s)
input: graph G = (V,E); node s in V
output: for each node u, dist[u] 1is

set to its distance from s

for u in V:

dist[u] = o©
dist[s] = 0
Q = [s] // queue containing just s

while Q is not empty:
u = eject(Q)
for each edge (u,v) in E:
if dist[v] = o0:
inject(Q,v)
dist[v] = dist[u]+1l




BFS example

procedure bfs (G, s)

for u in V:

dist[u] = ©
prev[u] = nil
dist[s] = 0
Q = [s] // queue containing just s

while Q is not empty:
u = eject(Q)
for each edge (u,v) in E:
if dist[v] = :
inject(Q,v)
dist[v] = dist[u]+1

prev[v] = u

Queue Distances
al/b|c|di e |f
[a] 0 |[oco|o0|oo|o0| 00
[bcd] 0 (1 (1|1 ||
[cd] 0 (1 (1|1 ||
[de] 0(1 (1|1 |2 |
[e] 0(1 (1|1 |2 |
[f] o1 (11|12 |3
[ o1 (11|12 |3

Shortest path tree




Why does BFS work?

procedure bfs (G, s)

for u in V:

dist[u] = ®©
dist[s] = 0
Q = [s]

while Q is not empty:
u = eject(Q)
for each edge (u,v) in E:
if dist[v] = :
inject(Q,v)
dist[v] = dist[u]+1

Claim For any distance d = 0,1,2,..., there is

a point in time at which:

(i) all nodes at distance < d have their

dist[] values correctly set

(ii) all other nodes have dist[] = oo
(ifi) the queue Q contains exactly the

nodes at distance d

Running time: O(V + E), like DFS



Two search strategies

Breadth-first




BFS treats all edges as having the
same length.
This is rarely true in applications.

Denote the length of edge e = (u,v)
by I(e) or I, or I(u,v)

Edge lengths
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BFS treats all edges as having the
same length.
This is rarely true in applications.

Denote the length of edge e = (u,v)
by I(e) or I, or I(u,v)
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Extending BFS

Suppose G has positive integral (i) G’ has unit-length edges
edge lengths (i) For the “real” nodes,

distance in G = distance in G
Sorun BFS on G’ !

Problem: efficiency

If edge lengths in G are large:

(i) G’ is enormous

(i) BFS wastes a lot of time computing
distances to dummy nodes we don’t care

about




Extending BFS

First 99 time steps: BFS (on G’) slowly
advances along a—b and a—c. Boring!

Can we snooze and have an alarm wake
up us whenever BFS reaches a real node?

Alarm for each real node: estimated time
of arrival based on edges currently being
traversed.

T=0 set alarms for b (500), c (100)
snooze

T=100 wake up, BFSisatc
set alarms for b (300), d (700)
snooze

T=300 wakeup, BFSisatb
set alarm for d (500)
snooze

T=500 wakeup, BFSisatd

dist[c] = 100
dist[b] = 300
dist[d] = 500



Alarm clock algorithm

(Given graph G and starting node s) How to implement alarm?

Answer: priority queue (aka heap)

set an alarm for node s at time O

if the next alarm goes off at time T, for node u: A priority queue H stores:
distance[u] = T - a set of elements (our nodes)
for each edge (u,v) in E: -associated key values (alarm times)
if no alarm for v, set one for T + I(u,v) and supports these operations:
if there is an alarm for v, but later than _ _
T + I(u,v), then reset to this earlier time insert(H,x) insert new set a new
element into H alarm
Exactly simulates BFS on G'... deletemin(H) return element which alarm
we no longer need to construct G’! with smallest key  is going off
value, remove next?
from H
decreasekey(H,x) allow x’s key allow alarm
value to be to be reset
decreased to an earlier
time
makequeue(S) make a queue initialize
out of the alarms

elements in S
(and their keys)



Dijkstra’s algorithm

procedure dijkstra(G,1,s)

input: graph G = (V,E); node s;
positive edge lengths 1.

output: for each node u, dist[u] 1is
set to its distance from s

for u in V:
dist[u] = ©
dist[s] = 0
H = makequeue (V) // key = dist[]

while H is not empty:
u = deletemin (H)
for each edge (u,v) in E:
if dist[v] > dist[u] + 1l(u,v):
dist[v] = dist[u] + 1(u,v)

decreasekey (H, V)




Another example

procedure dijkstra(G,1,s)

for u in V:
dist[u] = ©
prev[u] = nil

dist[s] = 0

H = makequeue (V) // key = dist[] 0

while H is not empty:
u = deletemin (H)
for each edge (u,v) in E:
if dist[v] > dist[u] + 1l(u,v):
dist[v] = dist[u] + 1(u,v)

prev([v] = u

decreasekey (H, V)




Running time

procedure dijkstra(G,1,s)

for u in V:
dist[u] = ©
dist[s] = 0
H = makequeue (V) // key = dist[]

while H is not empty:
u = deletemin (H)

for each edge (u,v) in E:

if dist[v] > dist[u] + 1l(u,v):

dist[v] = dist[u] + 1l(u,v)
decreasekey (H, V)

Time:
O(V+E)+

V x deletemin +
V x insert +

E x decreasekey
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Running time

procedure dijkstra(G,1,s)

for u in V:
dist[u] = ©
dist[s] = 0
H = makequeue (V) // key = dist[]

while H is not empty:
u = deletemin (H)
for each edge (u,v) in E:
if dist[v] > dist[u] + 1l(u,v):

dist[v] = dist[u] + 1l(u,v)
decreasekey (H, V)

Time:
O(V+E)+

V x deletemin +
V x insert +

E x decreasekey

Depends on priority queue
Implementation:
eg. binary heap O(E log V)



Linked list implementation

Linked list, unordered

insert:
decreasekey:

deletemin:



Binary heap
Complete binary tree: filled in
row by row, left-to-right

Rule: each node’s value is
smaller than that of its children

Height <log, n + 1




Binary heap

insert(7)

decreasekey(19 -> 6)

deletemin



d-ary heap

Same as a binary heap, but with
d children...

height:
insert

deletemin



Running time of Dijkstra’s algorithm

insert, deletemin V x deletemin +
decreasekey (V+E) x insert
linked list O(1) O(V) O(V?)
binary heap O(log V) O(log V) O((V+E) log V)
d-ary heap O(logq V) O(d logq V) O((dV + E) logq V)
Fibonacciheap O(1) amortized O(log V) O(E + V log V)

Which is best depends on sparsity of graph: ratio E/V (average degree).

Linked list vs. binary heap d-ary heap

Dense graph: E = £(V?) Best choice d ~ E/V
Linked list is better: O(V?) Dense: O(V?)

Sparse graph: E = O(V) Sparse: O(V log V)
Binary heap is better: O(V log V) Intermediate: E = V1*¢

O(E/c), linear!



Dijkstra and negative edges

procedure dijkstra(G,1,s)

for u in V:

dist[u]
dist|[s]
H

0
makequeue (V)

o0

// key = dist][]
while H is not empty:
u = deletemin (H)
for each edge (u,v) in E:
if dist[v] > dist[u] + 1l(u,v):
dist[v] = dist[u] + 1l(u,v)
decreasekey (H, V)

Basic principle of Dijkstra’s algorithm:
the shortest path to any node only
goes through nodes that are closer by.

Not true if negative edges are present!

In Dijkstra’s algorithm, dist[] values:

(i) are never too small

(i) get changed only when updating
along an edge:

procedure update (edge (u,v))
if dist[v] > dist[u] + 1l(u,v):
dist[v] = dist[u] + 1(u,v)




