COL702:Advanced Data Structures and Algorithms

Paths in graphs

The classic 15-puzzle

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Graph G = (V,E)
$\mathrm{V}=$ \{configurations of puzzle\}
E : edges between neighboring configurations

explore(G,a):

Finds a path from a to i. But this isn't the shortest possible path!

Distances in graphs

Distance between two nodes = length of shortest path between them

$$
\begin{aligned}
\operatorname{dist}(\mathrm{a}, \mathrm{e}) & =? \\
\operatorname{dist}(\mathrm{~d}, \mathrm{~g}) & =?
\end{aligned}
$$

Suppose we want to compute

 distances from some starting node s to all other nodes in G.Strategy: layer-by-layer
first, nodes at distance 0 then, nodes at distance 1 then, nodes at distance 2, etc.

Physical model:
Vertex - ping-pong ball Edge - piece of string

Breadth-first search

Suppose we have seen all nodes at distance $\leq \mathrm{d}$. How to get the next layer?

Solution:
A node is at distance $\mathrm{d}+1$ if:
it is adjacent to some node at distance d
it hasn't been seen yet

```
procedure bfs (G,s)
```

procedure bfs (G,s)
input: graph G = (V,E); node s in V
input: graph G = (V,E); node s in V
output: for each node u, dist[u] is
output: for each node u, dist[u] is
set to its distance from s
set to its distance from s
for u in V:
for u in V:
dist[u] = \infty
dist[u] = \infty
dist[s] = 0
dist[s] = 0
Q = [s] // queue containing just s
Q = [s] // queue containing just s
while Q is not empty:
while Q is not empty:
u = eject(Q)
u = eject(Q)
for each edge (u,v) in E:
for each edge (u,v) in E:
if dist[v] = \infty:
if dist[v] = \infty:
inject(Q,v)
inject(Q,v)
dist[v] = dist[u]+1

```
        dist[v] = dist[u]+1
```


BFS example

```
procedure bfs(G,s)
for u in v:
    dist[u] = \infty
    prev[u] = nil
dist[s] = 0
Q = [s] // queue containing just s
while Q is not empty:
    u = eject(Q)
    for each edge (u,v) in E:
        if dist[v] = \infty:
        inject(Q,v)
        dist[v] = dist[u]+1
        prev[v] = u
```


Shortest path tree

Why does BFS work?

```
procedure bfs(G,s)
for u in v:
    dist[u] = \infty
dist[s] = 0
Q = [s]
while Q is not empty:
    u = eject(Q)
    for each edge (u,v) in E:
        if dist[v] = \infty:
            inject(Q,v)
            dist[v] = dist[u]+1
```

Claim For any distance $\mathrm{d}=0,1,2, \ldots$, there is
a point in time at which:
(i) all nodes at distance $\leq \mathrm{d}$ have their dist[] values correctly set
(ii) all other nodes have dist[] $=\infty$
(iii) the queue Q contains exactly the nodes at distance d

Two search strategies

Depth-first
Breadth-first

Edge lengths

BFS treats all edges as having the same length.
This is rarely true in applications.

Denote the length of edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ by l(e) or I_{e} or I(u,v)

COL702:Advanced Data Structures and Algorithms

Edge lengths

BFS treats all edges as having the same length.
This is rarely true in applications.

Denote the length of edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ by l(e) or I_{e} or I(u,v)

Extending BFS

Suppose G has positive integral edge lengths

G

Simple trick: add dummy nodes

(i) G' has unit-length edges
(ii) For the "real" nodes, distance in $\mathrm{G}=$ distance in G^{\prime} So run BFS on G' !

Problem: efficiency

If edge lengths in G are large:
(i) G^{\prime} is enormous
(ii) BFS wastes a lot of time computing distances to dummy nodes we don't care about

Extending BFS

First 99 time steps: BFS (on G') slowly advances along a-b and a-c. Boring!

Can we snooze and have an alarm wake up us whenever BFS reaches a real node?

Alarm for each real node: estimated time of arrival based on edges currently being traversed.
$\mathrm{T}=0 \quad$ set alarms for b (500), c (100) snooze
$T=100$ wake up, BFS is at c set alarms for b (300), d (700) snooze
$T=300$
wake up, BFS is at b set alarm for d (500) snooze
$T=500$ wake up, BFS is at d

Alarm clock algorithm

(Given graph G and starting node s)
set an alarm for node s at time 0
if the next alarm goes off at time T , for node u : distance[u] = T
for each edge (u, v) in E :
if no alarm for v, set one for $T+I(u, v)$ if there is an alarm for v, but later than $T+I(u, v)$, then reset to this earlier time

Exactly simulates BFS on G'... we no longer need to construct G^{\prime} !

How to implement alarm?

Answer: priority queue (aka heap)
A priority queue H stores:

- a set of elements (our nodes)
-associated key values (alarm times) and supports these operations:

insert(H,x)	insert new element into H	set a new alarm
deletemin(H)	return element with smallest key value, remove from H	which alarm is going off next?
decreasekey(H,x)	allow x's key value to be decreased	allow alarm to be reset to an earlier time
makequeue(S)	make a queue out of the elements in S (and their keys)	initialize alarms

Dijkstra's algorithm

```
procedure dijkstra(G,l,s)
input: graph G = (V,E); node s;
        positive edge lengths }\mp@subsup{l}{e}{
output: for each node u, dist[u] is
        set to its distance from s
for u in V:
    dist[u] = \infty
dist[s] = 0
H = makequeue(V) // key = dist[]
while H is not empty:
    u = deletemin(H)
    for each edge (u,v) in E:
        if dist[v] > dist[u] + l(u,v):
        dist[v] = dist[u] + l(u,v)
        decreasekey (H,v)
```


Another example

```
procedure dijkstra(G,l,s)
for u in V:
    dist[u] = \infty
    prev[u] = nil
dist[s] = 0
H = makequeue(V) // key = dist[]
while H is not empty:
    u = deletemin(H)
    for each edge (u,v) in E:
        if dist[v] > dist[u] + l(u,v):
        dist[v] = dist[u] + l(u,v)
        prev[v] = u
        decreasekey(H,v)
```


Running time

```
procedure dijkstra(G,l,s)
for u in V:
    dist[u] = \infty
dist[s] = 0
H = makequeue(V) // key = dist[]
while H is not empty:
    u = deletemin(H)
    for each edge (u,v) in E:
        if dist[v] > dist[u] + l(u,v):
        dist[v] = dist[u] + l(u,v)
        decreasekey(H,v)
```

Time:
$\mathrm{O}(\mathrm{V}+\mathrm{E})+$
$\mathrm{V} x$ deletemin +
$V \mathrm{x}$ insert +
Ex decreasekey

COL702:Advanced Data Structures and Algorithms

Running time

```
procedure dijkstra(G,l,s)
for u in V:
    dist[u] = \infty
dist[s] = 0
H = makequeue(V) // key = dist[]
while H is not empty:
    u = deletemin(H)
    for each edge (u,v) in E:
        if dist[v] > dist[u] + l(u,v):
        dist[v] = dist[u] + l(u,v)
        decreasekey(H,v)
```

Time:
$\mathrm{O}(\mathrm{V}+\mathrm{E})+$
$\mathrm{V} x$ deletemin +
V x insert +
Exdecreasekey

Depends on priority queue implementation:
eg. binary heap $O(E \log V)$

Linked list implementation

Linked list, unordered

insert:
decreasekey:
deletemin:

Binary heap

Complete binary tree: filled in row by row, left-to-right

Rule: each node's value is smaller than that of its children

Height $\leq \log _{2} \mathrm{n}+1$

Binary heap

insert(7)
decreasekey(19 -> 6)
deletemin

d-ary heap

Same as a binary heap, but with d children...
height:
insert
deletemin

Running time of Dijkstra's algorithm

	insert, decreasekey	deletemin	V x deletemin + $(\mathbf{V}+E) \times$ insert
linked list	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{V})$	$\mathrm{O}\left(\mathrm{V}^{2}\right)$
binary heap	$\mathrm{O}(\log \mathrm{V})$	$\mathrm{O}(\log \mathrm{V})$	$\mathrm{O}((\mathrm{V}+\mathrm{E}) \log \mathrm{V})$
d-ary heap	$\mathrm{O}\left(\log _{d} \mathrm{~V}\right)$	$\mathrm{O}\left(\mathrm{d} \log _{d} \mathrm{~V}\right)$	$\mathrm{O}\left((\mathrm{dV}+\mathrm{E}) \log _{d} \mathrm{~V}\right)$
Fibonacci heap	$\mathrm{O}(1)$ amortized	$\mathrm{O}(\log \mathrm{V})$	$\mathrm{O}(\mathrm{E}+\mathrm{V} \log \mathrm{V})$

Which is best depends on sparsity of graph: ratio E/V (average degree).

Linked list vs. binary heap
Dense graph: $\mathrm{E}=£\left(\mathrm{~V}^{2}\right)$
Linked list is better: $\mathrm{O}\left(\mathrm{V}^{2}\right)$
Sparse graph: $\mathrm{E}=\mathrm{O}(\mathrm{V})$
Binary heap is better: $\mathrm{O}(\mathrm{V} \log \mathrm{V})$
d-ary heap
Best choice $\mathrm{d} \approx \mathrm{E} / \mathrm{V}$ Dense: $\mathrm{O}\left(\mathrm{V}^{2}\right)$ Sparse: O(V log V) Intermediate: $\mathrm{E}=\mathrm{V}^{1+\mathrm{c}}$ $\mathrm{O}(\mathrm{E} / \mathrm{c})$, linear!

Dijkstra and negative edges

```
procedure dijkstra(G,l,s)
for u in V:
    dist[u] = \infty
dist[s] = 0
H = makequeue(V) // key = dist[]
while H is not empty:
    u = deletemin(H)
    for each edge (u,v) in E:
        if dist[v] > dist[u] + l(u,v):
        dist[v] = dist[u] + l(u,v)
        decreasekey (H,v)
```

In Dijkstra's algorithm, dist[] values:
(i) are never too small
(ii) get changed only when updating along an edge:

Basic principle of Dijkstra's algorithm: the shortest path to any node only goes through nodes that are closer by.

Not true if negative edges are present!

