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Paths in graphs

The classic 15-puzzle

Graph G = (V,E)
V = {configurations of puzzle}
E: edges between neighboring configurations

c

a g

e

b f

j
d

ih

a

b

c

d e

f h

i

explore(G,a):

Finds a path from a to i.
But this isn’t the shortest possible path!



Distances in graphs

Distance between two nodes 
= length of shortest path between them
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Physical model:
Vertex – ping-pong ball
Edge – piece of string

dist(a,e) = ?
dist(d,g) = ?

Suppose we want to compute 
distances from some starting node s 
to all other nodes in G.
Strategy: layer-by-layer

first, nodes at distance 0
then, nodes at distance 1
then, nodes at distance 2, etc.



Breadth-first search

Suppose we have seen all nodes at 
distance ! d. 
How to get the next layer?

Solution:
A node is at distance d+1 if:

it is adjacent to some node at 
distance d

it hasn’t been seen yet

procedure bfs(G,s)

input: graph G = (V,E); node s in V
output: for each node u, dist[u] is 

set to its distance from s

for u in V: 
dist[u] = "

dist[s] = 0
Q = [s]  // queue containing just s 

while Q is not empty:
u = eject(Q)
for each edge (u,v) in E:

if dist[v] = ":
inject(Q,v)
dist[v] = dist[u]+1
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BFS example
procedure bfs(G,s)

for u in V: 
dist[u] = "
prev[u] = nil

dist[s] = 0
Q = [s]  // queue containing just s 
while Q is not empty:

u = eject(Q)
for each edge (u,v) in E:

if dist[v] = ":
inject(Q,v)
dist[v] = dist[u]+1
prev[v] = u
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Queue
Distances

[a] 0 " " " " "

[bcd] 0 1 1 1 " "

[cd] 0 1 1 1 " "

[de] 0 1 1 1 2 "

[e] 0 1 1 1 2 "

[f]
[]

0 1 1 1 2 3
0 1 1 1 2 3
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Shortest path tree



Why does BFS work?
procedure bfs(G,s)

for u in V: 
dist[u] = "

dist[s] = 0
Q = [s]
while Q is not empty:

u = eject(Q)

for each edge (u,v) in E:
if dist[v] = ":

inject(Q,v)
dist[v] = dist[u]+1

Claim For any distance d = 0,1,2,..., there is 
a point in time at which:
(i) all nodes at distance ! d have their 

dist[] values correctly set
(ii) all other nodes have dist[] = "
(iii) the queue Q contains exactly the 

nodes at distance d 
Running time: O(V + E), like DFS



Two search strategies
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Edge lengths

BFS treats all edges as having the 
same length.
This is rarely true in applications.

Denote the length of edge e = (u,v) 
by l(e) or le or l(u,v)
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Edge lengths

BFS treats all edges as having the 
same length.
This is rarely true in applications.

Denote the length of edge e = (u,v) 
by l(e) or le or l(u,v)



Extending BFS
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Suppose G has positive integral 
edge lengths

Simple trick: add dummy nodes

G

G’

(i) G’ has unit-length edges
(ii) For the “real” nodes, 

distance in G = distance in G’
So run BFS on G’ !

Problem: efficiency
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If edge lengths in G are large:
(i) G’ is enormous
(ii) BFS wastes a lot of time computing 
distances to dummy nodes we don’t care 
about



Extending BFS
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First 99 time steps: BFS (on G’) slowly 
advances along a—b and a—c. Boring!

Can we snooze and have an alarm wake 
up us whenever BFS reaches a real node? 

T = 0 set alarms for b (500), c (100)
snooze

T = 100 wake up, BFS is at c
set alarms for b (300), d (700)
snooze

T = 300 wake up, BFS is at b
set alarm for d (500)
snooze

T = 500 wake up, BFS is at d

dist[c] = 100
dist[b] = 300
dist[d] = 500

Alarm for each real node: estimated time 
of arrival based on edges currently being 
traversed.



Alarm clock algorithm
(Given graph G and starting node s)

set an alarm for node s at time 0
if the next alarm goes off at time T, for node u:

distance[u] = T
for each edge (u,v) in E:

if no alarm for v, set one for T + l(u,v)
if there is an alarm for v, but later than 
T + l(u,v), then reset to this earlier time

Exactly simulates BFS on G’... 
we no longer need to construct G’!
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How to implement alarm?
Answer: priority queue (aka heap)

A priority queue H stores:
- a set of elements (our nodes)
-associated key values (alarm times)
and supports these operations:

insert(H,x) insert new 
element into H

set a new 
alarm

deletemin(H) return element 
with smallest key 
value, remove 
from H

which alarm 
is going off 
next?

decreasekey(H,x) allow x’s key 
value to be 
decreased

allow alarm 
to be reset 
to an earlier 
time

makequeue(S) make a queue 
out of the 
elements in S 
(and their keys)

initialize
alarms



Dijkstra’s algorithm
procedure dijkstra(G,l,s)

input: graph G = (V,E); node s; 
positive edge lengths le

output: for each node u, dist[u] is 
set to its distance from s

for u in V: 
dist[u] = "

dist[s] = 0
H = makequeue(V)  // key = dist[]

while H is not empty:
u = deletemin(H)
for each edge (u,v) in E:
if dist[v] > dist[u] + l(u,v):

dist[v] = dist[u] + l(u,v)
decreasekey(H,v)
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Another example
procedure dijkstra(G,l,s)

for u in V: 
dist[u] = "
prev[u] = nil

dist[s] = 0
H = makequeue(V)  // key = dist[]

while H is not empty:
u = deletemin(H)

for each edge (u,v) in E:
if dist[v] > dist[u] + l(u,v):

dist[v] = dist[u] + l(u,v)
prev[v] = u
decreasekey(H,v)
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Running time
procedure dijkstra(G,l,s)

for u in V: 
dist[u] = "

dist[s] = 0
H = makequeue(V)  // key = dist[]

while H is not empty:
u = deletemin(H)
for each edge (u,v) in E:

if dist[v] > dist[u] + l(u,v):
dist[v] = dist[u] + l(u,v)
decreasekey(H,v)

Time: 
O(V + E) + 
V x deletemin +
V x insert +
E x decreasekey
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Running time
procedure dijkstra(G,l,s)

for u in V: 
dist[u] = "

dist[s] = 0
H = makequeue(V)  // key = dist[]

while H is not empty:
u = deletemin(H)
for each edge (u,v) in E:

if dist[v] > dist[u] + l(u,v):
dist[v] = dist[u] + l(u,v)
decreasekey(H,v)

Time: 
O(V + E) + 
V x deletemin +
V x insert +
E x decreasekey

Depends on priority queue 
implementation:
eg. binary heap O(E log V)



Linked list implementation

Linked list, unordered

g a d

insert:

decreasekey:

deletemin:



Binary heap

Complete binary tree: filled in 
row by row, left-to-right

Rule: each node’s value is 
smaller than that of its children

Height ! log2 n + 1
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Binary heap

insert(7)

decreasekey(19 -> 6)

deletemin
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d-ary heap
Same as a binary heap, but with 
d children...

height: 

insert

deletemin



Running time of Dijkstra’s algorithm
insert,
decreasekey

deletemin V x deletemin + 
(V+E) x insert

linked list O(1) O(V) O(V2)

binary heap O(log V) O(log V) O((V+E) log V)

d-ary heap O(logd V) O(d logd V) O((dV + E) logd V)

Fibonacci heap O(1) amortized O(log V) O(E + V log V)

Which is best depends on sparsity of graph: ratio E/V (average degree).

Linked list vs. binary heap

Dense graph: E = £(V2)
Linked list is better: O(V2)

Sparse graph: E = O(V)
Binary heap is better: O(V log V)

d-ary heap

Best choice d # E/V
Dense: O(V2)
Sparse: O(V log V)
Intermediate: E = V1+c 

O(E/c), linear! 



Dijkstra and negative edges
procedure dijkstra(G,l,s)

for u in V: 
dist[u] = "

dist[s] = 0
H = makequeue(V)  // key = dist[]

while H is not empty:
u = deletemin(H)
for each edge (u,v) in E:

if dist[v] > dist[u] + l(u,v):
dist[v] = dist[u] + l(u,v)
decreasekey(H,v)

Basic principle of Dijkstra’s algorithm:
the shortest path to any node only 
goes through nodes that are closer by.

Not true if negative edges are present!
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In Dijkstra’s algorithm, dist[] values:
(i) are never too small
(ii) get changed only when updating 

along an edge:

procedure update(edge (u,v))
if dist[v] > dist[u] + l(u,v):

dist[v] = dist[u] + l(u,v)


