
COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-4

• The instructions are the same as in Homework 1, 2 and 3.

There are 6 questions for a total of 100 points.

1. (10 points) Given an array A[1...n] containing n distinct integers sorted in increasing order, design an
algorithm that determines if there is an index i such that A[i] = i. Give proof of correctness and running
time analysis.

2. (15 points) Consider the following problem: You are given a pointer to the root r of a binary tree, where
each vertex v has pointers v.lc and v.rc to the left and right child, and a value V al(v) > 0 . The value
NIL represents a null pointer, showing that v has no child of that type. You wish to find the path from
r to some leaf that minimizes the total values of vertices along that path. Give an algorithm to find the
minimum sum of vertices along such a path along with a proof of correctness and runtime analysis.

3. (15 points) One ordered pair v = (v1, v2) dominates another ordered pair u = (u1, u2) if v1 ≥ u1 and
v2 ≥ u2. Given a set S of ordered pairs, an ordered pair u ∈ S is called Pareto optimal for S if there
is no v ∈ S such that v dominates u. Give an efficient algorithm that takes as input a list of n ordered
pairs and outputs the subset of all Pareto-optimal pairs in S. Provide a proof of correctness along with
the runtime analysis.

4. (15 points) Let S and T be sorted arrays each containing n elements. Design an algorithm to find the
nth smallest element out of the 2n elements in S and T . Discuss running time, and give proof of
correctness.

5. An array A[1...n] is said to have a majority element if more than half (i.e., > n/2) of its entries are
the same. Given an array, the task is to design an efficient algorithm to tell whether the array has a
majority element, and, if so, to find that element. The elements of the array are not necessarily from
some ordered domain like the integers, and so there can be no comparisons of the form “is A[i] ≥ A[j]?”
(Think of the array elements as GIF files, say.) However you can answer questions of the form: “is
A[i] = A[j]?” in constant time.

(a) (15 points) Show how to solve this problem in O(n log n) time. Provide a runtime analysis and
proof of correctness.

(Hint: Split the array A into two arrays A1 and A2 of half the size. Does knowing the majority
elements of A1 and A2 help you figure out the majority element of A? If so, you can use a divide-
and-conquer approach.)

(b) (15 points) Design a linear time algorithm. Provide a runtime analysis and proof of correctness.

(Hint: Here is another divide-and-conquer approach:

• Pair up the elements of A arbitrarily, to get n/2 pairs (say n is even)

• Look at each pair: if the two elements are different, discard both of them; if they are the same,
keep just one of them

• Show that after this procedure there are at most n/2 elements left, and that if A has a majority
element then it’s a majority in the remaining set as well)

1 of 2



COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-4

6. Consider the following algorithm for deciding whether an undirected graph has a Hamiltonian Path from
x to y, i.e., a simple path in the graph from x to y going through all the nodes in G exactly once. (N(x)
is the set of neighbors of x, i.e. nodes directly connected to x in G).

HamPath(graph G, node x, node y)
- If x = y is the only node in G return True.
- If no node in G is connected to x, return False.
- For each z ∈ N(x) do:

- If HamPath(G− {x}, z, y), return True.
- return False

(a) (7 points) Give proof of correctness of the above backtracking algorithm.

(b) (8 points) If every node of the graph G has degree (number of neighbors) at most 4, how long will
this algorithm take at most? (Hint: you can get a tighter bound than the most obvious one.)

2 of 2


