
COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-4

• The instructions are the same as in Homework 1, 2 and 3.

There are 6 questions for a total of 100 points.

1. (10 points) Given an array A[1...n] containing n distinct integers sorted in increasing order, design an
algorithm that determines if there is an index i such that A[i] = i. Give proof of correctness and running
time analysis.

Solution: Here is the pseudocode for a divide and conquer algorithm which is based on the idea of
binary search:

FindIndex(A,n)
- return(FindBetweenIndices(A, 1, n))

FindBetweenIndices(A, i, j)
- if (j < i)return(“no”)
- mid← b i+j

2 c
- if (A[mid] == mid)return(“yes”)
- elseif (A[mid] < mid)return(FindBetweenIndices(A,mid + 1, j))
- else return(FindBetweenIndices(A, i,mid− 1))

Correctness: We prove correctness using induction on the array size. The base case holds since for
arrays containing no elements the algorithm correctly returns “no”. The induction hypothesis says
that the algorithm returns the correct answer for any array of size 0, 1, ..., n − 1. In the induction
step, we need to show that the algorithm is correct for any array of size n. The algorithm checks if
A[dn/2e] = dn/2e. If so, it correctly returns “yes”. Otherwise, consider the following two cases:

• if A[dn/2e] > dn/2e, then any index j such that A[j] = j cannot satisfy j ≥ dn/2e. This is
because A[dn/2e+ t] ≥ A[dn/2e] + t > dn/2e+ t for any positive t because the elements of the
array A are distinct. So, the answer is the same as the answer for the first half of the array,
which by the induction assumption, the algorithm correctly returns.

• if A[dn/2e] < dn/2e, then any index j such that A[j] = j cannot satisfy j ≤ dn/2e. This is
because A[dn/2e− t] ≥ A[dn/2e]− t < dn/2e− t for any positive t because the elements of the
array A are distinct. So, the answer is the same as the answer for the second half of the array,
which by the induction assumption, the algorithm correctly returns.

So, the algorithm returns the correct answer for any array of size n. This completes the inductive
step and the proof of correctness of the algorithm.

Running time: The recurrence relation for the running time of the above recursive algorithm is
T (n) = T (n/2) +O(1) and T (0) = T (1) = O(1). Using the Master theorem with a = 1; b = 2; d = 0,
we obtain T (n) = O(log n).

1 of 7

COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-4

2. (15 points) Consider the following problem: You are given a pointer to the root r of a binary tree, where
each vertex v has pointers v.lc and v.rc to the left and right child, and a value V al(v) > 0 . The value
NIL represents a null pointer, showing that v has no child of that type. You wish to find the path from
r to some leaf that minimizes the total values of vertices along that path. Give an algorithm to find the
minimum sum of vertices along such a path along with a proof of correctness and runtime analysis.

Solution: A divide-and-conquer algorithm for this problem is:

MinPath(r)
- if (r.lc 6= NIL)

- leftweight :=MinPath(r.lc)
- else

- leftweight := 0
- if (r.rc 6= NIL)

- rightweight :=MinPath(r.rc)
- else

- rightweight := 0
- if(leftweight 6= 0 and rightweight 6= 0)

- return(min (leftweight, rightweight) + V al(r))
- else

- return(max (leftweight, rightweight) + V al(r))

Correctness Proof : We prove the correctness of this algorithm by strong induction on the size of
the tree. If the tree is size 1, both the left child and right child are NIL So we set leftweight and
rightweight to 0, and return V al(r). Since the only path to a leaf is the path just containing r itself
and no edges, that is the correct minimum path value.

Assume MinPath returns the minimum total weight in any tree of size 1 ≤ k ≤ n − 1. We’ll show
that this is also true for trees of size n. If the root r of a tree of size n has both a left sub-tree and a
right sub-tree, the set of paths from r to a leaf are all the paths that go from r to the left child to a
leaf, together with all the paths that go from r to the right child to a leaf. Both types of paths have
total value the total values along the path from the child to the leaf + V al(r). Thus, the minimum
path length for r is V al(r) + smaller of minimum path value for the two children. By the induction
hypothesis, since each subtree is of size between 1 and n − 1, MinPath(r.lc) returns the minimum
path value for the left child of r and MinPath(r.rc) that for the right child of r, so this is also what
MinPath(r) returns.

Similarly, if r only has one child, the minimum total value along a path for r is V al(r) plus the
minimum total value for that child. Then one of the terms leftweight, rightweight is 0, and by the
induction hypothesis, the other is this total value for the child. Since all the values are non-negative,
the minimum path for the child is > 0, so we return that value + V al(r), which is the correct value
for the tree rooted at r.

Time analysis: Let L be the size of the left-subtree, R the size of the right-subtree. Then n =
L+R+1, since all vertices are either in the left-subtree, right sub-tree or are the root, and the total
time of the algorithm is T (n) = T (L) + T (R) + c for some c, and T (1) = c′. For C = max(c, c′),
we’ll show by strong induction that T (n) ≤ Cn. This is true for n = 1 since C ≥ c′. Assume it is
true for all 1 ≤ k ≤ n − 1. Then T (n) ≤ T (L) + T (R) + c ≤ CL + CR + c ≤ C(L + R + 1) = Cn.
So by strong induction, this is true for all n, meaning T (n) ∈ O(n).

2 of 7

COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-4

3. (15 points) One ordered pair v = (v1, v2) dominates another ordered pair u = (u1, u2) if v1 ≥ u1 and
v2 ≥ u2. Given a set S of ordered pairs, an ordered pair u ∈ S is called Pareto optimal for S if there
is no v ∈ S such that v dominates u. Give an efficient algorithm that takes as input a list of n ordered
pairs and outputs the subset of all Pareto-optimal pairs in S. Provide a proof of correctness along with
the runtime analysis.

Solution:

Algorithm Description: Given an input of (x1, y1), . . . , (xn, yn), if n = 1, return the single ordered
pair (x1, y1), otherwise sort the ordered pairs by their x values. Use the y values as a secondary
key to break ties in x values. Let m = bn/2c and split the input into L = (x1, y1), . . . , (xm, ym)
and U = (xm+1, ym+1), . . . , (xn, yn). Then recursively find PL, PU , the pareto max subset of L,U ,
recursively. Then let yU be the maximum y value of U and let PLy be all the ordered pairs in PL
that have a larger y value than yU . Then return PLy ∪ PU .

Correctness: The base case works. Since all x values of L are lower than all x values in U , this
means that there are no ordered pairs in L that dominate any ordered pair in U so all ordered pairs
in the pareto max subset of U , PU must also be in the pareto max subset of the original input.
Each ordered pair in PL has a lower x value than all ordered pairs in U so in order for an ordered
pair in PL to be in the pareto max of the original set, it must have a higher y value than all ordered
pairs of U . So, PLy is the set of all ordered pairs in PL that have a larger y value than all the
ordered pairs in U .

Runtime: There is the cost of sorting. But this can be done as a preprocessing step. Then in the
algorithm there are 2 recursive calls each of size n/2 and the non-recursive part of finding the max
y value of U and finding all ordered pairs in PL that have a larger y value than the largest y value
of U all can be done in O(n). So this recursion has a = 2, b = 2, d = 1 and the algorithm will take
O(n log(n)).

3 of 7

COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-4

4. (15 points) Let S and T be sorted arrays each containing n elements. Design an algorithm to find the
nth smallest element out of the 2n elements in S and T . Discuss running time, and give proof of
correctness.

Solution: The following algorithm outputs the nth smallest element.

NthElement(S, T, n)

- If (n = 1)return(min (S[1], T [1]))

- i← bn/2c; j ← dn/2e
- If (S[i] = T [j])return(T [j])

- If (S[i] < T [j])

- A← S[i + 1]...S[n]; B ← T [1]...T [j − 1]

- return(NthElement(A,B, n− bn/2c))

- Else

- A← S[1]...S[i− 1]; B ← T [j + 1]...T [n]

- return(NthElement(A,B, n− bn/2c))

When n = 1, then the smallest element in arrays S and T is just min (S[1], T [1]). Let i = bn/2c and
j = dn/2e. If S[i] = T [j], then T [j] is the nth smallest number since there are (i + j − 1) = n − 1
numbers that are ≤ T [j] when S and T are combined. If S[i] < T [j], then for any 1 ≤ k ≤ i S[k]
cannot be the nth smallest number since the number of integers that are larger than S[k] is at least
n − k + n − j + 1 ≥ n − i + n − j + 1 = n + 1. Similarly, for any j ≤ k ≤ n, T [k] cannot be the
nth smallest number. So, when S[i] < T [j], then the nth smallest integer in S and T combined is
the same as the (n − bn/2c)th smallest integer in S[i + 1]....S[n] and T [1]....T [j − 1]. Also, when
S[i] > T [j], then the nth smallest integer in S and T combined is the same as the (n − bn/2c)th
smallest integer in S[1]....S[i− 1] and T [j + 1]....T [n].

Running time: The recurrence relation for the running time is given by T (n) ≤ T (dn/2e) + O(1)
and T (1) = O(1) which solves to T (n) = O(log n).

4 of 7

COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-4

5. An array A[1...n] is said to have a majority element if more than half (i.e., > n/2) of its entries are
the same. Given an array, the task is to design an efficient algorithm to tell whether the array has a
majority element, and, if so, to find that element. The elements of the array are not necessarily from
some ordered domain like the integers, and so there can be no comparisons of the form “is A[i] ≥ A[j]?”
(Think of the array elements as GIF files, say.) However you can answer questions of the form: “is
A[i] = A[j]?” in constant time.

(a) (15 points) Show how to solve this problem in O(n log n) time. Provide a runtime analysis and
proof of correctness.

(Hint: Split the array A into two arrays A1 and A2 of half the size. Does knowing the majority
elements of A1 and A2 help you figure out the majority element of A? If so, you can use a divide-
and-conquer approach.)

(b) (15 points) Design a linear time algorithm. Provide a runtime analysis and proof of correctness.

(Hint: Here is another divide-and-conquer approach:

• Pair up the elements of A arbitrarily, to get n/2 pairs (say n is even)

• Look at each pair: if the two elements are different, discard both of them; if they are the same,
keep just one of them

• Show that after this procedure there are at most n/2 elements left, and that if A has a majority
element then it’s a majority in the remaining set as well)

Solution:

(a) Solving the problem in O(n log n) time.

Algorithm:

function majority (A[1 . . . n])
if n = 1: return A[1]
let AL, AR be the first and second halves of A
ML = majority(AL) and MR = majority(AR)
if ML is a majority element of A:

return ML

if MR is a majority element of A:
return MR

return ‘‘no majority’’

Running time: T (n) = 2T (n/2) + O(n) = O(n log n).

Correctness: Suppose we divide array A into two halves, AL and AR. Then:

A has a majority element x ⇐⇒ x appears more than n/2 times in A

=⇒ x appears more than n/4 times in either AL or AR (or both)

⇐⇒ x is a majority element of either AL or AR (or both)

(b) Algorithm:

function majority (A[1 . . . n])
x = prune(A)
if x is a majority element of A:

return x
else:

return ‘‘no majority’’

5 of 7

COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-4

function prune (S[1 . . . n])
if n = 1: return S[1]
if n is odd:

if S[n] is a majority element of S: return S[n]
n = n− 1

S′ = [] (empty list)

for i = 1 to n/2:
if S[2i− 1] = S[2i]: add S[2i] to S′

return prune(S′)

Correctness: We’ll show that each iteration of the prune procedure maintains the following
invariant: if x is a majority element of S then it is also a majority element of S′. The rest
then follows.

Suppose x is a majority element of S. In an iteration of prune, we break S into pairs. Suppose
there are k pairs of Type One and l pairs of Type Two:

• Type One: the two elements are different. In this case, we discard both.

• Type Two: the elements are the same. In this case, we keep one of them.

Since x constitutes at most half of the elements in the Type One pairs, x must be a majority
element in the Type Two pairs. At the end of the iteration, what remains are l elements, one
from each Type Two pair. Therefore x is the majority of these elements.

Running time. In each iteration of prune, the number of elements in S is reduced to
l ≤ |S|/2, and a linear amount of work is done. Therefore, the total time taken is T (n) ≤
T (n/2) + O(n) = O(n).

6 of 7

COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-4

6. Consider the following algorithm for deciding whether an undirected graph has a Hamiltonian Path from
x to y, i.e., a simple path in the graph from x to y going through all the nodes in G exactly once. (N(x)
is the set of neighbors of x, i.e. nodes directly connected to x in G).

HamPath(graph G, node x, node y)
- If x = y is the only node in G return True.
- If no node in G is connected to x, return False.
- For each z ∈ N(x) do:

- If HamPath(G− {x}, z, y), return True.
- return False

(a) (7 points) Give proof of correctness of the above backtracking algorithm.

(b) (8 points) If every node of the graph G has degree (number of neighbors) at most 4, how long will
this algorithm take at most? (Hint: you can get a tighter bound than the most obvious one.)

Solution: We want to find a Hamiltonian path from x to y. The back-tracking algorithm branches
on the first node visited after x. The choices are all the neighbors of x in the graph. We can’t return
to x because the path must be simple. If we can find a Hamiltonian path from some neighbor z of
x to y in G− {x}, we can append x to the front of the path and get a Hamiltonian path from x to
y. On the other hand, if we cannot for any neighbor z of x, then we cannot find a Hamiltonian path
from x to y, since the second node along such a path must be such a z.

The time of the algorithm is proportional to the number of recursive calls that get made, since each
time through the loop makes one recursive call and then does O(1) work. The recursion tree for the
program has depth n, since each time step we delete exactly one node from G. In general graphs,
the time could be as much as (n−1)! since the first node could have n−1 neighbors, each possibility
for the second node n−2 neighbors, and so on. However, if no node in G has more than 4 neighbors,
an obvious upper bound for the total time is O(4n), since no node in the recursion tree has more
than 4 children, and the depth is n.

In fact, since after the first step, we only call y right after one of its neighbors x has been deleted
from the tree, we can see that the total size of the tree is at most 4 · 3n−1 = O(3n).

7 of 7

