
COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-3

• The instructions are the same as in Homework-1, 2.

There are 6 questions for a total of 85 points.

1. Counterexamples are effective in ruling out certain algorithmic ideas. In this problem, we will see a few
such cases.

(a) (4 points) Recall the following event scheduling problem discussed in class:

You have a conference to plan with n events and you have an unlimited supply of rooms.
Design an algorithm to assign events to rooms in such a way as to minimize the number of
rooms.

The following algorithm was suggested during class discussion.

ReduceToSingleRoom(E1, ..., En)

- U ← {E1, ..., En}; i← 1
- While U is not empty:

- Use Earliest Finish Time greedy algorithm on events in set U
to schedule a subset T ⊆ U of events in room i

- i← i + 1; U ← U \ T

Show that the above algorithm does not always return an optimal solution.

Solution: Here is a counterexample.
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(b) (4 points) A longest simple path from a node s to t in a weighted, directed graph is a simple path
from s to t such that the sum of weights of edges in the path is maximised. Here is an idea for
finding a longest path from a given node s to t in any weighted, directed graph G = (V,E):

Let the weight of the edge e ∈ E be denoted by w(e) and let wmax be the weight of the
maximum weight edge in G. Let G′ be a graph that has the same vertices and edges as
G but for every edge e ∈ E, the weight of the edge is (wmax + 1 − w(e)). (For example,
consider the graph G below and its corresponding graph G′.)

Run Dijkstra’s algorithm on G′ with starting vertex s and return the shortest path from s
to t.

Show that the above algorithm does not necessarily output the longest simple path.

Solution: Consider the counterexample given below.

The shortest path from s to t in G′ is s→ t. However, this is not a longest simple path from s
to t in G.
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(c) (4 points) Recall that a Spanning Tree of a given connected, weighted, undirected graph G = (V,E)
is a graph G′ = (V,E′) with E′ ⊆ E such that G′ is a tree. The cost of a spanning tree is defined to
be the sum of weight of its edges. A Minimum Spanning Tree (MST) of a given connected, weighted,
undirected graph is a spanning tree with minimum cost. The following idea was suggested for finding
an MST for a given graph in the class.

Dijkstra’s algorithm gives a shortest path tree rooted at a starting node s. Note that a
shortest path tree is also a spanning tree. So, simply use Dijkstra’s algorithm and return
the shortest path tree.

Show that the above algorithm does not necessarily output a MST. In other words, a shortest path
tree may not necessarily be a MST. (For this question, you may consider only graphs with positive
edge weights.)

Solution: Here is a counterexample.
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2. (15 points) You are given a directed graph G = (V,E) where nodes represent cities and directed edges
represent road connections. There is a positive weight w(e) > 0 associated with every directed edge
e ∈ E that denotes the cost of traveling along that road (this could be tolls, gas cost etc.). There is also
a positive weight c(v) > 0 associated with every node v ∈ V that denotes the cost of visiting the city v
(this could be food, lodging etc.). You are planning a trip from a city s ∈ V to a city t ∈ V and you
want to find a route that will cost you the least amount of money. Note that this is a path that starts
with s and ends at t and the sum of weight of edges plus the sum of weight of intermediate nodes (i.e.,
nodes except s and t) in the path is minimised.

Design an algorithm for this problem. Give running time analysis and proof of correctness.

Solution: We will solve this problem by reducing it to the shortest path problem. Indeed, this
problem looks very similar to the shortest path problem, the main difference being that the vertices
also have weights in this problem and the length/weight of a path adds up the weight of edges in the
path AND the weight of intermediate nodes. For the reduction, we need to create an instance of the
shortest path problem (that does not have vertex weights) for any given instance of this problem
(that has vertex weights in addition to edge weights).

Given a directed graph G = (V,E) with edge weight function w and vertex weight function c, we
consider the graph G′ which is the same as G but with edge weight function w′ defined as:

Let c′(s) = c′(t) = 0 and for every vertex v ∈ V \ {s, t}, c′(v) = c(v),

for every edge (u, v) ∈ E,w′((u, v)) = w((u, v)) + c′(v)

In other words, we “transfer” the weight of the endpoint of an edge to the edge itself. The following
lemma shows that the weight of s-t paths in G and G′ are the same.

Lemma: For any simple path P = v1, v2, ..., vk where s = v1 and t = vk,

k−1∑
i=1

w((vi, vi+1)) +

k−1∑
i=2

c(vi) =

k−1∑
i=1

w′((vi, vi+1))

Proof. The proof follows from the following sequence of equalities:

k−1∑
i=1

w((vi, vi+1)) +

k−1∑
i=2

c(vi) =

k−2∑
i=1

(w((vi, vi+1)) + c(vi+1)) + w((vk−1, vk))

=

k−2∑
i=1

(w((vi, vi+1)) + c′(vi+1)) + (w((vk−1, vk)) + c′(t))

(since c′(t) = 0 and c′(v) = c(v) for v ∈ V \ {s, t})

=

k−1∑
i=1

(w((vi, vi+1)) + c′(vi+1))

=

k−1∑
i=1

w′((vi, vi+1))

The algorithm based on the above reduction is summarised in the following pseudocode:

OptimalRoute(G, s, t)
- Construct weighted graph G′ as described above.
- Run DijkstraAlgorithm on G′ with starting vertex s
- Let P denote the path from s to t in the shortest path tree given by the algorithm
- return(P )
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Running time: Constructing graph G′ involves defining weight w′ that can be done while making
a single pass over the adjacency list of G which takes O(|V | + |E|) time. After this, we can run
Dijkstra’s algorithm using Binary Heaps which costs O(|E| · log |V |) time. So, the overall running
time of the algorithm is O(|E| · log |V |).
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3. You are staying in another city for n days. Unfortunately, not every hotel is available for every day. You
are given a list of hotels, h1, ..hk and a k × n array of booleans Avail[i, j] that tells you whether hotel i
is available on day j of your trip. You wish to pick which hotel to stay in each day of your trip, in order
to minimize the number of times you have to switch hotels. You can assume that at least one hotel is
available every day.

For example, say n = 7 and there are three hotels, A,B,C. Hotel A is available days 1-3 and days 6-7,
Hotel B is available days 1-5, and Hotel C is available days 3− 7. Then one solution is to stay at Hotel
B days 1-5, then switch to Hotel C for days 6-7. (We could equally well switch to Hotel A; either way is
the optimal 1 switch).

Here is a greedy strategy that finds the schedule with the fewest switches.

Greedy Strategy: Stay at the hotel available on the first day with the most consecutive days
of availability starting at that day. Stay there until it becomes unavailable, and then repeat
with the remaining days.

(a) Fill in the steps of the proof of the following modify-the-solution lemma:

Lemma: Suppose that the greedy algorithm stays at hotel g on the first day and stays there until day
I. Let OStays be any scheduling of available hotel rooms. Then there exists a schedule of available
hotel rooms assignment OStays′ that stays at hotel g until day I, and switches hotel rooms no more
than the number of switches for OStays.

proof : Let OStays be as above.

i. (1 point) Define OStays′.

Solution: Let OStays′ stay in hotel g for the first I days, then be as in OStays for all
remaining days.

ii. (1 point) OStays′ is a valid solution because... (Justify why in OStays′, we never try to stay
at an unavailable hotel.)

Solution: Since the greedy solution was valid, hotel g has a room available for the first
I days. Since OStays is valid, the other hotels have rooms available the days we stay in
them.

iii. (1 point) The number of switches in OStays′ is less than or equal to that in OStays because...
(justify).

Solution: In Ostays, we have at most one switch in the first I days, that on day I. Since
no hotel had a room available for I+1 days by the definition of the greedy strategy, OStays
must also have at least one switch within those days. In the remaining days, we have the
same schedule as OStays so the exact same number of switches. Thus, the total number
of switches in OStays′ is at most that of OStays.

We will now use the above exchange lemma to argue that the greedy algorithm outputs an optimal
solution for any input instance. We will show this using mathematical induction on the input size (i.e.,
number of days). The base case for the argument is trivial since, for n = 1, there is no switch in the
greedy algorithm which is optimal.

(a) (4 points) Show the inductive step of the argument.

Solution: Inductive step: Here, we assume that the greedy algorithm outputs an optimal
solution for any input with k trip days, where 1 ≤ k ≤ n − 1. We will show that the greedy
algorithm outputs an optimal solution for any input with n days. Let J denote any input where

6 of 14



COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-3

the number of days is n. So, J is basically an k × n availability matrix. We break the analysis
into points as we did in the lecture.

• Let GS(J) denote the greedy solution in input J .

• Let g be the hotel in which one stays for the first I days as per the greedy solution.

• So, we can write GS(J) = (g, g, ..., g,GS(J ′)), where J ′ is the k×(n−I) matrix J [1...k, I+
1...n]. That is, GS(J) assigns the first I days to hotel g and then applies the greedy
method on the remaining days.

• Let OS(J) denote an arbitrary solution for input J .

• Then by the exchange lemma, there is another solution OS′(J) as per which one stays
in hotel g for the first I days and |OS′(J)| ≤ |OS(J)|, where |.| denotes the number of
switches in the assignment.

• So, we have OS′(J) = (g, g, ..., g, SomeSolution(J ′)).

• Then we have:

|GS(J)| = 1 + |GS(J ′)| ≤ 1 + |SomeSolution(J ′)| = |OS′(J)| ≤ |OS(J)|

The second inequality follows from the induction hypothesis since the input J ′ has less
than n days.

• So, the greedy solution is as good as any other solution.

This completes the inductive step and the exchange argument.

Having proved the correctness, we now need to give an efficient implementation of the greedy strategy
and give time analysis.

(a) (6 points) Give pseudocode of an efficient algorithm implementing the above strategy and give a
time analysis for your algorithm.

GreedyHotels(Avail[1..k, 1..n])
- Day = 0.
- While Day < n do:

- MaxEnd = Day
- MaxHotel = 0
- FOR J = 1 TO k do:

- ThisEnd = Day
- While ThisEnd < n and Avail[J, ThisEnd + 1] do: ThisEnd + +
- IF ThisEnd > MaxEnd THEN do: MaxEnd = ThisEnd,MaxHotel = J .

- FOR d = Day + 1 to MaxEnd do: Stay[d] = MaxHotel
- Day = MaxEnd

- Return Stay[1..n]

Solution: Consider the two inside nested loops, the FOR and the While. For a fixed run of
the outside While, for each of k hotels, we increment ThisEnd at most MaxEnd−Day times.
So the total time is O(k(MaxEnd−Day)), and we sum up these periods over the outside while
since we keep the new Day at MaxEnd. Note that the periods [Day,MaxEnd] in each of the
iterations of the outside loop are disjoint, so the total of all the differences is n, the number of
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days. Thus, the total time is O(nk).
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4. You are going cross country, and want to visit different national parks on your way. The parks on your
trip are, in order, Park1, Park2, ..Parkk. You have 1 ≤ n ≤ k days for your trip, and you would like to
visit a different park each day. You don’t want to do unnecessary driving so you will only visit parks in
order from smallest number to largest.

Your input is a k × n array of booleans Avail[i, j] that tells you whether park i is available on day j of
your trip. You wish to pick which park to stay in each day of your trip. Your strategy should either find
a way to visit n different parks, or tell you that this is impossible.

For example, say n = 3 and there are four parks, 1, 2, 3, 4 (i.e., k = 4). Park 1 is available all three
days. Park 2 is available day 3 only. Park 3 is available days 2 and 3. Park 4 is available all three days.
Then we could visit Park 1 the first day, skip Park 2, visit Park 3 the second day, and visit Park 4 the
last day.

Here is a greedy strategy that finds a schedule visiting n parks if one exists:

Greedy Strategy: On the first day, visit the first park available on the first day. Each other
day, visit the first park available on that day which is after your current park.

We will show the optimality of the greedy strategy using the greedy-stays-ahead method. Suppose that
the greedy algorithm stays at parks number g1, ..gn, in order, and OStays is another solution staying at
parks number p1, ..pn. We claim that at all days i, gi ≤ pi. We prove this by induction on i.

(a) (7 points) Prove the above claim using induction on i. Show base case and induction step.

Solution:

Base case: On the first day, the greedy strategy stays at the first available park, g1. OStays
stays at some available park, p1. Thus, g1 ≤ p1.

Inductive step: Assume that gi ≤ pi for 1 ≤ i ≤ n− 1. In the induction step, we need to show
gi+1 ≤ pi+1. gi+1 is the first available park on day i+1 which comes after gi. pi+1 is some park
that is available on day i + 1 which comes after pi. Since gi ≤ pi by the induction hypothesis,
pi+1 comes after gi, so it is at least gi+1 (since gi+1 was the first such park.)

(b) (3 points) Use the claim to argue that the greedy algorithm outputs a valid travel plan in case such
a plan exists and outputs “impossible” otherwise.

Solution: Suppose there exists a valid travel plan p1, ..., pn, then by the previous part we know
that the greedy solution satisfies g1 ≤ p1, ..., gn ≤ pn. This implies that the greedy solution
is also a valid travel plan. The other direction is simpler since a valid greedy solution implies
that a valid travel plan exists.

(c) (5 points) Give an efficient algorithm implementing the above strategy and give a time analysis for
your algorithm.

GreedyParks(Avail[1..k, 1..n])
- Day = 1, Park = 1.
- While Day ≤ n and Park ≤ k do:

- While (Avail[Park,Day] == False and Park ≤ k) do: Park++;
- IF Park > k THEN return “Impossible” ELSE Stay[Day] = Park,Day + +, Park + +

- IF Days > n return Stays[1..n] ELSE return “Impossible”.
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Solution: In every step within the outer While loop, the value of Park is incremented by 1
(the only other case is when the program terminates and returns “impossible”) and the loop
terminates when the value of Park exceeds k. So the running time is O(k).
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5. (15 points) You are a party organiser and you are asked to organise a party for a company. The CEO
of the company wants this party to be fun for everyone who is invited and has asked you to invite
the maximum number of people from the company with the constraint that for no two people who are
invited, one is the immediate boss of the other. The company has a typical hierarchical tree structure,
where every person except the CEO has exactly one immediate boss.

Design an algorithm for this problem. You are given as input an integer array B[1...n], where B[i] is the
immediate boss of the ith employee of the company. The CEO is employee number 1 and B[1] = 0. The
output of your algorithm is a subset S ⊆ {1, ..., n} of invited employees. Give running time analysis and
proof of correctness.

Solution: Given an undirected graph G = (V,E), an independent set of the graph is a subset I ⊆ V
of vertices such that for no two nodes u, v ∈ I we have (u, v) ∈ E. The given problem is the problem
of finding the largest independent set of a given tree. We will design a greedy algorithm for finding
the largest independent set of any given forest (a set of trees). Here is the greedy strategy that we
will use for this problem:

Greedy algorithm: Pick a node v of degree ≤ 1 from the forest, remove this node and
its neighbors, and recurse on the remaining forest (obtained by removing node v and its
neighbor in case one exists).

Let us prove that the above algorithm indeed outputs a largest independent set of any given forest.
We show this using an exchange argument. Let us first obtain the exchange lemma.

Lemma: For any input forest G = (V,E), let g ∈ V be the first vertex picked by the greedy algorithm.
Let I be any independent set of G that does not contain g. Then there is another independent set I ′

that contains g and |I ′| ≥ |I|.

Proof. Note that g is a vertex in G with degree 0 or 1. If g is a degree 0 vertex, then I ′ = I ∪ {g}
is also an independent set of larger size. If g is of degree 1, then there are two cases to consider:

• The neighbor u of g is in I: In this case, I ′ = I −{u}∪{g} is also an independent set of same
size as I.

• The neighbor u of g is not in I: In this case, I ′ = I ∪ {g} is also an independent set of larger
size.

This completes the proof of the exchange lemma.

We now prove using induction that the greedy algorithm outputs a largest independent set for any
given forest. We consider the following proposition:

P (n): The greedy algorithm produces a largest independent set for any forest with n nodes.

We will show that P (n) holds for all n using induction.

Base case: P (1) holds since for any graph with 1 node, the greedy algorithm outputs one node which
is optimal.

Induction Hypothesis: Assume that P (1), P (2), ..., P (n− 1) hold for an arbitrary n > 1.

Induction step: Here, we will show that P (n) holds. For any forest G = (V,E) with |V | = n,

• Let g be the first vertex picked by the greedy algorithm.

• Let G′ be the forest obtained by deleting vertex g and its neighbor (if there exists one). Note
that G′ is a forest that has less than n nodes.
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• Let GS(.) denote the greedy solution for an input graph.

• Then, GS(G) = {g} ∪GS(G′).

• Let I be any independent set of forest G. Then from the exchange lemma, there exists an
independent set I ′ such that I ′ = {g} ∪ IS(G′) where IS(G′) denotes some solution for forest
G′ and |I ′| ≥ |I|.

• Now we can conclude the argument using the following sequence of inequalities:

|GS(G)| = 1 + |GS(G′)|
≥ 1 + |IS(G′)| (using induction hypothesis)

≥ |I ′| (using the definition of I ′)

≥ |I| (using the exchange lemma)

This implies that the greedy solution is as good as any other solution which means that the greedy
algorithm outputs a largest independent set for G. This completes the inductive argument and proof
of optimality of our greedy algorithm.

Let us now focus on the implementation of the algorithm. Note that what we are given is not the
tree in adjacency list representation but the parent of every node in the array B. However, we can
obtain the adjacency list using the following pseudocode:

ConvertToTree(B,n)
- Initialize an adjacency list L with n nodes and no edges
- For i = 2 to n:

- Append B[i] to the linked list for node i in L
- Append i to the linked list for node B[i] in L

- return(L)

The running time of the above procedure is clearly O(n). We can use the above as a subroutine in
our algorithm.

GreedyAlgorithm(B,n)
- L← ConvertToTree(B,n)
- Go over adjacency list L to find the degree D[1...n] of all nodes
- Initialise a list S of all degree 0 and degree 1 nodes
- While there is at least one node that is not marked deleted:

- Let v be any node in S that is not marked deleted
- Remove v from S; I ← I ∪ {v}
- Mark v as deleted
- If (D[v] = 1)

- Let u be the only node in the linked list of v that has not been marked deleted
- Mark u as deleted
- For every neighbor w of u that has not been marked deleted:

- D[w]← D[w]− 1
- If (D[w] ≤ 1) append w to list S

- return(I)
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Running time: The first step takes O(n) time. Going over the adjacency list and initialising the
list takes O(n) time. Within the while loop the time spent per node before it is marked deleted
is some constant times the degree of the node. So, the time in the while loop is O(|V | + |E|)
where V and E are the vertex and edge sets respectively. Since the given graph is a tree, we have
|E| = O(|V |) = O(n). So, the overall running time is O(n).
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6. (15 points) Given positive integers (dout[1], dout[2], ..., dout[n]) and (din[1], din[2], ..., din[n]), design a
greedy algorithm that determines whether there exists a simple directed graph where the ith node
has indegree din[i] and outdegree dout[i]. Your algorithm should output “yes” if such a graph exists
and “no” if no such graph exists. Give running time analysis and proof of correctness for your greedy
algorithm.
(Recall that a simple directed graph is a graph that does not have self-loops or multi-edges.)
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