
COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-II-2022-23) Homework-2

• Please note that one of the main goals of this course is to design efficient algorithms. So,
there are points for efficiency, even though we may not explicitly state this in the question.

• Unless otherwise mentioned, assume that graphs are given in adjacency list representation.

• In the lectures, we have discussed an O(V + E) algorithm for finding all the SCCs of a
directed graph. We can extend this algorithm to design an algorithm CreateMetaGraph(G)

that outputs the meta-graph of a given directed graph in O(V + E) time. You may use
CreateMetaGraph(G) as a sub-routine for this homework.

• The other instructions are the same as in Homework-1.

There are 6 questions for a total of 82 points.

1. A tree is defined as an undirected graph containing no cycles. An undirected graph is said to be connected
iff, for every pair of vertices, there is a path between them. For this question, you have to show the
following statement:

Any connected undirected graph with n vertices and (n− 1) edges is a tree.

We will prove the statement using Mathematical Induction. The first step in such proof is to define the
propositional function. Fortunately, this is already given in the statement of the claim for this problem.

P (n): Any connected undirected graph with n vertices and (n− 1) edges is a tree.

The base case is simple. P (1) holds since any graph with 1 node and 0 edges is indeed a tree. For the
inductive step, we assume that P (1), P (2), ..., P (k) holds for an arbitrary k ≥ 1, and then we will show
that P (k + 1) holds. Consider any connected graph G with (k + 1) nodes and k edges. You are asked to
complete the argument by doing the following:

(a) (3 points) Show that G has a node v with degree 1.

Solution: Let G = (V,E). We will prove the statement by contradiction. Assume for the sake
of contradiction that there does not exist any vertex that has degree 1. This implies that all
vertices have a degree of at least 2. Moreover, we know that the sum of the degree of vertices
of an undirected graph is precisely 2 · |E|. This gives us the following:

2 · |E| =
∑
u∈V

deg(u) ≥
∑
u∈V

2 = 2 · |V |

This implies that |E| ≥ |V | = (k + 1) which is a contradiction since G has (k + 1) nodes and k
edges. Hence, there is a vertex in G with degree 1.

(b) (2 points) Consider the graph G′ obtained from G by removing vertex v and its edge. Now, use
the induction assumption on G′ to conclude that G is a tree.

Solution: Removing the degree-1 vertex v and its edge from G does not disconnect the graph.
This means that G′ is a connected graph with k nodes and (k − 1) edges. From the induction
assumption, G′ is a tree. This implies that G is a tree since adding a node and connecting it
to any node in G′ does not create any cycles.

1 of 9



COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-II-2022-23) Homework-2

2. Consider the following directed graph and answer the questions that follow:

(a) (1/2 point) Is the graph a DAG?

(a) No

(b) (1 point) How many SCCs does this graph have?

(b) 5

(c) (1/2 point) How many source SCCs does this graph have?

(c) 1

(d) (1 point) Suppose we run the DFS algorithm on the graph exploring nodes in alphabetical order.
Given this, what is the pre-number of vertex F?

(d) 20

(e) (1 point) Suppose we run the DFS algorithm on the graph exploring nodes in alphabetical order.
Given this, what is the post-number of vertex J?

(e) 10

(f) (1 point) Is it possible to add a single edge to this graph so that the graph becomes a strongly
connected graph? If so, which edge would you add?

(f) Yes, add (J,K)
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3. You are given a directed graph G = (V,E) in which each node u ∈ V has an associated price, denoted
by price(u), which is a positive integer. The cost of a node u, denoted by cost(u), is defined to be the
price of the most expensive node reachable from u (including u itself). Your goal is to compute the cost
of every node in the graph (this can be produced as an array cost of size |V |).
(a) (9 points) Give a linear time algorithm that works for DAG’s. (Hint: Handle the vertices in a

particular order)

Solution:

Main idea: For any vertex u, let v1, ..., vl be all the vertices to which u has an outgoing edge.
Then note that cost(u) = max (price(u), cost(v1), cost(v2), ..., cost(vl)). So, if we somehow have
the value of cost of vertices v1, ..., vl, then we can compute cost(u). We also know that for a
sink vertex v (sink vertices are those vertices that do not have any outgoing edge), we have
cost(v) = price(u) since the cheapest node reachable from a sink vertex is itself. The main
challenge now is to figure out in what order to go about computing the value of the cost of the
vertices.

An order that works for this problem is reverse topological ordering of the vertices. This is
because if we compute in this order, then for any vertex u and its neighbours v1, ..., vl as in the
previous paragraph, we would have computed the value of cost(v1), ..., cost(vl) before we get to
u. The ideas can be summarised as the following pseudocode.

ComputeCost((V,E), price)
- Compute the topological ordering of vertices using algorithm discussed in class.
- Let L denote the list of vertices in reverse topological ordering
- For i = 1 to |V |

- Let u be the ith element in the list L
- cost(u)← price(u)
- For all v such that (u, v) ∈ E:

- cost(u)← max (cost(u), cost(v))

We can prove the correctness using Mathematical Induction. Consider the proposition:
P (i): The algorithm computes the cost of the ith vertex in the list L correctly.

Basis step: P (1) holds since the first vertex of the list L is a sink vertex and for any such vertex,
its cost is the same as its price.

Inductive step: We assume that P (1), P (2), ..., P (i) hold and show that P (i+1) holds. Consider

the (i + 1)th vertex u in the list L. Let v1, ..., vl denote all the vertices to which u has an out-
going edge in the graph. Then from the induction hypothesis we know that the algorithm has
correctly computed the cost of v1, ..., vl since all these vertices are earlier in the list L than u.
This means that the cost of u will be correctly computed.

Running time: The running time for computing the reverse topological ordering is O(|V |+ |E|)
as discussed in class. After this, the algorithm simply iteratively considers the vertices of the
graph and for every vertex u, it spends time proportional to the out-degree of u. So, the total
time for this will be proportional to the number of vertices |V | plus the number of edges |E|.
So, the running time of the algorithm is O(|V |+ |E|).

(b) (9 points) Extend this to a linear time algorithm that works for any directed graph. (Hint: Consider
making use of the meta-graph of the given graph.)

Solution: We will solve the problem on directed graphs by reducing it to the problem on
DAGs (the algorithm for which we have already designed in the previous part). Let V1, ..., Vk
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denote the strongly connected components of a given directed graph G = (V,E). Consider the
meta-graph G′ = ({1, ..., k}, E′) of G. We define the price of the meta-node i of the SCC Vi to
be the price of the most expensive node in C. Now we can run the algorithm of the previous
part on graph G′ to compute the cost cost[1], ..., cost[k] of all the meta-nodes 1, ..., k. Finally,
the cost of all nodes within an SCC Vi is set to be cost[i]. This idea can be summarised as the
following pseudocode:

ComputeCostGeneral(G, price)
- Run CreateMetaGraph(G) to obtain SCCs V1, ..., Vk and

meta graph G′ = ({1, ..., k}, E′)
- For all i ∈ {1, ..., k}:

- price′(i)← maxv∈Vi
(price(v))

- cost′ ← ComputeCost(G′, price′)
- For all i ∈ {1, ..., k}:

- For every v ∈ Vi: cost(v) = cost′(i)
- return(cost)

Running time: Creating the meta-graph G′ takes O(|V | + |E|) time. Computing the price of
meta node i takes O(|Vi|) time. So, computing the price of all meta nodes takes

∑
i O(|Vi|) =

O(|V |) time. Since G′ is a DAG with at most |V | vertices and |E| edges, the time for running
ComputeCost is O(|V | + |E|). Finally, computing the cost of all vertices v ∈ V takes O(|V |)
time. So, the overall running time is O(|V |+ |E|).
Correctness of the algorithm follows from the following argument. Consider any node u ∈ V
and let c denote the cost of u. This means that the price of the most expensive node v that is
reachable from u is c. We can do a case analysis based on which SCCs u and v belong to:

• Case 1: u and v are in the same SCC.
In this case, the second line of the pseudocode sets the cost of u to be price of the most
expensive node in the SCC of u which will be c.

• Case 2: u and v are in different SCCs.
Let u ∈ Vi and v ∈ Vj for i 6= j. In this case cost′(i) ≥ cost′(v) since j is reachable from
i in DAG G′. This means that cost of u will be correctly set to c in the last for-loop of
the pseudocode

Give running time analysis and proof of correctness for both parts.
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4. Given a directed graph G = (V,E) that is not a strongly connected graph, you have to determine if
there exists a pair of vertices u, v ∈ V such that the graph G′ = (V,E ∪ {(u, v)}) is strongly connected.
In other words, you must determine if there exists a pair of vertices u, v ∈ V such that adding a directed
edge from u to v in G converts it into a strongly connected graph. Design an algorithm for this problem.
Your algorithm should output “yes” if such an edge exists and “no” otherwise.

(a) (9 points) Give a linear time algorithm for DAGs.

Solution: The algorithm follows from the following main idea stated as a claim.

Claim 1: Let G be a DAG. There is a pair of vertices u, v such that adding a directed edge
from u to v converts G into a strongly connected graph if and only if G has a unique source
and sink vertex. Moreover, if G has a unique source and sink vertices, adding an edge from the
unique sink vertex to the unique source vertex converts G into a strongly connected graph.

We break the if and only if part into the following two claims:

Claim 1.1: If a DAG G has a unique source s and a unique sink t, then adding a directed edge
from t to s converts G to a strongly connected graph.

Proof. We claim that every vertex in G is reachable from the unique source s. Suppose, for the
sake of contradiction, there is a vertex v which is not reachable from s. Let u1 be the vertex
with a directed edge to v. Note that such an edge exists; otherwise, v is also a source vertex.
Again consider a vertex u2 that has a directed edge to u1 and keep traversing back along the
incoming edges. This process will eventually terminate in a vertex u with no incoming edges.
This vertex u cannot be equal to s since then v becomes reachable from s. Hence we get a
contradiction with the fact that s is the unique source.

Similarly, we can argue that t is reachable from all vertices in G. So, adding a directed edge
from t to s connects all pairs of vertices. Since then, one can reach t from any vertex u, take
the edge (t, s) and then reach any other vertex v in the graph.

Claim 1.2: If adding a directed edge from t to s in a DAG G converts it to a strongly connected
graph, then s is the unique source and t is the unique sink of G.

Proof. Suppose, for the sake of contradiction, s is not the unique source (t not being the unique
sink will be similar). Then there is a topological ordering of the vertices such that s is not the
first vertex in this topological ordering. Consider the first vertex v in this topological ordering.
Even after adding the edge (t, s), there is no path from s to v since otherwise, the same path
will exist in G.

Claim 1 suggests that all we need to check is whether the given DAG has a unique source and
a unique sink. This can be done by checking if there is a unique vertex with no incoming edges
(this is the unique source) and a unique vertex with no outgoing edges (this is the unique sink).
So, the algorithm simply computes the in-degree and out-degree of all vertices. The algorithm
is summarised in the following pseudocode:

CheckConnectivity(G(= (V,E)))
- Compute indegree(u) and outdegree(u) for every vertex u ∈ V
- If there is a unique vertex with 0 indegree and a unique vertex with 0 outdegree

return(“yes”)
- else

- return(“no”)

Running time: The out-degree of a vertex v can be computed by counting the number of
vertices in the linked list for v in the adjacency list of G. So, computing the out-degrees of all
the vertices costs O(V +E) time. Similarly, the in-degrees can be computed by doing the same
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on the reverse graph, and we have seen that creating the reverse graph takes O(V + E) time.
So, the overall running time of the algorithm is O(V + E).

(b) (9 points) Extend this to a linear time algorithm that works for any directed graph. (Hint: Consider
making use of the meta-graph of the given graph.)

Solution: Consider the meta-graph G′ of the given directed graph. Note that G′ is a DAG. If
G′ has a unique source and unique sink, then adding a directed edge from a node in the sink
SCC to a source SCC converts G′ and hence G to a strongly connected graph. G′ does not have
a unique source and sink; then, by the same argument as before (claim 1.2), we conclude that
it is impossible to create a strongly connected graph by adding a single edge. The algorithm
based on the above idea is now simple. We construct the meta-graph DAG G′ and check if this
has a unique source and a unique sink vertex. If so, the algorithm outputs “yes”; otherwise, it
outputs “no”. The pseudocode is given below.

CheckConnectivityGeneral(G)

- Use the algorithm developed in class to construct the meta-graph G′

- return(CheckConnectivity(G′))

Running time: Constructing G′ takes O(V +E) time. After this, we make a call to CheckConnectivity(G′)
that has |V | vertices and |E| edges in the worst case. So, the overall running time is O(V +E).

Give running time analysis and proof of correctness for both parts.
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5. (18 points) A directed graph G = (V,E) is called one-way-connected if, for all pair of vertices u and v,
there is a path from vertex u to v or there is a path from vertex v to u. Note that the “or” in the previous
statement is a logical OR, not XOR. Design an algorithm to check if a given graph is one-way-connected.
Give running time analysis and proof of correctness.

Solution: Let V1, V2, ..., Vk be the vertex sets of the strongly connected components of the graph
G. As discussed in class, a O(n+m) algorithm exists to find the strongly connected components in
any directed graph. We will construct another graph Gscc = (V scc, Escc) in which there is a node
corresponding to each strongly connected component of G. Let the nodes in Gscc be denoted by
1, 2, ..., k. As for the edges, (i, j) ∈ Escc iff there is a vertex u ∈ Vi and a vertex v ∈ Vj such that
(u, v) ∈ E.

Claim 1: Gscc is a DAG.

Proof. Assume for the sake of contradiction that there is a cycle in Gscc. Let i1, i2, ..., il, i1 denote
this cycle in Gscc. Then note that this implies that for any pair of vertices u, v ∈ Vi1 ∪ Vı2 ∪ ...∪ Vil

there is a path from u to v and there is a path from v to u. We only prove the existence of a path in
one direction and the other direction follows by symmetry. Suppose u ∈ Vip and v ∈ Viq such that
p < q. Note that since there is an edge from ip to ip+1 in Gscc, this means that there is a directed
edge from a vertex x ∈ Vip to a vertex y ∈ Vip+1

. Since Vip is a strongly connected component, this
means that there is a path from u to x in G, and this further means that there is a path from u
to y in G. This further means that there is a path from u to all vertices in Vip+1

since Vip+1
is a

strongly connected component. We can extend this argument to Vip+2 , ..., Vq proving that there is a
path from u to any vertex in Vq and in particular path from u to v.

This gives us a contradiction since the above implies that Vi1 , ..., Vil should form a single strongly
connected component.

Next, we give the crucial claim that will give us our algorithm.

Claim 2: G is one-way connected iff Gscc has a unique topological ordering.

Proof. The proof follows from the proof of the next two claims.

Claim 2.1 If Gscc has a unique topological ordering, then G is one-way connected.

Proof. Let i1, i2, ..., ik be the unique topological ordering of Gscc. It follows that (i1, i2), (i2, i3), ..., (ik−1, ik) ∈
Escc. Consider any two vertices u, v ∈ V . Let u ∈ Vip and v ∈ Viq . WLOG assume that p < q.
Then by the same arguments as that in the proof of Claim 1, we get that there is a path from u to
v.

Claim 2.2 If Gscc does not have a unique topological ordering, then G is not one-way connected.

Proof. Since Gscc does not have a unique topological ordering, it means that there are two orderings
and two nodes ip, iq in V scc such that ip appears before iq as per the first ordering and ip appears
later than iq as per the second ordering. The former means that there is no path from iq to ip in
Gscc and the latter means that there is no path from ip to iq in Gscc. This in turn implies that there
is no path from any vertex in Vip to any vertex in Viq in G and vice versa.

Now what remains to be done is to figure out a way to determine if there is a unique topological
ordering of Gscc. This is easily done using the following algorithm.
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OneWayConnected(G)

- Use algorithm discussed in class to find the strongly connected components and

construct the graph Gscc = (V scc, Escc)

- G′ ← Gscc

- For i = 1 to |V scc|
- If there are more than two vertices with in-degree 0 in G′

- return(“G is not one-way connected”)

- Else let v be the vertex in G′ with no incoming edges

- Let G′′ be the graph obtained from G′ by removing v and its edges

- G′ ← G′′

- return(“G is one-way connected”)

Proof of correctness: If the algorithm outputs “G is one-way connected”, that means that at each
step it found a unique vertex with 0 in-degree. This means that there is a directed edge from this
unique vertex in the ith step to the unique vertex in the (i + 1)th step which further implies that
there is a unique topological ordering.

If in any iteration, there are at least two vertices with 0 in-coming edges, then that means that these
vertices can be in any relative order with respect to each other. Which means that unique ordering
is not possible. Now the correctness follows from Claim 2.

Running time: Tarjan’s algorithm takes O(n + m) and so does constructing Gscc. The time taken
within the for loop is proportional to the size of Gscc which is at most O(n + m). So, the total
running time of the algorithm is O(n + m).
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6. (18 points) Design an algorithm that given a directed acyclic graph G = (V,E) and a vertex u ∈ V ,
outputs all the nodes that have a simple path to u with a length that is a multiple of 3. (Recall that a
simple path is a path with all distinct vertices.)

Give running time analysis and proof of correctness.

Solution: We give the solution for the following problem variant (the solution for the above version
will follow similar ideas).

Given a directed acyclic graph G = (V,E) and a vertex u, design an algorithm that
outputs all vertices S ⊆ V such that for all v ∈ S, there is an even length simple path
from u to v in G.

Algorithm: Given a graph G = (V,E), we construct a new graph G′ = (V ′, E′) by “splitting” every
vertex in V into two vertices. For a vertex i ∈ V we create two copies of the vertex and call it
iodd and ieven. That is, for every vertex i ∈ V , V ′ has iodd and ieven. As for edges, for every edge
(i, j) ∈ E, we add two edges (iodd, jeven) and (ieven, jodd) to E′. Now, we just run DFS(ueven) on
the graph G′ and output all i such that ieven is visited while doing DFS(ueven).

EvenPath(G)

- Construct the graph G′ as described above
- Execute DFS(G′, ueven)

- For all i ∈ V :
- If (ieven is marked explored) append i to list L

- return(list L)

The following two claims prove the correctness of our algorithm.

Claim 1: For every vertex v such that there is an even length path from u to v, the above algorithm
will output v.

Proof. Let u, i1, i2, ..., ik, v be an even length path from u to v. Then k is an odd number. Given
this, note that there is a path ueven, iodd1 , ieven2 , ..., ioddk , veven in the graph G′. So, veven is reachable
from ueven. So our algorithm will output v.

Claim 2: If our algorithm outputs a vertex v, then there is an even length path from u to v in G.

Proof. Our algorithms outputs v iff veven is reachable from ueven in G′. Consider the path from
ueven to veven in the DFS tree obtained during execution of DFS(ueven) on G′. Let this path be
denoted by ueven, i`11 , i`22 , ..., i`kk , veven. Note that `1 = odd since all directed edges are from vertices
labelled even to vertices labelled odd or vertices labelled odd to vertices labelled even. This further
implies that `2 = even, `3 = odd, ..., `k = odd. This means that k is odd. This implies an even length
path in G from u to v since u, i1, i2, ..., ik, v is a path in G.

Running time: The running time is proportional to the running time of DFS on a graph that is at
most double the size of G. So, the running time is O(|V |+ |E|).
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