
COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2023-24) Homework-1

• Homework solutions should be neatly written or typed and turned in through Gradescope
by 11:59 pm on the due date. No late homework will be accepted for any reason. You will be
able to look at your scanned work before submitting it. Please ensure that your submission
is legible (neatly written and not too faint), or your homework may not be graded.

• Students should consult their textbook, class notes, lecture slides, instructor, and TAs when
they need help with homework. Students should not look for answers to homework problems
in other texts or sources, including the internet. Only post about graded homework questions
on Piazza if you suspect a typo in the assignment or if you don’t understand what the question
is asking you to do.

• Your assignments in this class will be evaluated not only on the correctness of your answers
but on your ability to present your ideas clearly and logically. You should always explain
how you arrived at your conclusions using mathematically sound reasoning. Whether you
use formal proof techniques or write a more informal argument for why something is true,
your answers should always be well-supported. Your goal should be to convince the reader
that your results and methods are sound.

• For questions requiring pseudocode, you can follow the same format as we do in class or
write pseudocode in your style, as long as you specify your notation. For example, are you
using “=” to mean assignment or to check equality? You are welcome to use any algorithm
from class as a subroutine in your pseudocode. For example, if you want to sort list A using
InsertionSort, you can call InsertionSort(A) instead of writing out the pseudocode for
InsertionSort.

There are 6 questions for a total of 100 points.

1. (Analysing recursive functions) In this question, you are asked to analyse two recursive functions.

(a) (10 points) Consider the following recursive function that takes as input a positive integer.

F(n)
· If (n > 1) F(bn/2c)
· print(“Hello World”)

Give the exact expression, in terms of n, for the number of times “Hello World” is printed when a
call to F (n) is made. Argue the correctness of your expression using mathematical induction.

(b) (15 points) Consider the following recursive function that takes as input two positive integers n
and m.

G(n,m)

· if (n = 0 OR m = 0)return;
· print(“Hello World”)
· G(n− 1,m)

· G(n,m− 1)

Give the exact expression, in terms of n and m, for the number of times “Hello World” is printed
when a call to G(n,m) is made. Argue the correctness of your expression using mathematical
induction.

2. (Proof techniques review) Let us quickly review a few proof techniques you must have studied in your
introductory Mathematics course.
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• Direct proof: Used for showing statements of the form p implies q. We assume that p is true
and use axioms, definitions, and previously proven theorems, together with rules of inference,
to show that q must also be true.

• Proof by contraposition: Used for proving statements of the form p implies q. We take ¬q as
a premise, and using axioms, definitions, and previously proven theorems, together with rules
of inference, we show that ¬p must follow.

• Proof by contradiction: Suppose we want to prove that a statement p is true and suppose we
can find a contradiction q such that ¬p implies q. Since q is false, but ¬p implies q, we can
conclude that ¬p is false, which means that p is true. The contradiction q is usually of the
form r ∧ ¬r for some proposition r.

• Counterexample: Suppose we want to show that the statement for all x, P (x) is false. Then
we only need to find a counterexample: an example x for which P (x) is false.

• Mathematical induction: Used for proving statements of the form ∀n, P (n). This has already
been discussed in class.

Solve the proof problems that follow:

(a) (3 points) Give a direct proof of the statement: “If n is odd, then n2 is odd”.

(b) (3 points) Prove by contraposition that “if n2 is odd, then n is odd”.

(c) (3 points) Give proof by contradiction of the statement: “at least four of any 22 days must fall on
the same day of the week.”

(d) (3 points) Use a counterexample to show that the statement “Every positive integer is the sum of
squares of two integers” is false.

(e) (3 points) Show using mathematical induction that for all n ≥ 0, 1+ 1
21 + 1

22 + 1
23 +...+ 1

2n =
1−( 1

2 )
n+1

1− 1
2

.

3. (Working with the definition of big-O)

Big-O notation requires practice to become comfortable. There is a bit of mathematical jugglery
since the definition involves a quantified statement. However, the mathematics involved should not
be new to you. All that is required is to work with the quantified statement. Let us consider an
example. Suppose there is an exponential-time algorithm with a running time expression 2n. Would
it be correct to say that the running time is O(3n)? Yes, this would be correct. Let us work with
the definition to verify this. To show that 2n is O(3n), all we need to do is to give constants c > 0
and n0 > 0 such that ∀n ≥ n0, 2

n ≤ c · 3n. It is easy to check that this holds for constants c = 1
and n0 = 1.

Let us consider the reverse case. That is, suppose the running time of an algorithm is 3n. Would it
be correct to say that the running time is O(2n)? No, this would not be correct. The way to argue
that 3n is not O(2n) is to show the negation of the quantified statement for this example. That is,
we need to show that for any constants c > 0, n0 > 0, there exists n ≥ n0 such that 3n > c · 2n.
Note that 3n > c · 2n ⇔ (3/2)n > c ⇔ n > log3/2 c. So, for any constant c, 3n > c · 2n when
n > log3/2 c. So, for any constants c > 0 and n0 > 0, let us try n′ = max (dlog3/2 c + 1e, n0). We

find that 3n
′
> c · 2n′

and furthermore n′ ≥ n0. From this, we conclude that 3n is not O(2n).

Prove or disprove the following statements:

(a) (3 points) 2
√
logn is O(n).

(b) (7 points) (9n2n + 3n) is Ω(n3n).
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4. (More practice with big-O definition) Prove or disprove the following statements:

(a) (5 points) If d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O(g(n)).

(b) (5 points) max {f(n), g(n)} is O(f(n) + g(n)).

(c) (5 points) If a(n) is O(f(n)) and b(n) is O(g(n)), then a(n) + b(n) is O(f(n) + g(n)).

(d) (5 points) If f(n) is O(g(n)), then 2f(n) is O(2g(n)).

(e) (5 points) If f(n) is O(g(n)), then f(2n) is O(g(2n)).

5. (15 points) (Arguing correctness using induction) Argue using induction that the following algorithm
correctly computes the value of an when given positive integers a and n as input.

Exponentiate(a, n)

· if (n = 0) return(1)
· t = Exponentiate(a, bn/2c)
· if (n is even) return(t · t)
· else return(t · t · a)

6. (Analysing running time) We start with a brief discussion.

As discussed in class, the big-O notation allows us to ignore the hairy details we may need to
keep track of otherwise. Let us consider the example of the Insertion Sort algorithm below for this
discussion.

InsertionSort(A,n)
· for i = 1 to n
· j = i− 1
· while(j > 0 and A[j] > A[i]) j- -
· for k = j+1 to i-1
· Swap A[i] and A[k]

The first line of the algorithm is a ‘for’ statement. How many basic operations does this ‘for’ state-
ment contribute? Getting a precise count will require some deeper analysis of its implementation
mechanism. It should involve a comparison operation in every iteration since one needs to check
if the variable i has exceeded n. It should include arithmetic operation since the variable i needs
to be incremented by 1 at the end of each iteration. Are these all the operations? Not really. The
increment operation involves loading the variable and storing it after the increment. Keeping track
of all these hairy details may be too cumbersome. A quick way to account for all possible basic
operations is to say that the contribution to the number of operations coming from every iteration
of the outer ‘for’ statement is a constant. So, the number of operations contributed by the outer
‘for’ statement is an + b for some constants a, b. This is the level of granularity at which we shall
do the counting to keep things simple.

Answer the questions that follow:

(a) (2 points) What is the worst-case number of operations contributed by the while-loop in the ith

iteration of the outer for-loop as a function of i? (You can give an expression in terms of symbols
for constants as we did for the outer ‘for’ statement in the discussion. This will be sufficient since
the big-O will allow us to ignore the specific constants.)
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(b) (2 points) Similarly, what is the worst-case number of operations contributed by the inner for-loop
in the ith iteration of the outer for-loop as a function of i? Again, express using symbolic constants.

(c) (2 points) Use expressions of the previous two parts to give the worst-case number of operations
executed by the algorithm. Use big-O notation. Give a brief explanation.

(d) (4 points) Show that your running time analysis in the previous part is tight.
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