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Introduction
Computational Intractability

Is it always possible to find a fast algorithm for any problem?

Problem

Given a social network, find the largest subset of people such that
no two people in the subset are friends.
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Introduction
Computational Intractability

The problem in the previous slide is called the Independent
Set problem and no one knows if it can be solved in
polynomial time (quickly).

There is a whole class of problems to which Independent Set
belongs.

If you solve one problem in this class quickly, then you can
solve all the problems in this class quickly.

You can also win a million dollars!!

We will see techniques of how to show that a new problem
belongs to this class:

Why: because then you can say to your boss that the new
problem belongs to the difficult class of problems and even the
most brilliant people in the world have not been able to solve
the problem so do not expect me to do it. Also, if I can solve
the problem there is no reason for me to work for you!
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Computational Intractability
Introduction

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in
the input size. Such algorithms are also called polynomial-time
algorithms.
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Computational Intractability
Introduction

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in
the input size. Such algorithms are also called polynomial-time
algorithms.

Question 1: Given a problem, does there exist an efficient
algorithm to solve the problem?
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Computational Intractability
Introduction

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in
the input size. Such algorithms are also called polynomial-time
algorithms.

Question 1: Given a problem, does there exist an efficient
algorithm to solve the problem?

There are lots of problems arising in various fields for which
this question is unresolved.

Question 2: Are these problems related in some manner?

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Computational Intractability
Introduction

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in
the input size. Such algorithms are also called polynomial-time
algorithms.

Question 1: Given a problem, does there exist an efficient
algorithm to solve the problem?

There are lots of problems arising in various fields for which
this question is unresolved.

Question 2: Are these problems related in some manner?

Question 3: If someone discovers an efficient algorithm to one
of these difficult problems, then does that mean that there are
efficient algorithms for other problems? If so, how do we
obtain such an algorithm.
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Computational Intractability
Polynomial-time reduction

NP-complete problems: This is a large class of problems such
that all problems in this class are equivalent in the following
sense:

The existence of a polynomial-time algorithm for
any one problem in this class implies the existence of
polynomial-time algorithm for all of them.
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Computational Intractability
Polynomial-time reduction

NP-complete problems: This is a large class of problems such
that all problems in this class are equivalent in the following sense:

The existence of a polynomial-time algorithm for any
one problem in this class implies the existence of
polynomial-time algorithm for all of them.

Polynomial-time reduction:

Consider two problems X and Y .
Suppose there is a black box that solves arbitrary instances of
problem X .
Suppose any arbitrary instance of problem Y can be solved using
a polynomial number of standard computational steps and a
polynomial number of calls to the black box that solves instance
of problem X .
If the previous statement is true, then we say that Y is
polynomial-time reducible to X . A short notation for this is
Y ≤p X .
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Computational Intractability
Polynomial-time reduction

Polynomial-time reduction:

Consider two problems X and Y .
Suppose there is a black box that solves arbitrary instances of
problem X .
Suppose any arbitrary instance of problem Y can be solved using
a polynomial number of standard computational steps and a
polynomial number of calls to the black box that solves instance
of problem X .
If the previous statement is true, then we say that Y is
polynomial-time reducible to X . A short notation for this is
Y ≤p X .

Claim 1: BIPARTITE-MATCHING ≤p MAX-FLOW.
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Computational Intractability
Polynomial-time reduction

Polynomial-time reduction:

Consider two problems X and Y .
Suppose there is a black box that solves arbitrary instances of
problem X .
Suppose any arbitrary instance of problem Y can be solved using
a polynomial number of standard computational steps and a
polynomial number of calls to the black box that solves instance
of problem X .
If the previous statement is true, then we say that Y is
polynomial-time reducible to X . A short notation for this is
Y ≤p X .

Claim 2: Suppose Y ≤p X . If X can be solved in polynomial
time, then Y can be solved in polynomial time.
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Computational Intractability
Polynomial-time reduction

Polynomial-time reduction:

Consider two problems X and Y .
Suppose there is a black box that solves arbitrary instances of
problem X .
Suppose any arbitrary instance of problem Y can be solved using
a polynomial number of standard computational steps and a
polynomial number of calls to the black box that solves instance
of problem X .
If the previous statement is true, then we say that Y is
polynomial-time reducible to X . A short notation for this is
Y ≤p X .

Claim 2: Suppose Y ≤p X . If X can be solved in polynomial
time, then Y can be solved in polynomial time.
Claim 3: Suppose Y ≤p X . If Y cannot be solved in
polynomial time, then X cannot be solved in polynomial time.
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Computational Intractability
Polynomial-time reduction

Definition (Independent Set)

Given a graph G = (V ,E ), a subset I ⊆ V of vertices is called an
independent set of G iff there are no edges between any pair of
vertices in I .

Problem

INDEPENDENT-SET: Given a graph G = (V ,E ) and an integer k ,
check if there is an independent set of size at least k in G .

Problem

MAXIMUM-INDEPENDENT-SET: Given a graph G = (V ,E ),
output the size of independent set of G of maximum cardinality.
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Computational Intractability
Polynomial-time reduction

Definition (Independent Set)

Given a graph G = (V ,E ), a subset I ⊆ V of vertices is called an
independent set of G iff there are no edges between any pair of
vertices in I .

Problem

INDEPENDENT-SET: Given a graph G = (V ,E ) and an integer k ,
check if there is an independent set of size at least k in G .

Problem

MAXIMUM-INDEPENDENT-SET: Given a graph G = (V ,E ),
output the size of independent set of G of maximum cardinality.
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Computational Intractability
Polynomial-time reduction

Definition (Independent Set)

Given a graph G = (V ,E ), a subset I ⊆ V of vertices is called an
independent set of G iff there are no edges between any pair of
vertices in I .

Problem

INDEPENDENT-SET: Given a graph G = (V ,E ) and an integer k ,
check if there is an independent set of size at least k in G .

Problem

MAXIMUM-INDEPENDENT-SET: Given a graph G = (V ,E ), output
the size of independent set of G of maximum cardinality.

Claim 1: MAXIMUM-INDEPENDENT-SET ≤p INDEPENDENT-SET.
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Computational Intractability
Polynomial-time reduction

Definition (Independent Set)

Given a graph G = (V ,E ), a subset I ⊆ V of vertices is called an
independent set of G iff there are no edges between any pair of
vertices in I .

Problem

INDEPENDENT-SET: Given a graph G = (V ,E ) and an integer k ,
check if there is an independent set of size at least k in G .

Problem

MAXIMUM-INDEPENDENT-SET: Given a graph G = (V ,E ), output
the size of independent set of G of maximum cardinality.

Claim 1: MAXIMUM-INDEPENDENT-SET ≤p INDEPENDENT-SET.
Claim 2: INDEPENDENT-SET ≤p MAXIMUM-INDEPENDENT-SET.
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Computational Intractability
Polynomial-time reduction

Definition (Vertex Cover)

Given a graph G = (V ,E ), a subset S ⊆ V of vertices is called a
vertex cover of G iff for any edge (u, v) in the graph at least one of
u, v is in S .

Problem

VERTEX-COVER: Given a graph G = (V ,E ) and an integer k,
check if there is a vertex cover of size at most k in G .

Problem

MINIMUM-VERTEX-COVER: Given a graph G = (V ,E ), output
the size of vertex cover of G of minimum cardinality.
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Computational Intractability
Polynomial-time reduction

Definition (Vertex Cover)

Given a graph G = (V ,E ), a subset S ⊆ V of vertices is called a
vertex cover of G iff for any edge (u, v) in the graph at least one of
u, v is in S .

Problem

VERTEX-COVER: Given a graph G = (V ,E ) and an integer k,
check if there is a vertex cover of size at most k in G .

Problem

MINIMUM-VERTEX-COVER: Given a graph G = (V ,E ), output
the size of vertex cover of G of minimum cardinality.
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Computational Intractability
Polynomial-time reduction

Definition (Vertex Cover)

Given a graph G = (V ,E ), a subset S ⊆ V of vertices is called a
vertex cover of G iff for any edge (u, v) in the graph at least one of
u, v is in S .

Problem

VERTEX-COVER: Given a graph G = (V ,E ) and an integer k, check
if there is a vertex cover of size at most k in G .

Problem

MINIMUM-VERTEX-COVER: Given a graph G = (V ,E ), output the
size of vertex cover of G of minimum cardinality.

Claim 3: MINIMUM-VERTEX-COVER ≤p VERTEX-COVER.
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Computational Intractability
Polynomial-time reduction

Definition (Vertex Cover)

Given a graph G = (V ,E ), a subset S ⊆ V of vertices is called a
vertex cover of G iff for any edge (u, v) in the graph at least one of
u, v is in S .

Problem

VERTEX-COVER: Given a graph G = (V ,E ) and an integer k, check
if there is a vertex cover of size at most k in G .

Problem

MINIMUM-VERTEX-COVER: Given a graph G = (V ,E ), output the
size of vertex cover of G of minimum cardinality.

Claim 3: MINIMUM-VERTEX-COVER ≤p VERTEX-COVER.
Claim 4: VERTEX-COVER ≤p MINIMUM-VERTEX-COVER.
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Computational Intractability
Polynomial-time reduction

Claim 5: INDEPENDENT-SET ≤p VERTEX-COVER.

Proof of Claim 5

Claim 5.1: Let I be an independent set of G , then V − I is a
vertex cover of G .
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Computational Intractability
Polynomial-time reduction

Claim 5: INDEPENDENT-SET ≤p VERTEX-COVER.

Proof of Claim 5

Claim 5.1: Let I be an independent set of G , then V − I is a
vertex cover of G .
Claim 5.2: Let S be a vertex cover of G , then V − S is an
independent set of G .
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Computational Intractability
Polynomial-time reduction

Claim 5: INDEPENDENT-SET ≤p VERTEX-COVER.

Proof of Claim 5

Claim 5.1: Let I be an independent set of G , then V − I is a
vertex cover of G .
Claim 5.2: Let S be a vertex cover of G , then V − S is an
independent set of G .
Claim 5.3: G has an independent set of size at least k if and only
if G has a vertex cover of size at most n − k.
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Computational Intractability
Polynomial-time reduction

Claim 5: INDEPENDENT-SET ≤p VERTEX-COVER.

Proof of Claim 5

Claim 5.1: Let I be an independent set of G , then V − I is a
vertex cover of G .
Claim 5.2: Let S be a vertex cover of G , then V − S is an
independent set of G .
Claim 5.3: G has an independent set of size at least k if and only
if G has a vertex cover of size at most n − k.
Given an instance (G , k) of the independent set problem, create
an instance (G , n − k) of the vertex cover problem, make a single
query to the block box for solving the vertex cover problem and
return the answer that is returned by the black box.
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Computational Intractability
Polynomial-time reduction

Claim 6: MINIMUM-VERTEX-COVER ≤p

MAXIMUM-INDEPENDENT-SET.
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Computational Intractability
Polynomial-time reduction

Claim 6: MINIMUM-VERTEX-COVER ≤p

MAXIMUM-INDEPENDENT-SET.

Proof of Claim 6

Claim 6.1: G has an independent set of size k if and only if G
has a vertex cover of size n − k.
Make a single call to the black box for the maximum independent
problem with input G . If the black box returns k , then return
n − k .

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Computational Intractability
Polynomial-time reduction

Claim 6: MINIMUM-VERTEX-COVER ≤p

MAXIMUM-INDEPENDENT-SET.

Proof of Claim 6

Claim 6.1: G has an independent set of size k if and only if G
has a vertex cover of size n − k.
Make a single call to the black box for the maximum independent
problem with input G . If the black box returns k , then return
n − k .

Another proof of Claim 6

MINIMUM-VERTEX-COVER ≤p VERTEX-COVER
VERTEX-COVER ≤p INDEPENDENT-SET
INDEPENDENT-SET ≤p MAXIMUM-INDEPENDENT-SET
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Computational Intractability
Polynomial-time reduction

Theorem

If X ≤p Y and Y ≤p Z , then X ≤p Z .
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Computational Intractability
Polynomial-time reduction

Problem

SET-COVER: Given a set U of n elements, a collection S1, ...,Sm
of subsets of U, and an integer k, determine if there exist a
collection of at most k of these sets whose union is equal to U.
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Computational Intractability
Polynomial-time reduction

Problem

SET-COVER: Given a set U of n elements, a collection S1, ...,Sm
of subsets of U, and an integer k, determine if there exist a
collection of at most k of these sets whose union is equal to U.

Claim 1: VERTEX-COVER ≤p SET-COVER.
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Computational Intractability
Polynomial-time reduction

Definition

Boolean variables: 0-1 (true/false) variables.

Term: A variable or its negation is called a term.

Clause: Disjunction of terms (e.g., (x1 ∨ x̄2 ∨ x3))

Assignment: Fixing 0-1 values for each variables.

Satisfying assignment: An assignment of variables is called a
satisfying assignment for a collection of clauses if all clauses
evaluate to 1 (true).

For example, (x1 ∨ x̄2), (x2 ∨ x̄3), (x3 ∨ x̄1)

Problem

SAT: Given a set of clauses C1, ...,Cm over a set of variables
x1, ..., xn determine if there exists a satisfying assignment.
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Computational Intractability
Polynomial-time reduction

Problem

SAT: Given a set of clauses C1, ...,Cm over a set of variables
x1, ..., xn determine if there exists a satisfying assignment.

Problem

3-SAT: Given a set of clauses C1, ...,Cm each of length at most 3,
over a set of variables x1, ..., xn determine if there exists a
satisfying assignment.
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Computational Intractability
Polynomial-time reduction

Problem

SAT: Given a set of clauses C1, ...,Cm over a set of variables
x1, ..., xn determine if there exists a satisfying assignment.

Problem

3-SAT: Given a set of clauses C1, ...,Cm each of length at most 3,
over a set of variables x1, ..., xn determine if there exists a
satisfying assignment.

Claim 1: SAT ≤p 3-SAT
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Computational Intractability
Polynomial-time reduction

Problem

SAT: Given a set of clauses C1, ...,Cm over a set of variables
x1, ..., xn determine if there exists a satisfying assignment.

Problem

3-SAT: Given a set of clauses C1, ...,Cm each of length at most 3,
over a set of variables x1, ..., xn determine if there exists a
satisfying assignment.

Claim 1: SAT ≤p 3-SAT

Main idea: (t1 ∨ t2 ∨ t3 ∨ t4) ≡ ((t1 ∨ t2 ∨ z), (z ≡ t3 ∨ t4))
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Computational Intractability
Polynomial-time reduction

Problem

3-SAT: Given a set of clauses C1, ...,Cm each of length at most 3,
over a set of variables x1, ..., xn determine if there exists a
satisfying assignment.

Problem

INDEPENDENT-SET: Given a graph G = (V ,E ) and an integer
k , check if there is an independent set of size at least k in G .

Claim 1: 3-SAT ≤p INDEPENDENT-SET
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Computational Intractability
Polynomial-time reduction

Claim 1: 3-SAT ≤p INDEPENDENT-SET

Proof sketch of Claim 1

Given an instance of the 3-SAT problem (C1, ...,Cm), we will
construct an instance (G ,m) of the INDEPENDENT-SET
problem.
We will then show that (C1, ...,Cm) has a satisfying assignment if
and only if G has an independent set of size at least m.
Consider an example construction:

3-SAT instance:
(x1 ∨ x2 ∨ x̄3), (x1 ∨ x̄2 ∨ x3), (x̄1 ∨ x2 ∨ x3), (x̄1 ∨ x̄2 ∨ x̄3)
INDEPENDENT-SET instance (G ,m) for the above shown below:
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Computational Intractability
Polynomial-time reduction

Claim 1: 3-SAT ≤p INDEPENDENT-SET

Proof sketch of Claim 1

Consider an example construction:

3-SAT instance:
(x1 ∨ x2 ∨ x̄3), (x1 ∨ x̄2 ∨ x3), (x̄1 ∨ x2 ∨ x3), (x̄1 ∨ x̄2 ∨ x̄3)
INDEPENDENT-SET instance (G ,m) for the above shown below:
Claim 1.1: If (C1,C2,C3,C4) has a satisfying assignment, then G
has an independent set of size 4.
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Computational Intractability
Polynomial-time reduction

Claim 1: 3-SAT ≤p INDEPENDENT-SET

Proof sketch of Claim 1

Consider an example construction:

3-SAT instance:
(x1 ∨ x2 ∨ x̄3), (x1 ∨ x̄2 ∨ x3), (x̄1 ∨ x2 ∨ x3), (x̄1 ∨ x̄2 ∨ x̄3)
INDEPENDENT-SET instance (G ,m) for the above shown below:
Claim 1.1: If (C1,C2,C3,C4) has a satisfying assignment, then G
has an independent set of size 4.
Claim 1.2: If G has an independent set of size 4, then
(C1,C2,C3,C4) has a satisfying assignment.
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Computational Intractability: NP and NP-complete
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Computational Intractability
NP, NP-hard, NP-complete

We said that the problems INDEPENDENT-SET,
VERTEX-COVER, SAT seem hard.
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Computational Intractability
NP, NP-hard, NP-complete

We said that the problems INDEPENDENT-SET,
VERTEX-COVER, SAT seem hard.

Polynomial-time reductions just give pair-wise relationships
between problems.

Is there a common theme that binds all these problems in one
computational class?
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Computational Intractability
NP, NP-hard, NP-complete

We said that the problems INDEPENDENT-SET,
VERTEX-COVER, SAT seem hard.

Polynomial-time reductions just give pair-wise relationships
between problems.

Is there a common theme that binds all these problems in one
computational class?

Let us try to extract a theme that is common to some of the
problems we saw:

INDEPENDENT-SET: Given (G , k), determine if G has an
independent set of size at least k .
VERTEX-COVER: Given (G , k), determine if G has a vertex
cover of size at most k .
SAT: Given a Boolean formula Ω in CNF, determine if the
formula is satisfiable.
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Computational Intractability
NP, NP-hard, NP-complete

Let us try to extract a theme that is common to some of the
problems we saw:

INDEPENDENT-SET: Given (G , k), determine if G has an
independent set of size at least k .

Suppose there is an independent set of size at least k and
someone gives such a subset as a certificate. Then we can
verify this certificate quickly.

VERTEX-COVER: Given (G , k), determine if G has a vertex
cover of size at most k .

Suppose there is a vertex cover of size at most k and someone
gives such a subset as a certificate. Then we can verify this
certificate quickly.

SAT: Given a Boolean formula Ω in CNF, determine if the
formula is satisfiable.

Suppose the formula Ω is satisfiable and someone gives such a
satisfying assignment as a certificate. Then we can verify this
certificate quickly.
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Computational Intractability
NP, NP-hard, NP-complete

Problem encoding and algorithm:

An instance of a problem can be encoded using a finite string
s.
A decision problem X can be thought of as a set of strings on
which the answer is true (or 1).
We say that an algorithm A solves a problem X if for all
strings s, A(s) = 1 if and only if s is in X .
We say that an algorithm A has a polynomial running time if
there is a polynomial p such that for every string s, A
terminates on input s in at most O(p(|s|)) steps.
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Computational Intractability
NP, NP-hard, NP-complete

Efficient Certification:
We say that algorithm B is an efficient certifier for a problem
X , iff the following holds:

B is a polynomial time algorithm that takes two input string s
and t.
There is a polynomial p such that for every string s, we have
s ∈ X if and only if there exists a string t such that
|t| ≤ p(|s|) and B(s, t) = 1.
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Computational Intractability
NP, NP-hard, NP-complete

Efficient Certification:
We say that algorithm B is an efficient certifier for a problem
X , iff the following holds:

B is a polynomial time algorithm that takes two input string s
and t.
There is a polynomial p such that for every string s, we have
s ∈ X if and only if there exists a string t such that
|t| ≤ p(|s|) and B(s, t) = 1.

Note that B does not solve the problem but only verifies a
proposed solution.

Can we use B to solve the problem?
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Computational Intractability
NP, NP-hard, NP-complete

Efficient Certification:
We say that algorithm B is an efficient certifier for a problem
X , if the following holds:

B is a polynomial time algorithm that takes two input string s
and t.
There is a polynomial p such that for every string s, we have
s ∈ X if and only if there exists a string t such that
|t| ≤ p(|s|) and B(s, t) = 1.

Note that B does not solve the problem but only verifies a
proposed solution.

Can we use B to solve the problem? Yes

Can we use B to solve the problem efficiently?
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Computational Intractability
NP, NP-hard, NP-complete

Efficient Certification:
We say that algorithm B is an efficient certifier for a problem
X , if the following holds:

B is a polynomial time algorithm that takes two input string s
and t.
There is a polynomial p such that for every string s, we have
s ∈ X if and only if there exists a string t such that
|t| ≤ p(|s|) and B(s, t) = 1.

Note that B does not solve the problem but only verifies a
proposed solution.

Can we use B to solve the problem? Yes

Can we use B to solve the problem efficiently?

Definition (NP)

A problem is said to be in NP iff there exists an efficient
certification algorithm for the problem.
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Computational Intractability
NP, NP-hard, NP-complete

Efficient Certification:
We say that algorithm B is an efficient certifier for a problem
X , if the following holds:

B is a polynomial time algorithm that takes two input string s
and t.
There is a polynomial p such that for every string s, we have
s ∈ X if and only if there exists a string t such that
|t| ≤ p(|s|) and B(s, t) = 1.

Definition (NP)

A problem is said to be in NP iff there exists an efficient
certification algorithm for the problem.

NP stands for Non-deterministic Polynomial time.
Non-deterministic algorithms are allowed to make
non-deterministic choices (guesswork). Such algorithms can
guess the certificate t for an instance s.
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Theorem: P ⊆ NP.
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Theorem: P ⊆ NP.
Claim 1: INDEPENDENT-SET ∈ NP

Proof sketch: The certificate is an independent set of size at least
k . The certifier checks if the given set if indeed an independent set
of size at least k.
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Theorem: P ⊆ NP.
Claim 1: INDEPENDENT-SET ∈ NP

Proof sketch: The certificate is an independent set of size at least
k . The certifier checks if the given set if indeed an independent set
of size at least k.

Claim 2: SAT ∈ NP

Proof sketch: The certificate is a satisfying assignment.The
certifier checks if the assignment makes all clauses true.
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Theorem: P ⊆ NP.
Is P = NP?
What are the hardest problems in NP?
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Theorem: P ⊆ NP.
Is P = NP?
What are the hardest problems in NP?
A problem X ∈ NP is the hardest problem in NP if for all
problems Y ∈ NP, Y ≤p X .
Such problems are called NP-complete problems.
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties
hold:

1 X ∈ NP.
2 For all Y ∈ NP, Y ≤p X .

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties
hold:

1 X ∈ NP.
2 For all Y ∈ NP, Y ≤p X .

How do we show that there is a problem that is NP-complete?
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties
hold:

1 X ∈ NP.
2 For all Y ∈ NP, Y ≤p X .

How do we show that there is a problem that is NP-complete?
Suppose by some magic we have shown that SAT is NP-complete,
does that mean that there are more NP-complete problems?
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification
algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that
solves the problem.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties
hold:

1 X ∈ NP.
2 For all Y ∈ NP, Y ≤p X .

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.
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Computational Intractability
NP, NP-hard, NP-complete

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties
hold:

1 X ∈ NP.
2 For all Y ∈ NP, Y ≤p X .

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

Claim 1: CIRCUIT-SAT is NP-complete.
Claim 2: CIRCUIT-SAT ≤p 3-SAT.
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Computational Intractability
NP, NP-hard, NP-complete

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

Claim 1: CIRCUIT-SAT is NP-complete.
Claim 2: CIRCUIT-SAT ≤p 3-SAT.

Circuit: A directed acyclic graph where each node is either:

Constant nodes: Labeled 0/1
Input nodes: These denote the variables
Gates: AND, OR, and NOT

There is a single output node.
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Computational Intractability
NP, NP-hard, NP-complete

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

Claim 1: CIRCUIT-SAT is NP-complete.
Claim 2: CIRCUIT-SAT ≤p 3-SAT.

Circuit: A directed acyclic graph where each node is either:

Constant nodes: Labeled 0/1
Input nodes: These denote the variables
Gates: AND, OR, and NOT

There is a single output node.

Problem

CIRCUIT-SAT: Given a circuit, determine if there is an input such
that the output of the circuit is 1.
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Computational Intractability
NP, NP-hard, NP-complete

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

Claim 1: CIRCUIT-SAT is NP-complete.

Fact: For every algorithm that runs in time polynomial in the input
size n, there is an equivalent circuit of size polynomial in n.
Given an input instance s of any NP problem X , consider the
equivalent circuit for the efficient certifier of X . The input gates of
this circuit has s and t.
s ∈ X if and only if this circuit is satisfiable.

Claim 2: CIRCUIT-SAT ≤p 3-SAT.

For any circuit, we can write an equivalent 3-SAT formula.

Problem

CIRCUIT-SAT: Given a circuit, determine if there is an input such
that the output of the circuit is 1.
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