COL702: Advanced Data Structures and Algorithms

Ragesh Jaiswal, CSE, IITD

Course Overview

- Basic graph algorithms
- Algorithm Design Techniques:
- Greedy Algorithms
- Divide and Conquer
- Dynamic Programming
- Network Flow
- Computational Intractability

Computational Intractability

Introduction

Computational Intractability

- Is it always possible to find a fast algorithm for any problem?

Problem

Given a social network, find the largest subset of people such that no two people in the subset are friends.

Introduction

- The problem in the previous slide is called the Independent Set problem and no one knows if it can be solved in polynomial time (quickly).
- There is a whole class of problems to which Independent Set belongs.
- If you solve one problem in this class quickly, then you can solve all the problems in this class quickly.
- You can also win a million dollars!!
- We will see techniques of how to show that a new problem belongs to this class:
- Why: because then you can say to your boss that the new problem belongs to the difficult class of problems and even the most brilliant people in the world have not been able to solve the problem so do not expect me to do it. Also, if I can solve the problem there is no reason for me to work for you!

Computational Intractability

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in the input size. Such algorithms are also called polynomial-time algorithms.

Computational Intractability Introduction

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in the input size. Such algorithms are also called polynomial-time algorithms.

- Question 1: Given a problem, does there exist an efficient algorithm to solve the problem?

Computational Intractability Introduction

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in the input size. Such algorithms are also called polynomial-time algorithms.

- Question 1: Given a problem, does there exist an efficient algorithm to solve the problem?
- There are lots of problems arising in various fields for which this question is unresolved.
- Question 2: Are these problems related in some manner?

Computational Intractability

Definition (Efficient Algorithms)

An algorithm is said to be efficient iff it runs in time polynomial in the input size. Such algorithms are also called polynomial-time algorithms.

- Question 1: Given a problem, does there exist an efficient algorithm to solve the problem?
- There are lots of problems arising in various fields for which this question is unresolved.
- Question 2: Are these problems related in some manner?
- Question 3: If someone discovers an efficient algorithm to one of these difficult problems, then does that mean that there are efficient algorithms for other problems? If so, how do we obtain such an algorithm.

Computational Intractability
 Polynomial-time reduction

- NP-complete problems: This is a large class of problems such that all problems in this class are equivalent in the following sense:

The existence of a polynomial-time algorithm for any one problem in this class implies the existence of polynomial-time algorithm for all of them.

Computational Intractability

Polynomial-time reduction

- NP-complete problems: This is a large class of problems such that all problems in this class are equivalent in the following sense: The existence of a polynomial-time algorithm for any one problem in this class implies the existence of polynomial-time algorithm for all of them.
- Polynomial-time reduction:
- Consider two problems X and Y.
- Suppose there is a black box that solves arbitrary instances of problem X.
- Suppose any arbitrary instance of problem Y can be solved using a polynomial number of standard computational steps and a polynomial number of calls to the black box that solves instance of problem X.
- If the previous statement is true, then we say that Y is polynomial-time reducible to X. A short notation for this is $Y \leq_{p} X$.

Computational Intractability
 Polynomial-time reduction

- Polynomial-time reduction:
- Consider two problems X and Y.
- Suppose there is a black box that solves arbitrary instances of problem X.
- Suppose any arbitrary instance of problem Y can be solved using a polynomial number of standard computational steps and a polynomial number of calls to the black box that solves instance of problem X.
- If the previous statement is true, then we say that Y is polynomial-time reducible to X. A short notation for this is $Y \leq_{p} X$.
- Claim 1: BIPARTITE-MATCHING \leq_{p} MAX-FLOW.

Computational Intractability
 Polynomial-time reduction

- Polynomial-time reduction:
- Consider two problems X and Y.
- Suppose there is a black box that solves arbitrary instances of problem X.
- Suppose any arbitrary instance of problem Y can be solved using a polynomial number of standard computational steps and a polynomial number of calls to the black box that solves instance of problem X.
- If the previous statement is true, then we say that Y is polynomial-time reducible to X. A short notation for this is $Y \leq_{p} X$.
- Claim 2: Suppose $Y \leq_{p} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.

Computational Intractability
 Polynomial-time reduction

- Polynomial-time reduction:
- Consider two problems X and Y.
- Suppose there is a black box that solves arbitrary instances of problem X.
- Suppose any arbitrary instance of problem Y can be solved using a polynomial number of standard computational steps and a polynomial number of calls to the black box that solves instance of problem X.
- If the previous statement is true, then we say that Y is polynomial-time reducible to X. A short notation for this is $Y \leq_{p} X$.
- Claim 2: Suppose $Y \leq_{p} X$. If X can be solved in polynomial time, then Y can be solved in polynomial time.
- Claim 3: Suppose $Y \leq_{p} X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

Computational Intractability

Polynomial-time reduction

Definition (Independent Set)

Given a graph $G=(V, E)$, a subset $I \subseteq V$ of vertices is called an independent set of G iff there are no edges between any pair of vertices in I.

Problem

INDEPENDENT-SET: Given a graph $G=(V, E)$ and an integer k, check if there is an independent set of size at least k in G.

Problem

MAXIMUM-INDEPENDENT-SET: Given a graph $G=(V, E)$, output the size of independent set of G of maximum cardinality.

Computational Intractability

Polynomial-time reduction

Definition (Independent Set)

Given a graph $G=(V, E)$, a subset $I \subseteq V$ of vertices is called an independent set of G iff there are no edges between any pair of vertices in I.

Problem

INDEPENDENT-SET: Given a graph $G=(V, E)$ and an integer k, check if there is an independent set of size at least k in G.

Problem

MAXIMUM-INDEPENDENT-SET: Given a graph $G=(V, E)$, output the size of independent set of G of maximum cardinality.

Computational Intractability

Polynomial-time reduction

Definition (Independent Set)

Given a graph $G=(V, E)$, a subset $I \subseteq V$ of vertices is called an independent set of G iff there are no edges between any pair of vertices in l.

Problem

INDEPENDENT-SET: Given a graph $G=(V, E)$ and an integer k, check if there is an independent set of size at least k in G.

Problem

MAXIMUM-INDEPENDENT-SET: Given a graph $G=(V, E)$, output the size of independent set of G of maximum cardinality.

- Claim 1: MAXIMUM-INDEPENDENT-SET \leq_{p} INDEPENDENT-SET.

Computational Intractability

Polynomial-time reduction

Definition (Independent Set)

Given a graph $G=(V, E)$, a subset $I \subseteq V$ of vertices is called an independent set of G iff there are no edges between any pair of vertices in I.

Problem

INDEPENDENT-SET: Given a graph $G=(V, E)$ and an integer k, check if there is an independent set of size at least k in G.

Problem

MAXIMUM-INDEPENDENT-SET: Given a graph $G=(V, E)$, output the size of independent set of G of maximum cardinality.

- Claim 1: MAXIMUM-INDEPENDENT-SET \leq_{p} INDEPENDENT-SET.
- Claim 2: INDEPENDENT-SET \leq_{p} MAXIMUM-INDEPENDENT-SET.

Computational Intractability

Polynomial-time reduction

Definition (Vertex Cover)

Given a graph $G=(V, E)$, a subset $S \subseteq V$ of vertices is called a vertex cover of G iff for any edge (u, v) in the graph at least one of u, v is in S.

Problem

VERTEX-COVER: Given a graph $G=(V, E)$ and an integer k, check if there is a vertex cover of size at most k in G.

Problem

MINIMUM-VERTEX-COVER: Given a graph $G=(V, E)$, output the size of vertex cover of G of minimum cardinality.

Computational Intractability

Polynomial-time reduction

Definition (Vertex Cover)

Given a graph $G=(V, E)$, a subset $S \subseteq V$ of vertices is called a vertex cover of G iff for any edge (u, v) in the graph at least one of u, v is in S.

Problem

VERTEX-COVER: Given a graph $G=(V, E)$ and an integer k, check if there is a vertex cover of size at most k in G.

Problem

MINIMUM-VERTEX-COVER: Given a graph $G=(V, E)$, output the size of vertex cover of G of minimum cardinality.

Computational Intractability

Polynomial-time reduction

Definition (Vertex Cover)

Given a graph $G=(V, E)$, a subset $S \subseteq V$ of vertices is called a vertex cover of G iff for any edge (u, v) in the graph at least one of u, v is in S.

Problem

VERTEX-COVER: Given a graph $G=(V, E)$ and an integer k, check if there is a vertex cover of size at most k in G.

Problem

MINIMUM-VERTEX-COVER: Given a graph $G=(V, E)$, output the size of vertex cover of G of minimum cardinality.

- Claim 3: MINIMUM-VERTEX-COVER \leq_{p} VERTEX-COVER.

Computational Intractability

Polynomial-time reduction

Definition (Vertex Cover)

Given a graph $G=(V, E)$, a subset $S \subseteq V$ of vertices is called a vertex cover of G iff for any edge (u, v) in the graph at least one of u, v is in S.

Problem

VERTEX-COVER: Given a graph $G=(V, E)$ and an integer k, check if there is a vertex cover of size at most k in G.

Problem

MINIMUM-VERTEX-COVER: Given a graph $G=(V, E)$, output the size of vertex cover of G of minimum cardinality.

- Claim 3: MINIMUM-VERTEX-COVER \leq_{p} VERTEX-COVER.
- Claim 4: VERTEX-COVER \leq_{p} MINIMUM-VERTEX-COVER.

Computational Intractability

Polynomial-time reduction

- Claim 5: INDEPENDENT-SET \leq_{p} VERTEX-COVER.

Proof of Claim 5

- Claim 5.1: Let I be an independent set of G, then $V-I$ is a vertex cover of G.

Computational Intractability

Polynomial-time reduction

- Claim 5: INDEPENDENT-SET \leq_{p} VERTEX-COVER.

Proof of Claim 5

- Claim 5.1: Let I be an independent set of G, then $V-I$ is a vertex cover of G.
- Claim 5.2: Let S be a vertex cover of G, then $V-S$ is an independent set of G.

Computational Intractability

Polynomial-time reduction

- Claim 5: INDEPENDENT-SET \leq_{p} VERTEX-COVER.

Proof of Claim 5

- Claim 5.1: Let I be an independent set of G, then $V-I$ is a vertex cover of G.
- Claim 5.2: Let S be a vertex cover of G, then $V-S$ is an independent set of G.
- Claim 5.3: G has an independent set of size at least k if and only if G has a vertex cover of size at most $n-k$.

Computational Intractability

Polynomial-time reduction

- Claim 5: INDEPENDENT-SET \leq_{p} VERTEX-COVER.

Proof of Claim 5

- Claim 5.1: Let I be an independent set of G, then $V-I$ is a vertex cover of G.
- Claim 5.2: Let S be a vertex cover of G, then $V-S$ is an independent set of G.
- Claim 5.3: G has an independent set of size at least k if and only if G has a vertex cover of size at most $n-k$.
- Given an instance (G, k) of the independent set problem, create an instance ($G, n-k$) of the vertex cover problem, make a single query to the block box for solving the vertex cover problem and return the answer that is returned by the black box.

Computational Intractability

- Claim 6: MINIMUM-VERTEX-COVER \leq_{p} MAXIMUM-INDEPENDENT-SET.

Computational Intractability

Polynomial-time reduction

- Claim 6: MINIMUM-VERTEX-COVER \leq_{p} MAXIMUM-INDEPENDENT-SET.

Proof of Claim 6

- Claim 6.1: G has an independent set of size k if and only if G has a vertex cover of size $n-k$.
- Make a single call to the black box for the maximum independent problem with input G. If the black box returns k, then return $n-k$.

Computational Intractability

Polynomial-time reduction

- Claim 6: MINIMUM-VERTEX-COVER \leq_{p} MAXIMUM-INDEPENDENT-SET.

Proof of Claim 6

- Claim 6.1: G has an independent set of size k if and only if G has a vertex cover of size $n-k$.
- Make a single call to the black box for the maximum independent problem with input G. If the black box returns k, then return $n-k$.

Another proof of Claim 6

- MINIMUM-VERTEX-COVER \leq_{p} VERTEX-COVER
- VERTEX-COVER \leq_{p} INDEPENDENT-SET
- INDEPENDENT-SET \leq_{p} MAXIMUM-INDEPENDENT-SET

Computational Intractability

Polynomial-time reduction

Theorem
 $$
\text { If } X \leq_{p} Y \text { and } Y \leq_{p} Z, \text { then } X \leq_{p} Z
$$

Computational Intractability

Polynomial-time reduction

Problem

SET-COVER: Given a set U of n elements, a collection S_{1}, \ldots, S_{m} of subsets of U, and an integer k, determine if there exist a collection of at most k of these sets whose union is equal to U.

Computational Intractability

Polynomial-time reduction

Problem

SET-COVER: Given a set U of n elements, a collection S_{1}, \ldots, S_{m} of subsets of U, and an integer k, determine if there exist a collection of at most k of these sets whose union is equal to U.

- Claim 1: VERTEX-COVER \leq_{p} SET-COVER.

Computational Intractability

Polynomial-time reduction

Definition

- Boolean variables: 0-1 (true/false) variables.
- Term: A variable or its negation is called a term.
- Clause: Disjunction of terms (e.g., $\left.\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)\right)$
- Assignment: Fixing 0-1 values for each variables.
- Satisfying assignment: An assignment of variables is called a satisfying assignment for a collection of clauses if all clauses evaluate to 1 (true).
- For example, $\left(x_{1} \vee \bar{x}_{2}\right),\left(x_{2} \vee \bar{x}_{3}\right),\left(x_{3} \vee \bar{x}_{1}\right)$

Problem

SAT: Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Computational Intractability

Polynomial-time reduction

Problem

SAT: Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Problem

3-SAT: Given a set of clauses C_{1}, \ldots, C_{m} each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Computational Intractability

Polynomial-time reduction

Problem

SAT: Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Problem

3-SAT: Given a set of clauses C_{1}, \ldots, C_{m} each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

- Claim 1: SAT $\leq_{p} 3-S A T$

Computational Intractability

Polynomial-time reduction

Problem

SAT: Given a set of clauses C_{1}, \ldots, C_{m} over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Problem

3-SAT: Given a set of clauses C_{1}, \ldots, C_{m} each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

- Claim 1: SAT $\leq_{p} 3-$ SAT
- Main idea: $\left(t_{1} \vee t_{2} \vee t_{3} \vee t_{4}\right) \equiv\left(\left(t_{1} \vee t_{2} \vee z\right),\left(z \equiv t_{3} \vee t_{4}\right)\right)$

Computational Intractability

Polynomial-time reduction

Problem

3-SAT: Given a set of clauses C_{1}, \ldots, C_{m} each of length at most 3 , over a set of variables x_{1}, \ldots, x_{n} determine if there exists a satisfying assignment.

Problem

INDEPENDENT-SET: Given a graph $G=(V, E)$ and an integer k, check if there is an independent set of size at least k in G.

- Claim 1: $3-$ SAT \leq_{p} INDEPENDENT-SET

Computational Intractability

Polynomial-time reduction

- Claim 1: 3 -SAT \leq_{p} INDEPENDENT-SET

Proof sketch of Claim 1

- Given an instance of the 3-SAT problem $\left(C_{1}, \ldots, C_{m}\right)$, we will construct an instance (G, m) of the INDEPENDENT-SET problem.
- We will then show that $\left(C_{1}, \ldots, C_{m}\right)$ has a satisfying assignment if and only if G has an independent set of size at least m.
- Consider an example construction:
- 3-SAT instance:
$\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right),\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)$
- INDEPENDENT-SET instance (G, m) for the above shown below:

Computational Intractability

Polynomial-time reduction

- Claim 1: 3 -SAT \leq_{p} INDEPENDENT-SET

Proof sketch of Claim 1

- Consider an example construction:
- 3-SAT instance:

$$
\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right),\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

- INDEPENDENT-SET instance (G, m) for the above shown below:
- Claim 1.1: If $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ has a satisfying assignment, then G has an independent set of size 4.

Computational Intractability

Polynomial-time reduction

- Claim 1: 3 -SAT \leq_{p} INDEPENDENT-SET

Proof sketch of Claim 1

- Consider an example construction:
- 3-SAT instance:

$$
\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right),\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right),\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

- INDEPENDENT-SET instance (G, m) for the above shown below:
- Claim 1.1: If $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ has a satisfying assignment, then G has an independent set of size 4.
- Claim 1.2: If G has an independent set of size 4 , then $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ has a satisfying assignment.

Computational Intractability: NP and NP-complete

Computational Intractability NP, NP-hard, NP-complete

- We said that the problems INDEPENDENT-SET, VERTEX-COVER, SAT seem hard.

Computational Intractability
 NP, NP-hard, NP-complete

- We said that the problems INDEPENDENT-SET, VERTEX-COVER, SAT seem hard.
- Polynomial-time reductions just give pair-wise relationships between problems.
- Is there a common theme that binds all these problems in one computational class?

Computational Intractability
 NP, NP-hard, NP-complete

- We said that the problems INDEPENDENT-SET, VERTEX-COVER, SAT seem hard.
- Polynomial-time reductions just give pair-wise relationships between problems.
- Is there a common theme that binds all these problems in one computational class?
- Let us try to extract a theme that is common to some of the problems we saw:
- INDEPENDENT-SET: Given (G, k), determine if G has an independent set of size at least k.
- VERTEX-COVER: Given (G, k), determine if G has a vertex cover of size at most k.
- SAT: Given a Boolean formula Ω in CNF, determine if the formula is satisfiable.

Computational Intractability
 NP, NP-hard, NP-complete

- Let us try to extract a theme that is common to some of the problems we saw:
- INDEPENDENT-SET: Given (G, k), determine if G has an independent set of size at least k.
- Suppose there is an independent set of size at least k and someone gives such a subset as a certificate. Then we can verify this certificate quickly.
- VERTEX-COVER: Given (G, k), determine if G has a vertex cover of size at most k.
- Suppose there is a vertex cover of size at most k and someone gives such a subset as a certificate. Then we can verify this certificate quickly.
- SAT: Given a Boolean formula Ω in CNF, determine if the formula is satisfiable.
- Suppose the formula Ω is satisfiable and someone gives such a satisfying assignment as a certificate. Then we can verify this certificate quickly.

Computational Intractability
 NP, NP-hard, NP-complete

- Problem encoding and algorithm:
- An instance of a problem can be encoded using a finite string S.
- A decision problem X can be thought of as a set of strings on which the answer is true (or 1).
- We say that an algorithm A solves a problem X if for all strings $s, A(s)=1$ if and only if s is in X.
- We say that an algorithm A has a polynomial running time if there is a polynomial p such that for every string s, A terminates on input s in at most $O(p(|s|))$ steps.

Computational Intractability
 NP, NP-hard, NP-complete

- Efficient Certification:
- We say that algorithm B is an efficient certifier for a problem X, iff the following holds:
- B is a polynomial time algorithm that takes two input string s and t.
- There is a polynomial p such that for every string s, we have $s \in X$ if and only if there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.

Computational Intractability
 NP, NP-hard, NP-complete

- Efficient Certification:
- We say that algorithm B is an efficient certifier for a problem X, iff the following holds:
- B is a polynomial time algorithm that takes two input string s and t.
- There is a polynomial p such that for every string s, we have $s \in X$ if and only if there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
- Note that B does not solve the problem but only verifies a proposed solution.
- Can we use B to solve the problem?

Computational Intractability
 NP, NP-hard, NP-complete

- Efficient Certification:
- We say that algorithm B is an efficient certifier for a problem X, if the following holds:
- B is a polynomial time algorithm that takes two input string s and t.
- There is a polynomial p such that for every string s, we have $s \in X$ if and only if there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
- Note that B does not solve the problem but only verifies a proposed solution.
- Can we use B to solve the problem? Yes
- Can we use B to solve the problem efficiently?

Computational Intractability
 NP, NP-hard, NP-complete

- Efficient Certification:
- We say that algorithm B is an efficient certifier for a problem X, if the following holds:
- B is a polynomial time algorithm that takes two input string s and t.
- There is a polynomial p such that for every string s, we have $s \in X$ if and only if there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.
- Note that B does not solve the problem but only verifies a proposed solution.
- Can we use B to solve the problem? Yes
- Can we use B to solve the problem efficiently?

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

Computational Intractability
 NP, NP-hard, NP-complete

- Efficient Certification:

- We say that algorithm B is an efficient certifier for a problem X, if the following holds:
- B is a polynomial time algorithm that takes two input string s and t.
- There is a polynomial p such that for every string s, we have $s \in X$ if and only if there exists a string t such that $|t| \leq p(|s|)$ and $B(s, t)=1$.

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

- NP stands for Non-deterministic Polynomial time.
- Non-deterministic algorithms are allowed to make non-deterministic choices (guesswork). Such algorithms can guess the certificate t for an instance s.

Computational Intractability
 NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that solves the problem.

- Theorem: $\mathrm{P} \subseteq \mathrm{NP}$.

Computational Intractability

NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that solves the problem.

- Theorem: $\mathrm{P} \subseteq \mathrm{NP}$.
- Claim 1: INDEPENDENT-SET \in NP
- Proof sketch: The certificate is an independent set of size at least k. The certifier checks if the given set if indeed an independent set of size at least k.

Computational Intractability
 NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that solves the problem.

- Theorem: $\mathrm{P} \subseteq \mathrm{NP}$.
- Claim 1: INDEPENDENT-SET \in NP
- Proof sketch: The certificate is an independent set of size at least k. The certifier checks if the given set if indeed an independent set of size at least k.
- Claim 2: SAT $\in N P$
- Proof sketch: The certificate is a satisfying assignment. The certifier checks if the assignment makes all clauses true.

Computational Intractability
 NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that solves the problem.

- Theorem: $\mathrm{P} \subseteq \mathrm{NP}$.
- Is $\mathrm{P}=\mathrm{NP}$?
- What are the hardest problems in NP?

Computational Intractability
 NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that solves the problem.

- Theorem: $\mathrm{P} \subseteq \mathrm{NP}$.
- Is $\mathrm{P}=\mathrm{NP}$?
- What are the hardest problems in NP?
- A problem $X \in \mathrm{NP}$ is the hardest problem in NP if for all problems $Y \in \mathrm{NP}, Y \leq_{p} X$.
- Such problems are called NP-complete problems.

Computational Intractability

NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that solves the problem.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties hold:
(1) $X \in \mathrm{NP}$.
(2) For all $Y \in$ NP, $Y \leq_{p} X$.

Computational Intractability

NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that solves the problem.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties hold:
(1) $X \in \mathrm{NP}$.
(2) For all $Y \in$ NP, $Y \leq_{p} X$.

- How do we show that there is a problem that is NP-complete?

Computational Intractability

NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that solves the problem.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties hold:
(1) $X \in \mathrm{NP}$.
(2) For all $Y \in N P, Y \leq_{p} X$.

- How do we show that there is a problem that is NP-complete?
- Suppose by some magic we have shown that SAT is NP-complete, does that mean that there are more NP-complete problems?

Computational Intractability

NP, NP-hard, NP-complete

Definition (NP)

A problem is said to be in NP iff there exists an efficient certification algorithm for the problem.

Definition (P)

A problem is said to be in P iff there exists an efficient algorithm that solves the problem.

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties hold:
(1) $X \in \mathrm{NP}$.
(2) For all $Y \in$ NP, $Y \leq_{p} X$.

Theorem (Cook-Levin Theorem)
3-SAT is NP-complete.

Computational Intractability

NP, NP-hard, NP-complete

Definition (NP-complete)

A problem X is said to be NP-complete iff the following two properties hold:
(1) $X \in N P$.
(2) For all $Y \in N P, Y \leq_{p} X$.

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

- Claim 1: CIRCUIT-SAT is NP-complete.
- Claim 2: CIRCUIT-SAT \leq_{p} 3-SAT.

Computational Intractability

NP, NP-hard, NP-complete

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

- Claim 1: CIRCUIT-SAT is NP-complete.
- Claim 2: CIRCUIT-SAT \leq_{p} 3-SAT.
- Circuit: A directed acyclic graph where each node is either:
- Constant nodes: Labeled $0 / 1$
- Input nodes: These denote the variables
- Gates: AND, OR, and NOT

There is a single output node.

Computational Intractability

NP, NP-hard, NP-complete

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

- Claim 1: CIRCUIT-SAT is NP-complete.
- Claim 2: CIRCUIT-SAT $\leq_{p} 3$-SAT.
- Circuit: A directed acyclic graph where each node is either:
- Constant nodes: Labeled $0 / 1$
- Input nodes: These denote the variables
- Gates: AND, OR, and NOT

There is a single output node.

Problem

CIRCUIT-SAT: Given a circuit, determine if there is an input such that the output of the circuit is 1 .

Computational Intractability

NP, NP-hard, NP-complete

Theorem (Cook-Levin Theorem)

3-SAT is NP-complete.

Proof sketch

- Claim 1: CIRCUIT-SAT is NP-complete.
- Fact: For every algorithm that runs in time polynomial in the input size n, there is an equivalent circuit of size polynomial in n.
- Given an input instance s of any NP problem X, consider the equivalent circuit for the efficient certifier of X. The input gates of this circuit has s and t.
- $s \in X$ if and only if this circuit is satisfiable.
- Claim 2: CIRCUIT-SAT $\leq_{p} 3$-SAT.
- For any circuit, we can write an equivalent 3-SAT formula.

Problem

CIRCUIT-SAT: Given a circuit, determine if there is an input such that the output of the circuit is 1 .

End

