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Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 10
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs
Lions, Sunrisers Vs Daredevils
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Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 10
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs
Lions, Sunrisers Vs Daredevils

A team is said to be eliminated if it cannot end with
maximum number of wins.

Can we say that Supergiants have been eliminated give the
current scenario?
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Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 9
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
4 games between Daredevils and Sunrisers.

Can we say that Supergiants have been eliminated give the
current scenario?
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Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins
denoted by w(i).There are G (i , j) games yet to be played between
team i and j . Design an algorithm to determine whether a given
team x has been eliminated.
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Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Consider the following flow network

Figure: Team x can end with at most m wins, i.e., m = w(x) +
∑

j G (x , j)
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Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Figure: Team x can end with at most m wins, i.e., m = w(x) +
∑

j G (x , j)
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Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Comment: If we can somehow find a subset T of teams (not
including x) such that∑

i∈T w(i) +
∑

i<j and i ,j∈T G (i , j) > m · |T |. Then we have a
witness to the fact that x has been eliminated.
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Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Comment: If we can somehow find a subset T of teams (not
including x) such that∑

i∈T w(i) +
∑

i<j and i ,j∈T G (i , j) > m · |T |. Then we have a
witness to the fact that x has been eliminated.
Can we find such a subset T?
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Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof.

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
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Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.
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Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.

Claim 1.2.2: If both vi and vj are in A, then vij is in A.
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Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.

Claim 1.2.2: If both vi and vj are in A, then vij is in A.

Let T be the set of teams such that i ∈ T iff vi ∈ A.
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Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.

Claim 1.2.2: If both vi and vj are in A, then vij is in A.

Let T be the set of teams such that i ∈ T iff vi ∈ A. Then we have:

C (A,B) =
∑
i∈T

(m − w(i)) +
∑
{i,j}6⊂T

G (i , j) < g∗

⇒ m · |T | −
∑
i∈T

w(i) + (g∗ −
∑
{i,j}⊂T

G (i , j)) < g∗

⇒
∑
i∈T

w(i) +
∑
{i,j}⊂T

G (i , j) > m · |T |
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Max flow revisited: Scaling max flow
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Network Flow
Maximum flow

Let C =
∑

e out of s c(e).
The running time of the Ford-Fulkerson algorithm is
O(m · C ).
C could be very large compared to the size of the graph.

For the example below, we might get a better running time if
we could hide the edge with small capacity when looking for an
augmenting path.

General idea: Use all edges with large capacities before
considering edges with smaller capacity.
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Network Flow
Maximum flow

For an s-t flow and a positive integer ∆, let Gf (∆) denote the
subgraph of the residual graph Gf that consists of all vertices but
only edges with residual capacity of at least ∆.
Idea: Instead of finding augmenting paths in Gf , we will find
augmenting paths in Gf (∆) for smaller and smaller values of ∆.

Algorithm

Scaling-Max-Flow

- Start with an s-t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s-t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )
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Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.
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Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
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Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).
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Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).
Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f ) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f ) + m ·∆.
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Network Flow
Maximum flow

Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f ) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f ) + m ·∆.

Proof of Claim 4.

Let A be the set of vertices that are reachable from s in Gf (∆) (see
figure below). Then we have

v(f ) =
∑

e out of A

f (e)−
∑

e into A

f (e)

≥
∑

e out of A

(c(e)−∆)−
∑

e into A

∆

≥ c(A,B)−m ·∆.
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Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).
Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f ) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f ) + m ·∆.

Claim 5: The total number of iterations of the inner while loop is
at most 2m.
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Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f )

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).
Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f ) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f ) + m ·∆.

Claim 5: The total number of iterations of the inner while loop is
at most 2m.
Claim 6: The running time of Scaling-Max-Flow algorithm is
O(m2 · logC ).
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More applications
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Network Flow
Feasible Circulation

Given a weighted directed graph representing a transportation
network.

There are multiple supply nodes in the graph denoting the
places that has a factory for some product.

There are multiple demand nodes denoting the consumption
points.

Each supply node v has an associated supply value s(v)
denoting the amount the product it can supply.

Each demand node v has a similar demand value d(v).

Question: Is there a way to ship product such that all demand
and supply goals are met?
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Network Flow
Feasible Circulation

Problem

Given a directed graph G with integer edge capacities. For each node
v , there is an associated demand value t(v) denoting the demand at
the node (for supply nodes this is −s(v), for demand nodes d(v), for
other nodes 0). Find whether there exists a flow f such that for all
nodes v :

f in(v)− f out(v) = t(v)

and the capacity constraints are met. Such a flow is called a feasible
circulation.
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Network Flow
Feasible Circulation

Problem

Given a directed graph G with integer edge capacities. For each node
v , there is an associated demand value t(v) denoting the demand at
the node (for supply nodes this is −s(v), for demand nodes d(v), for
other nodes 0). Find whether there exists a flow f such that for all
nodes v :

f in(v)− f out(v) = t(v)

and the capacity constraints are met. Such a flow is called a feasible
circulation.

Claim 1: For a feasible circulation to exist,
∑

v t(v) = 0. (That
means supply equals the demand)
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Network Flow
Feasible Circulation

Claim 1: For a feasible circulation to exist,
∑

v t(v) = 0. (That
means supply equals the demand)
Consider the flow network as shown in the diagram below and let
D =

∑
demand node v d(v).

Figure: Connect source to supply nodes and demand nodes to sink.
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Network Flow
Feasible Circulation

Claim 1: For a feasible circulation to exist,
∑

v t(v) = 0. (That
means supply equals the demand)
Consider the flow network G ′ as shown in the diagram below and
let D =

∑
demand node v d(v).

Claim 2: There is a feasible circulation in G iff the maximum flow
in the network G ′ is D.

Figure: Connect source to supply nodes and demand nodes to sink.
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Network Flow
Feasible Circulation

Claim 1: For a feasible circulation to exist,
∑

v t(v) = 0. (That
means supply equals the demand)
Consider the flow network G ′ as shown in the diagram below and
let D =

∑
demand node v d(v).

Claim 2: There is a feasible circulation in G iff the maximum flow
in the network G ′ is D.

(if) Consider the max-flow and remove s, t.
(only if) Extend the feasible circulation in the network.

Figure: Connect source to supply nodes and demand nodes to sink.
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Network Flow
Feasible Circulation with Lower Bounds

Problem

Given a directed graph G with integer edge capacities c(e) and lower
bounds l(e). For each node v , there is an associated demand value
t(v) denoting the demand at the node (for supply nodes this is −s(v),
for demand nodes d(v), for other nodes 0). Find whether there exists
a flow f such that for all nodes v :

f in(v)− f out(v) = t(v)

and the following capacity constraints are met. For every edge e:

l(e) ≤ f (e) ≤ c(e)
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Network Flow
Feasible Circulation with Lower Bounds

Consider a flow f such that for all edge e, f (e) = l(e).
For each vertex v , let r(v) = f in(v)− f out(v).
Construct a new graph G ′:

Each edge e in G ′ has capacity c(e)− l(e).
Each vertex v in G ′ has a demand t(v)− r(v).

Idea: Solve the feasible circulation problem without lower bounds
on G ′.
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Network Flow
Feasible Circulation with Lower Bounds

Consider a flow f such that for all edge e, f (e) = l(e).
For each vertex v , let r(v) = f in(v)− f out(v).
Construct a new graph G ′:

Each edge e in G ′ has capacity c(e)− l(e).
Each vertex v in G ′ has a demand t(v)− r(v).

Idea: Solve the feasible circulation problem without lower bounds
on G ′.
Claim: There is a feasible circulation (with lower bounds) in G iff
there is a feasible circulation in G ′.
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Network Flow
Feasible Circulation with Lower Bounds

Claim: There is a feasible circulation (with lower bounds) in G iff
there is a feasible circulation in G ′.

(if) Let f ′ be a feasible circulation in G ′. Consider f where
f (e) = f ′(e) + l(e). Is f a feasible circulation in G?
(only if) Let f be a feasible circulation in G . Consider f ′ where
f ′(e) = f (e)− l(e). Is f ′ a feasible circulation in G ′?
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Network Flow
Survey Design

Problem

There are n customers and m products. Each customer i is supposed
to review between c(i) and c ′(i) products that he has bought in the
past and each product j should be reviewed by between p(j) and p′(j)
customers. Find a way to do the survey.
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Network Flow
Survey Design

Problem

There are n customers and m products. Each customer i is supposed
to review between c(i) and c ′(i) products that he has bought in the
past and each product j should be reviewed by between p(j) and p′(j)
customers. Find a way to do the survey.

Consider the flow network set up below.
Claim: The survey is feasible iff there is a feasible circulation
(with lower bounds) in the network.
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Network Flow
Image Segmentation

You are given an image as a 2-D matrix of pixels.
We want to determine the foreground and the background
pixels.
Each pixel i , has an integer a(i) associated with it denoting
how likely it is to be a foreground pixel.
Similarly, each pixel i , has an integer b(i) associated with it
denoting how likely it is to be a foreground pixel.
For neighboring pixels, i and j , there is an associated penalty
p(i , j) with putting i and j in different sets.

Problem

Find a partition of the pixels into F and B such that:∑
i∈F

a(i) +
∑
i∈B

b(i)−
∑

i and j are neighbors but in different sets

p(i , j)

is maximized.
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Network Flow
Image Segmentation

Problem

Find a partition of the pixels into F and B such that:∑
i∈F

a(i) +
∑
i∈B

b(i)−
∑

i and j are neighbors but in different sets

p(i , j)

is maximized.
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Network Flow
Image Segmentation

Problem

Find a partition of the pixels into F and B such that:∑
i∈F

a(i) +
∑
i∈B

b(i)−
∑

i and j are neighbors but in different sets

p(i , j)

is maximized.

Consider the network below:

Figure: Idea: The s-t min-cut in the above network gives the optimal
partition.
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Network Flow
Image Segmentation

Let C =
∑

i a(i) +
∑

i b(i).
Claim 1: Consider a partition (F ,B) of the set of pixels. Let S = F ∪ {s},
T = B ∪{t}. Then the capacity of the s-t cut (S ,T ) in the network is given by

C (S ,T ) = C−

∑
i∈F

a(i) +
∑
i∈B

b(j)−
∑

i and j are neighbors but in different sets

p(i , j)
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Network Flow
Image Segmentation

Let C =
∑

i a(i) +
∑

i b(i).
Claim 1: Consider a partition (F ,B) of the set of pixels. Let S = F ∪ {s},
T = B ∪{t}. Then the capacity of the s-t cut (S ,T ) in the network is given by

C (S ,T ) = C−

∑
i∈F

a(i) +
∑
i∈B

b(j)−
∑

i and j are neighbors but in different sets

p(i , j)


Claim 2: Consider an s-t cut (S ,T ) in the network. Let F = A \ {s},
B = T \ {t}. Then

C (S ,T ) = C−

∑
i∈F

a(i) +
∑
i∈B

b(j)−
∑

i and j are neighbors but in different sets

p(i , j)
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Network Flow
Image Segmentation

Let C =
∑

i a(i) +
∑

i b(i).
Claim 1: Consider a partition (F ,B) of the set of pixels. Let S = F ∪ {s},
T = B ∪{t}. Then the capacity of the s-t cut (S ,T ) in the network is given by

C (S ,T ) = C−

∑
i∈F

a(i) +
∑
i∈B

b(j)−
∑

i and j are neighbors but in different sets

p(i , j)


Claim 2: Consider an s-t cut (S ,T ) in the network. Let F = A \ {s},
B = T \ {t}. Then

C (S ,T ) = C−

∑
i∈F

a(i) +
∑
i∈B

b(j)−
∑

i and j are neighbors but in different sets

p(i , j)


Form Claims 1 and 2, we get that if (S ,T ) is a s-t min-cut in the network,
then F = S \ {s},B = T \ {t} is an optimal solution to the Image
Segmentation problem

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms



End
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