
COL351: Analysis and Design of Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Applications of Network Flow

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 10
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs
Lions, Sunrisers Vs Daredevils

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 10
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
Daredevils Vs Sunrisers, Sunrisers Vs Lions, Daredevils Vs
Lions, Sunrisers Vs Daredevils

A team is said to be eliminated if it cannot end with
maximum number of wins.

Can we say that Supergiants have been eliminated give the
current scenario?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Suppose there are four teams in IPL with their current
number of wins:

Daredevils: 10
Sunrisers: 10
Lions: 9
Supergiants: 8

There are 7 more games to be played. These are as follows:

Supergiants plays all other 3 teams.
4 games between Daredevils and Sunrisers.

Can we say that Supergiants have been eliminated give the
current scenario?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins
denoted by w(i).There are G (i , j) games yet to be played between
team i and j . Design an algorithm to determine whether a given
team x has been eliminated.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Consider the following flow network

Figure: Team x can end with at most m wins, i.e., m = w(x) +
∑

j G (x , j)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Figure: Team x can end with at most m wins, i.e., m = w(x) +
∑

j G (x , j)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Comment: If we can somehow find a subset T of teams (not
including x) such that∑

i∈T w(i) +
∑

i<j and i ,j∈T G (i , j) > m · |T |. Then we have a
witness to the fact that x has been eliminated.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Problem

There are n teams. Each team i has a current number of wins denoted
by w(i).There are G (i , j) games yet to be played between team i and
j . Design an algorithm to determine whether a given team x has been
eliminated.

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Comment: If we can somehow find a subset T of teams (not
including x) such that∑

i∈T w(i) +
∑

i<j and i ,j∈T G (i , j) > m · |T |. Then we have a
witness to the fact that x has been eliminated.
Can we find such a subset T?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof.

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.

Claim 1.2.2: If both vi and vj are in A, then vij is in A.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.

Claim 1.2.2: If both vi and vj are in A, then vij is in A.

Let T be the set of teams such that i ∈ T iff vi ∈ A.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Team Elimination

Claim 1: Team x has been eliminated iff the maximum flow in
the network is < g∗, where g∗ =

∑
i ,j s.t. x /∈{i ,j} G (i , j).

Proof of Claim 1

Claim 1.1: If x has been eliminated, then the max flow in the
network is < g∗.
Claim 1.2: If the max flow is < g∗, then team x has been
eliminated.

Proof of Claim 1.2

Consider any s-t min-cut (A,B) in the graph.

Claim 1.2.1: If vij is in A, then both vi and vj are in A.

Claim 1.2.2: If both vi and vj are in A, then vij is in A.

Let T be the set of teams such that i ∈ T iff vi ∈ A. Then we have:

C (A,B) =
∑
i∈T

(m − w(i)) +
∑
{i,j}6⊂T

G (i , j) < g∗

⇒ m · |T | −
∑
i∈T

w(i) + (g∗ −
∑
{i,j}⊂T

G (i , j)) < g∗

⇒
∑
i∈T

w(i) +
∑
{i,j}⊂T

G (i , j) > m · |T |

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Max flow revisited: Scaling max flow

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

Let C =
∑

e out of s c(e).
The running time of the Ford-Fulkerson algorithm is
O(m · C).
C could be very large compared to the size of the graph.

For the example below, we might get a better running time if
we could hide the edge with small capacity when looking for an
augmenting path.

General idea: Use all edges with large capacities before
considering edges with smaller capacity.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

For an s-t flow and a positive integer ∆, let Gf (∆) denote the
subgraph of the residual graph Gf that consists of all vertices but
only edges with residual capacity of at least ∆.
Idea: Instead of finding augmenting paths in Gf , we will find
augmenting paths in Gf (∆) for smaller and smaller values of ∆.

Algorithm

Scaling-Max-Flow

- Start with an s-t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s-t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f)

Claim 1: The algorithm returns max. flow on termination.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f)

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f)

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f)

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).
Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f) + m ·∆.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f) + m ·∆.

Proof of Claim 4.

Let A be the set of vertices that are reachable from s in Gf (∆) (see
figure below). Then we have

v(f) =
∑

e out of A

f (e)−
∑

e into A

f (e)

≥
∑

e out of A

(c(e)−∆)−
∑

e into A

∆

≥ c(A,B)−m ·∆.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f)

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).
Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f) + m ·∆.

Claim 5: The total number of iterations of the inner while loop is
at most 2m.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Maximum flow

Algorithm

Scaling-Max-Flow

- Start with an s − t flow such that for all e, f (e) = 0
- ∆← largest power of 2 smaller than C
- While (∆ ≥ 1)

- While there is an s − t path P in Gf (∆)
- Augment flow along an augmenting path and

let f ′ be the resulting flow
- Update f to f ′ and Gf (∆) to Gf ′(∆)

- ∆← ∆/2
- return(f)

Claim 1: The algorithm returns max. flow on termination.
Claim 2: The outer while loop runs for at most (1 + dlogCe)
steps.
Claim 3: Each augmentation increases the flow by at least ∆
(whatever the current value of ∆ is).
Claim 4: Let f be the flow at the end of a ∆-scaling phase. Then
there is an s − t cut (A,B) such that c(A,B) ≤ v(f) + m ·∆.

Corollary: The max flow in the graph has value at most
v(f) + m ·∆.

Claim 5: The total number of iterations of the inner while loop is
at most 2m.
Claim 6: The running time of Scaling-Max-Flow algorithm is
O(m2 · logC).

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

More applications

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Feasible Circulation

Given a weighted directed graph representing a transportation
network.

There are multiple supply nodes in the graph denoting the
places that has a factory for some product.

There are multiple demand nodes denoting the consumption
points.

Each supply node v has an associated supply value s(v)
denoting the amount the product it can supply.

Each demand node v has a similar demand value d(v).

Question: Is there a way to ship product such that all demand
and supply goals are met?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Feasible Circulation

Problem

Given a directed graph G with integer edge capacities. For each node
v , there is an associated demand value t(v) denoting the demand at
the node (for supply nodes this is −s(v), for demand nodes d(v), for
other nodes 0). Find whether there exists a flow f such that for all
nodes v :

f in(v)− f out(v) = t(v)

and the capacity constraints are met. Such a flow is called a feasible
circulation.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Feasible Circulation

Problem

Given a directed graph G with integer edge capacities. For each node
v , there is an associated demand value t(v) denoting the demand at
the node (for supply nodes this is −s(v), for demand nodes d(v), for
other nodes 0). Find whether there exists a flow f such that for all
nodes v :

f in(v)− f out(v) = t(v)

and the capacity constraints are met. Such a flow is called a feasible
circulation.

Claim 1: For a feasible circulation to exist,
∑

v t(v) = 0. (That
means supply equals the demand)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Feasible Circulation

Claim 1: For a feasible circulation to exist,
∑

v t(v) = 0. (That
means supply equals the demand)
Consider the flow network as shown in the diagram below and let
D =

∑
demand node v d(v).

Figure: Connect source to supply nodes and demand nodes to sink.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Feasible Circulation

Claim 1: For a feasible circulation to exist,
∑

v t(v) = 0. (That
means supply equals the demand)
Consider the flow network G ′ as shown in the diagram below and
let D =

∑
demand node v d(v).

Claim 2: There is a feasible circulation in G iff the maximum flow
in the network G ′ is D.

Figure: Connect source to supply nodes and demand nodes to sink.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Feasible Circulation

Claim 1: For a feasible circulation to exist,
∑

v t(v) = 0. (That
means supply equals the demand)
Consider the flow network G ′ as shown in the diagram below and
let D =

∑
demand node v d(v).

Claim 2: There is a feasible circulation in G iff the maximum flow
in the network G ′ is D.

(if) Consider the max-flow and remove s, t.
(only if) Extend the feasible circulation in the network.

Figure: Connect source to supply nodes and demand nodes to sink.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Feasible Circulation with Lower Bounds

Problem

Given a directed graph G with integer edge capacities c(e) and lower
bounds l(e). For each node v , there is an associated demand value
t(v) denoting the demand at the node (for supply nodes this is −s(v),
for demand nodes d(v), for other nodes 0). Find whether there exists
a flow f such that for all nodes v :

f in(v)− f out(v) = t(v)

and the following capacity constraints are met. For every edge e:

l(e) ≤ f (e) ≤ c(e)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Feasible Circulation with Lower Bounds

Consider a flow f such that for all edge e, f (e) = l(e).
For each vertex v , let r(v) = f in(v)− f out(v).
Construct a new graph G ′:

Each edge e in G ′ has capacity c(e)− l(e).
Each vertex v in G ′ has a demand t(v)− r(v).

Idea: Solve the feasible circulation problem without lower bounds
on G ′.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Feasible Circulation with Lower Bounds

Consider a flow f such that for all edge e, f (e) = l(e).
For each vertex v , let r(v) = f in(v)− f out(v).
Construct a new graph G ′:

Each edge e in G ′ has capacity c(e)− l(e).
Each vertex v in G ′ has a demand t(v)− r(v).

Idea: Solve the feasible circulation problem without lower bounds
on G ′.
Claim: There is a feasible circulation (with lower bounds) in G iff
there is a feasible circulation in G ′.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Feasible Circulation with Lower Bounds

Claim: There is a feasible circulation (with lower bounds) in G iff
there is a feasible circulation in G ′.

(if) Let f ′ be a feasible circulation in G ′. Consider f where
f (e) = f ′(e) + l(e). Is f a feasible circulation in G?
(only if) Let f be a feasible circulation in G . Consider f ′ where
f ′(e) = f (e)− l(e). Is f ′ a feasible circulation in G ′?

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Survey Design

Problem

There are n customers and m products. Each customer i is supposed
to review between c(i) and c ′(i) products that he has bought in the
past and each product j should be reviewed by between p(j) and p′(j)
customers. Find a way to do the survey.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Survey Design

Problem

There are n customers and m products. Each customer i is supposed
to review between c(i) and c ′(i) products that he has bought in the
past and each product j should be reviewed by between p(j) and p′(j)
customers. Find a way to do the survey.

Consider the flow network set up below.
Claim: The survey is feasible iff there is a feasible circulation
(with lower bounds) in the network.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Image Segmentation

You are given an image as a 2-D matrix of pixels.
We want to determine the foreground and the background
pixels.
Each pixel i , has an integer a(i) associated with it denoting
how likely it is to be a foreground pixel.
Similarly, each pixel i , has an integer b(i) associated with it
denoting how likely it is to be a foreground pixel.
For neighboring pixels, i and j , there is an associated penalty
p(i , j) with putting i and j in different sets.

Problem

Find a partition of the pixels into F and B such that:∑
i∈F

a(i) +
∑
i∈B

b(i)−
∑

i and j are neighbors but in different sets

p(i , j)

is maximized.
Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Image Segmentation

Problem

Find a partition of the pixels into F and B such that:∑
i∈F

a(i) +
∑
i∈B

b(i)−
∑

i and j are neighbors but in different sets

p(i , j)

is maximized.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Image Segmentation

Problem

Find a partition of the pixels into F and B such that:∑
i∈F

a(i) +
∑
i∈B

b(i)−
∑

i and j are neighbors but in different sets

p(i , j)

is maximized.

Consider the network below:

Figure: Idea: The s-t min-cut in the above network gives the optimal
partition.

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Image Segmentation

Let C =
∑

i a(i) +
∑

i b(i).
Claim 1: Consider a partition (F ,B) of the set of pixels. Let S = F ∪ {s},
T = B ∪{t}. Then the capacity of the s-t cut (S ,T) in the network is given by

C (S ,T) = C−

∑
i∈F

a(i) +
∑
i∈B

b(j)−
∑

i and j are neighbors but in different sets

p(i , j)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Image Segmentation

Let C =
∑

i a(i) +
∑

i b(i).
Claim 1: Consider a partition (F ,B) of the set of pixels. Let S = F ∪ {s},
T = B ∪{t}. Then the capacity of the s-t cut (S ,T) in the network is given by

C (S ,T) = C−

∑
i∈F

a(i) +
∑
i∈B

b(j)−
∑

i and j are neighbors but in different sets

p(i , j)

Claim 2: Consider an s-t cut (S ,T) in the network. Let F = A \ {s},
B = T \ {t}. Then

C (S ,T) = C−

∑
i∈F

a(i) +
∑
i∈B

b(j)−
∑

i and j are neighbors but in different sets

p(i , j)

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

Network Flow
Image Segmentation

Let C =
∑

i a(i) +
∑

i b(i).
Claim 1: Consider a partition (F ,B) of the set of pixels. Let S = F ∪ {s},
T = B ∪{t}. Then the capacity of the s-t cut (S ,T) in the network is given by

C (S ,T) = C−

∑
i∈F

a(i) +
∑
i∈B

b(j)−
∑

i and j are neighbors but in different sets

p(i , j)

Claim 2: Consider an s-t cut (S ,T) in the network. Let F = A \ {s},
B = T \ {t}. Then

C (S ,T) = C−

∑
i∈F

a(i) +
∑
i∈B

b(j)−
∑

i and j are neighbors but in different sets

p(i , j)

Form Claims 1 and 2, we get that if (S ,T) is a s-t min-cut in the network,
then F = S \ {s},B = T \ {t} is an optimal solution to the Image
Segmentation problem

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

End

Ragesh Jaiswal, CSE, IITD COL351: Analysis and Design of Algorithms

