COL702: Advanced Data Structures and

Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Course Overview

@ Graph Algorithms

@ Algorithm Design Techniques:
Greedy Algorithms

Divide and Conquer

Dynamic Programming
Network Flows

®© 6 o

@ Hill-climbing and reduction

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow )

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Reduction

@ Reduction

@ We will obtain an algorithm A for a Network Flow problem
using Hill-climbing.

@ Given a new problem, we will rephrase this problem as a
Network Flow problem.

© We will then use algorithm A to solve the rephrased problem
and obtain a solution.

@ Finally, we build a solution for the original problem using the
solution to the rephrased problem.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Hill-climbing

o Hill-climbing optimization strategy:
o Start with any solution that meets the constraints.
o Repeat until there is no simple way to improve the solution:

@ Try to improve the solution via a “local” change, still
satisfying the constraints.

o Output the solution.
@ A few points to note about Hill-climbing:

e More often than not hill-climbing does NOT find an optimal
solution, just a “local optimum”

o Often used as an approximation algorithm or heuristic.

o Also called gradient ascent, interior point method.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Hill-climbing

o Hill-climbing optimization strategy:

o Start with any solution that meets the constraints.

o Repeat until there is no simple way to improve the solution:

o Try to improve the solution via a “local” change, still satisfying
the constraints.

o Output the solution.
@ Local optima:

o One can view the set of all possible solutions as a high-dimensional

region. The objective function then gives a height for each point.

o We would like to find the highest point.

o But we usually find a local optima, a point higher than others near
it.
So, while global optima are local optima, the reverse is not always
true.

Global Optimum (best choice;

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Introduction

@ We want to model various kinds of networks using graphs and
then solve real world problems with respect to these networks
by studying the underlying graph.

@ One problem that arises in network design is routing “flows”
within the network.

e Transportation Network: Vertices are cities and edges denote
highways. Every highway has certain traffic capacity. We are
interested in knowing the maximum amount commodity that
can be shipped from a source city to a destination city.

o Computer Networks: Edges are links and vertices are switches.
Each link has some capacity of carrying packets. Again, we are
interested in knowing how much traffic can a source node send
to a destination node.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Introduction

@ To model these problems, we consider weighted, directed
graph G = (V, E) with the following properties:

o Capacity: Associated with each edge e is a capacity that is a
non-negative integer denoted by c(e).

o Source node: There is a source node s with no in-coming
edges.

o Sink node: There is a sink node t with no out-going edges.
All other nodes are called internal nodes.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Introduction

@ To model these problems, we consider weighted, directed
graph G = (V, E) with the following properties:

o Capacity: Associated with each edge e is a capacity that is a
non-negative integer denoted by c(e).

o Source node: There is a source node s with no in-coming
edges.

o Sink node: There is a sink node t with no out-going edges.
All other nodes are called internal nodes.

@ Given such a graph, an “s — t flow" in the graph is a function
f that maps the edges to non-negative real numbers such that
the following properties are satisfied:

(a) Capacity constraint: For every edge e, 0 < f(e) < c(e).
(b) Flow conservation: For every internal node v:

Z f(e) = Z f(e)

e into v e out of v

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms




Network Flow

Maximum flow

Problem

Find an s — t flow f in a given network graph such that the following
quantity is maximized:

o Example:

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Problem

Find an s — t flow f in a given network graph such that the following
quantity is maximized:

v(f)= > fle)

e out of s

o Example:

Figure: Routing 20 units of flow from s to t. Is it possible to “push more
flow"?

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Problem

Find an s — t flow f in a given network graph such that the following
quantity is maximized:

v(f)= Y fle)

e out of s

o Example:

Figure: We should reset initial flow (u, v) to 10.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Problem

Find an s — t flow f in a given network graph such that the following
quantity is maximized:

v(f)= Y f(e)

e out of s

o Example:

Figure: We should reset initial flow (u, v) to 10. Maximum flow from s is 30.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Approach

o We will iteratively build larger s — t flows.

o Given an s — t flow f, we will build a residual graph Gr that will
allow us to reset flows along some of the edges.

o We will find an augmenting path in the residual graph Gr, push
some flow along this path and update the flow f’.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Approach

o We will iteratively build larger s — t flows.

@ Given an s — t flow f, we will build a residual graph Gr that will
allow us to reset flows along some of the edges.

o We will find an augmenting path in the residual graph G¢, push
some flow along this path and update the flow f’.

Figure: Graph Gr. (f(s, u) = 20, f(s, v) = 0, f(u, v) = 20, f(u, t) = 0, f(v, t)
=20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Approach

o We will iteratively build larger s — t flows.

o Given an s — t flow f, we will build a residual graph Gr that will
allow us to reset flows along some of the edges.

o We will find an augmenting path in the residual graph Gf, push
some flow along this path and update the flow f'.

Figure: Augmenting path. (f'(s, u) = 20, f'(s, v) = 10, f'(u, v) = 10, f'(u, t)
=10, f(v, t) = 20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Approach

o We will iteratively build larger s — t flows.

o Given an s — t flow f, we will build a residual graph Gf that will
allow us to reset flows along some of the edges.

o We will find an augmenting path in the residual graph Gr, push
some flow along this path and update the flow f’.

Figure: Graph Gf.. (f'(s, u) = 20, f'(s, v) = 10, f'(u, v) = 10, f'(u, t) = 10,
f(v, t) = 20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

@ Residual graph Gf:
o Forward edges: For every edge e in the original graph, there are
(c(e) — f(e)) units of more flow we can send along that edge. So,
we set the weight of this edge (c(e) — f(e)).
o Backward edges: For every edge e = (u, v) in the original graph,
there are f(e) units of flow that we can undo. So we add a reverse
edge e’ = (v, u) and set the weight of e’ to f(e).

Figure: Graph Gr. (f(s, u) = 20, f(s, v) = 0, f(u, v) = 20, f(u, t) = 0, f(v, t)
=20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

o Augmenting flow in G¢:

o Let P be a simple s — t path in Gf. Note that this contains
forward and backward edges.

Let enin be an edge in the path P with minimum weight wp;,

For every forward edge e in P, set f'(e) < f(€) + Wmin

For every backward edge (x,y) in P, set f'(y,x) + f(y,X) — Wmin
For all remaining edges e, f'(e) = f(e)

Figure: Augmenting path. (f'(s, u) = 20, f'(s, v) = 10, f'(u, v) = 10, f'(u, t)
=10, f'(v, t) = 20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

o Claim 1: f"isan s — t flow.

@ Proof sketch:
o Capacity constraint for each edge is satisfied.
o Flow conservation at each vertex is satisfied.

Figure: Augmenting path. (f'(s, u) = 20, f'(s, v) = 10, f'(u, v) = 10, f'(u, t)
=10, f'(v, t) = 20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Algorithm

Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in Gr
- Augment flow along an s — t path and let ' be resulting flow
- Update f to f" and Gr to G
- return(f)

@ What is the running time of the above algorithm?

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Algorithm

Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in Gr
- Augment flow along an s — t path and let ' be resulting flow
- Update f to f" and Gr to G
- return(f)

@ What is the running time of the above algorithm?
o Claim 2: v(f') > v(f).

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Algorithm

Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in Gr
- Augment flow along an s — t path and let ' be resulting flow
- Update f to f" and Gr to G
- return(f)

@ What is the running time of the above algorithm?
o Claim 2: v(f') > v(f).
o Claim 3: The while loop runs for at most C =3"__ . .. c(e)
iterations.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in Gr
- Augment flow along an s — t path and let ' be resulting flow
- Update f to f" and Gr to G
- return(f)

@ What is the running time of the above algorithm?
o Claim 2: v(f') > v(f).
o Claim 3: The while loop runs for at most C =3"__ . .. c(e)
iterations.
o Claim 4: Finding augmenting path and augmenting flow along this
path takes O(m) time.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in Gr
- Augment flow along an s — t path and let ' be resulting flow
- Update f to f" and Gr to G
- return(f)

@ What is the running time of the above algorithm? O(m - C)
o Claim 2: v(f') > v(f).
o Claim 3: The while loop runs for at most C =3"__ . .. c(e)
iterations.
o Claim 4: Finding augmenting path and augmenting flow along this
path takes O(m) time.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in Gf
- Augment flow along an s — t path and let ' be resulting flow
- Update f to ' and Gf to G
- return(f)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in G
- Augment flow along an s — t path and let ' be resulting flow
- Update f to ' and Gf to G¢
- return(f)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Algorithm
Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in G
- Augment flow along an s — t path and let ' be resulting flow
- Update f to f’ and Gf to Gg
- return(f)

Figure: Graph Gf, where f(s,u) =0,f(s,v) =7,f(v,u) =0,f(v,q) =
7,f(u,p) =0,f(p,v) =0,f(p,t) =7,f(q,p) =7,f(q,t) =0

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Algorithm
Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in Gf
- Augment flow along an s — t path and let f’ be resulting flow
- Update f to f' and G to Gg
- return(f)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Algorithm
Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in G
- Augment flow along an s — t path and let ' be resulting flow
- Update f to f’ and Gf to G¢
- return(f)

Figure: Graph Gf, where f(s,u) =0,f(s,v) =11,f(v,u) =0,f(v,q) =
11, /(u,p) = 0, (p, v) = 0, £(p, t) = 7, £(d,p) = T, 1(q, t) = 4

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Algorithm
Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in Gr
- Augment flow along an s — t path and let ' be resulting flow
- Update f to f’ and Gr to Gg
- return(f)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Algorithm
Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in G
- Augment flow along an s — t path and let ' be resulting flow
- Update f to f" and G to G¢
- return(f)

Figure: Graph Gf, where f(s, u) =12,f(s,v) = 11,f(v,u) =0,f(v,q) =
11, f(u,p) = 12, f(p,v) = 0,f(p, t) = 19,f(q,p) = 7, f(q.t) = 4

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

Algorithm

Ford-Fulkerson
- Start with a flow f such that f(e) =0
- While there is an s — t path P in Gr
- Augment flow along an s — t path and let ' be resulting flow
- Update f to f" and Gr to G
- return(f)

@ How do we prove that the flow returned by the Ford-Fulkerson
algorithm is the maximum flow?

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", . ors f(€).

Definition (£ and f°!t)

Let S be a subset of vertices and f be a flow. Then

Fr(S)y= > f(e) and f(S)= Y f(e)

e into S e out of S

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", j.t o s F(€)-

Definition (" and f°Ut)

Let S be a subset of vertices and f be a flow. Then

fr(S)= D fle) and ()= 3 f(e)

e into S e out of S

Definition (s — t cut)

A partition of vertices (A, B) is called an s — t cut iff A contains s and
B contains t.

Definition (Capacity of s — t cut)

The capacity of an s — t cut (A, B) is defined as
C(A’ B) = Ze out of A C(e)'

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms

<




Network Flow
Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", . o s f(€).

o Claim 1.1: For any s — t cut (A, B) and any s — ¢ flow f,
v(f) = fOUt(A) — Fi"(A).

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", .. o< f(€).

o Claim 1.1: For any s — t cut (A, B) and any s — ¢ flow f,
v(f) = fOUt(A) — Fi"(A).

Proof of claim 1.1.

v(f) = fout({s}) — f_i”({s}) and for all other nodes
veAfoUt({v}) — f"({v})=0. So,

v(F) =D (F({v}) = F({v})) = F(A) — F7(A).

vEA

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", . ors f(€).

o Claim 1.1: For any s-t cut (A, B) and any s-t flow f,
v(f) = fOUt(A) — Fi"(A).

o Claim 1.2: Let f be any s-t flow and (A, B) be any s-t cut. Then
v(f) < C(A, B).

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", . o s f(€).

o Claim 1.1: For any s-t cut (A, B) and any s-t flow f,
v(f) = fOUt(A) — Fi"(A).

o Claim 1.2: Let f be any s-t flow and (A, B) be any s-t cut. Then
v(f) < C(A, B).

Proof of claim 1.2.
v(f) = fOUt(A) — FiN(A) < FoUt(A) < C(A, B).

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

@ Theorem 1: Let f be the flow returned by the Ford-Fulkerson
algorithm. Then f maximizes v(f) =", . o s f(€).

o Claim 1.1: For any s-t cut (A, B) and any s-t flow f,
v(f) = fOUt(A) — Fi"(A).

o Claim 1.2: Let f be any s-t flow and (A, B) be any s-t cut. Then
v(f) < C(A, B).

o Claim 1.3: Let f be an s-t flow such that there is no s-t path in
Gr. Then there is an s-t cut (A*, B*) such that
v(f) = C(A*, B*). Furthermore, f is a flow with maximum value
and (A*, B*) is an s-t cut with minimum capacity.

[J

V.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

o Claim 1.3: Let f be an s-t flow such that there is no s-t path in
Gr. Then there is an s-t cut (A*, B*) such that
v(f) = C(A*, B*). Furthermore, f is a flow with maximum value
and (A*, B*) is an s-t cut with minimum capacity.

Proof of claim 1.3

o Let A* be all vertices reachable from s in the graph Gr (see figure
below). Then we have:

V(f) — f-out(A*) _ fin(A*)
faut(A*) -0
C(A*, B%)

b

A* (all vertices reachable from s in G 2

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Theorem (Max-flow-min-cut theorem)

In every flow network, the maximum value of s-t flow is equal to
the minimum capacity of s-t cut.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

@ Summary:
o Ford-Fulkerson Algorithm:

o Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.

o Update the residual capacity of edges in the residual graph.

@ Repeat.

o Proof of correctness:

o The algorithm terminates (since the capacities are integers).
o Max-flow-min-cut theorem: In every flow network, the

maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

@ Summary:
o Ford-Fulkerson Algorithm:

o Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.
o Update the residual capacity of edges in the residual graph.
o Repeat.
o Proof of correctness:

@ The algorithm terminates (since the capacities are integers).

o Max-flow-min-cut theorem: In every flow network, the
maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

@ What if the capacities are not integers? Does the algorithm
terminate?

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Maximum flow

@ Summary:
e Ford-Fulkerson Algorithm:

o Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.

o Update the residual capacity of edges in the residual graph.

o Repeat.

o Proof of correctness:

@ The algorithm terminates (since the capacities are integers).
o Max-flow-min-cut theorem: In every flow network, the

maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

@ What if the capacities are not integers? Does the algorithm
terminate?

o There is a network where the edges have non-integer capacities
where the Ford-Fulkerson algorithm does not terminate.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Applications of Network Flow )

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Definition (Matching in bipartite graphs)

A subset M of edges such that each node appears in at most one
edge in M.

Problem

Given a bipartite graph G = (L, R, E), design an algorithm to give
a maximum matching in the graph.

o Example:

L R

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph.

@ Consider the network graph below constructed from the bipartite
graph.

s t
All edges have capacities 1
L R

@ Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size k.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph.

o Consider the network graph below constructed from the bipartite
graph.

s t
All edges have capacities 1
L R

o Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size
k.

o Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph.

o Consider the network graph below constructed from the bipartite
graph.

s t
All edges have capacities 1
L R

@ Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size
k.

o Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

@ Claim 2: Suppose the bipartite graph has a matching of size k.
Then there is an integer flow of value k in the network graph.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph.

o Consider the network graph below constructed from the bipartite

graph.
s t
All edges have capacities 1
L R

o Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size

o Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

o Claim 2: Suppose the bipartite graph has a matching of size k.
Then there is an integer flow of value k in the network graph.

o Consider the flow where the flow along the edges in the matching
is 1.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Problem
Given a bipartite graph G = (L, R, E), design an algorithm to give a
maximum matching in the graph.

s t
All edges have capacities 1
L R

Figure: Network construction from Bipartite graph

Algorithm

Max-Matching(G)
- Construct the network G’ using G as shown in Figure
- Execute the Ford-Fulkerson algorithm on G’ to obtain flow f
- Let M be all bipartite edges with flow value 1
- return(M)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms




End )

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



