
COL702: Advanced Data Structures and
Algorithms

Ragesh Jaiswal, CSE, IITD

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Course Overview

Graph Algorithms

Algorithm Design Techniques:

Greedy Algorithms
Divide and Conquer
Dynamic Programming
Network Flows

Hill-climbing and reduction

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Reduction

Reduction
1 We will obtain an algorithm A for a Network Flow problem

using Hill-climbing.
2 Given a new problem, we will rephrase this problem as a

Network Flow problem.
3 We will then use algorithm A to solve the rephrased problem

and obtain a solution.
4 Finally, we build a solution for the original problem using the

solution to the rephrased problem.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Hill-climbing

Hill-climbing optimization strategy:

Start with any solution that meets the constraints.
Repeat until there is no simple way to improve the solution:

Try to improve the solution via a “local” change, still
satisfying the constraints.

Output the solution.

A few points to note about Hill-climbing:

More often than not hill-climbing does NOT find an optimal
solution, just a “local optimum”
Often used as an approximation algorithm or heuristic.
Also called gradient ascent, interior point method.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Hill-climbing

Hill-climbing optimization strategy:

Start with any solution that meets the constraints.
Repeat until there is no simple way to improve the solution:

Try to improve the solution via a “local” change, still satisfying
the constraints.

Output the solution.

Local optima:

One can view the set of all possible solutions as a high-dimensional
region. The objective function then gives a height for each point.
We would like to find the highest point.
But we usually find a local optima, a point higher than others near
it.
So, while global optima are local optima, the reverse is not always
true.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Introduction

We want to model various kinds of networks using graphs and
then solve real world problems with respect to these networks
by studying the underlying graph.

One problem that arises in network design is routing “flows”
within the network.

Transportation Network: Vertices are cities and edges denote
highways. Every highway has certain traffic capacity. We are
interested in knowing the maximum amount commodity that
can be shipped from a source city to a destination city.
Computer Networks: Edges are links and vertices are switches.
Each link has some capacity of carrying packets. Again, we are
interested in knowing how much traffic can a source node send
to a destination node.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Introduction

To model these problems, we consider weighted, directed
graph G = (V ,E ) with the following properties:

Capacity: Associated with each edge e is a capacity that is a
non-negative integer denoted by c(e).
Source node: There is a source node s with no in-coming
edges.
Sink node: There is a sink node t with no out-going edges.
All other nodes are called internal nodes.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Introduction

To model these problems, we consider weighted, directed
graph G = (V ,E ) with the following properties:

Capacity: Associated with each edge e is a capacity that is a
non-negative integer denoted by c(e).
Source node: There is a source node s with no in-coming
edges.
Sink node: There is a sink node t with no out-going edges.
All other nodes are called internal nodes.

Given such a graph, an “s − t flow” in the graph is a function
f that maps the edges to non-negative real numbers such that
the following properties are satisfied:

(a) Capacity constraint: For every edge e, 0 ≤ f (e) ≤ c(e).
(b) Flow conservation: For every internal node v :∑

e into v

f (e) =
∑

e out of v

f (e)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Problem

Find an s − t flow f in a given network graph such that the following
quantity is maximized:

v(f ) =
∑

e out of s

f (e)

Example:

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Problem

Find an s − t flow f in a given network graph such that the following
quantity is maximized:

v(f ) =
∑

e out of s

f (e)

Example:

Figure: Routing 20 units of flow from s to t. Is it possible to “push more
flow”?

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Problem

Find an s − t flow f in a given network graph such that the following
quantity is maximized:

v(f ) =
∑

e out of s

f (e)

Example:

Figure: We should reset initial flow (u, v) to 10.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Problem

Find an s − t flow f in a given network graph such that the following
quantity is maximized:

v(f ) =
∑

e out of s

f (e)

Example:

Figure: We should reset initial flow (u, v) to 10. Maximum flow from s is 30.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Approach

We will iteratively build larger s − t flows.
Given an s − t flow f , we will build a residual graph Gf that will
allow us to reset flows along some of the edges.
We will find an augmenting path in the residual graph Gf , push
some flow along this path and update the flow f ′.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Approach

We will iteratively build larger s − t flows.
Given an s − t flow f , we will build a residual graph Gf that will
allow us to reset flows along some of the edges.
We will find an augmenting path in the residual graph Gf , push
some flow along this path and update the flow f ′.

Figure: Graph Gf . (f(s, u) = 20, f(s, v) = 0, f(u, v) = 20, f(u, t) = 0, f(v, t)
= 20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Approach

We will iteratively build larger s − t flows.
Given an s − t flow f , we will build a residual graph Gf that will
allow us to reset flows along some of the edges.
We will find an augmenting path in the residual graph Gf , push
some flow along this path and update the flow f ′.

Figure: Augmenting path. (f’(s, u) = 20, f’(s, v) = 10, f’(u, v) = 10, f’(u, t)
= 10, f’(v, t) = 20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Approach

We will iteratively build larger s − t flows.
Given an s − t flow f , we will build a residual graph Gf that will
allow us to reset flows along some of the edges.
We will find an augmenting path in the residual graph Gf , push
some flow along this path and update the flow f ′.

Figure: Graph Gf ′ . (f’(s, u) = 20, f’(s, v) = 10, f’(u, v) = 10, f’(u, t) = 10,
f’(v, t) = 20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Residual graph Gf :

Forward edges: For every edge e in the original graph, there are
(c(e)− f (e)) units of more flow we can send along that edge. So,
we set the weight of this edge (c(e)− f (e)).
Backward edges: For every edge e = (u, v) in the original graph,
there are f (e) units of flow that we can undo. So we add a reverse
edge e′ = (v , u) and set the weight of e′ to f (e).

Figure: Graph Gf . (f(s, u) = 20, f(s, v) = 0, f(u, v) = 20, f(u, t) = 0, f(v, t)
= 20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Augmenting flow in Gf :

Let P be a simple s − t path in Gf . Note that this contains
forward and backward edges.
Let emin be an edge in the path P with minimum weight wmin

For every forward edge e in P, set f ′(e)← f (e) + wmin

For every backward edge (x , y) in P, set f ′(y , x)← f (y , x)− wmin

For all remaining edges e, f ′(e) = f (e)

Figure: Augmenting path. (f’(s, u) = 20, f’(s, v) = 10, f’(u, v) = 10, f’(u, t)
= 10, f’(v, t) = 20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Claim 1: f ′ is an s − t flow.
Proof sketch:

Capacity constraint for each edge is satisfied.
Flow conservation at each vertex is satisfied.

Figure: Augmenting path. (f’(s, u) = 20, f’(s, v) = 10, f’(u, v) = 10, f’(u, t)
= 10, f’(v, t) = 20)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

What is the running time of the above algorithm?

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

What is the running time of the above algorithm?

Claim 2: v(f ′) > v(f ).

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

What is the running time of the above algorithm?

Claim 2: v(f ′) > v(f ).
Claim 3: The while loop runs for at most C =

∑
e out of s c(e)

iterations.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

What is the running time of the above algorithm?

Claim 2: v(f ′) > v(f ).
Claim 3: The while loop runs for at most C =

∑
e out of s c(e)

iterations.
Claim 4: Finding augmenting path and augmenting flow along this
path takes O(m) time.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

What is the running time of the above algorithm? O(m · C )

Claim 2: v(f ′) > v(f ).
Claim 3: The while loop runs for at most C =

∑
e out of s c(e)

iterations.
Claim 4: Finding augmenting path and augmenting flow along this
path takes O(m) time.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Figure: Graph Gf , where f (s, u) = 0, f (s, v) = 7, f (v , u) = 0, f (v , q) =
7, f (u, p) = 0, f (p, v) = 0, f (p, t) = 7, f (q, p) = 7, f (q, t) = 0

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Figure: Graph Gf , where f (s, u) = 0, f (s, v) = 11, f (v , u) = 0, f (v , q) =
11, f (u, p) = 0, f (p, v) = 0, f (p, t) = 7, f (q, p) = 7, f (q, t) = 4

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

Figure: Graph Gf , where f (s, u) = 12, f (s, v) = 11, f (v , u) = 0, f (v , q) =
11, f (u, p) = 12, f (p, v) = 0, f (p, t) = 19, f (q, p) = 7, f (q, t) = 4

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Algorithm

Ford-Fulkerson

- Start with a flow f such that f (e) = 0
- While there is an s − t path P in Gf

- Augment flow along an s − t path and let f ′ be resulting flow
- Update f to f ′ and Gf to Gf ′

- return(f )

How do we prove that the flow returned by the Ford-Fulkerson

algorithm is the maximum flow?

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Definition (f in and f out)

Let S be a subset of vertices and f be a flow. Then

f in(S) =
∑

e into S

f (e) and f out(S) =
∑

e out of S

f (e)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Definition (f in and f out)

Let S be a subset of vertices and f be a flow. Then

f in(S) =
∑

e into S

f (e) and f out(S) =
∑

e out of S

f (e)

Definition (s − t cut)

A partition of vertices (A,B) is called an s − t cut iff A contains s and
B contains t.

Definition (Capacity of s − t cut)

The capacity of an s − t cut (A,B) is defined as
C (A,B) =

∑
e out of A c(e).

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s − t cut (A,B) and any s − t flow f ,
v(f ) = f out(A)− f in(A).

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s − t cut (A,B) and any s − t flow f ,
v(f ) = f out(A)− f in(A).

Proof of claim 1.1.

v(f ) = f out({s})− f in({s}) and for all other nodes
v ∈ A, f out({v})− f in({v}) = 0. So,

v(f ) =
∑
v∈A

(f out({v})− f in({v})) = f out(A)− f in(A).

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s-t cut (A,B) and any s-t flow f ,
v(f ) = f out(A)− f in(A).
Claim 1.2: Let f be any s-t flow and (A,B) be any s-t cut. Then
v(f ) ≤ C (A,B).

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s-t cut (A,B) and any s-t flow f ,
v(f ) = f out(A)− f in(A).
Claim 1.2: Let f be any s-t flow and (A,B) be any s-t cut. Then
v(f ) ≤ C (A,B).

Proof of claim 1.2.

v(f ) = f out(A)− f in(A) ≤ f out(A) ≤ C (A,B).

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Theorem 1: Let f be the flow returned by the Ford-Fulkerson

algorithm. Then f maximizes v(f ) =
∑

e out of s f (e).

Proof

Claim 1.1: For any s-t cut (A,B) and any s-t flow f ,
v(f ) = f out(A)− f in(A).
Claim 1.2: Let f be any s-t flow and (A,B) be any s-t cut. Then
v(f ) ≤ C (A,B).
Claim 1.3: Let f be an s-t flow such that there is no s-t path in
Gf . Then there is an s-t cut (A∗,B∗) such that
v(f ) = C (A∗,B∗). Furthermore, f is a flow with maximum value
and (A∗,B∗) is an s-t cut with minimum capacity.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Claim 1.3: Let f be an s-t flow such that there is no s-t path in
Gf . Then there is an s-t cut (A∗,B∗) such that
v(f ) = C (A∗,B∗). Furthermore, f is a flow with maximum value
and (A∗,B∗) is an s-t cut with minimum capacity.

Proof of claim 1.3

Let A∗ be all vertices reachable from s in the graph Gf (see figure
below). Then we have:

v(f ) = f out(A∗)− f in(A∗)

= f out(A∗)− 0

= C (A∗,B∗)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Theorem (Max-flow-min-cut theorem)

In every flow network, the maximum value of s-t flow is equal to
the minimum capacity of s-t cut.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Summary:
Ford-Fulkerson Algorithm:

Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.
Update the residual capacity of edges in the residual graph.
Repeat.

Proof of correctness:

The algorithm terminates (since the capacities are integers).
Max-flow-min-cut theorem: In every flow network, the
maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Summary:
Ford-Fulkerson Algorithm:

Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.
Update the residual capacity of edges in the residual graph.
Repeat.

Proof of correctness:

The algorithm terminates (since the capacities are integers).
Max-flow-min-cut theorem: In every flow network, the
maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

What if the capacities are not integers? Does the algorithm
terminate?

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Maximum flow

Summary:
Ford-Fulkerson Algorithm:

Given network with integer capacities, find a source-to-sink
path and push as much flow along the path as possible.
Update the residual capacity of edges in the residual graph.
Repeat.

Proof of correctness:

The algorithm terminates (since the capacities are integers).
Max-flow-min-cut theorem: In every flow network, the
maximum value of s-t flow is equal to the minimum capacity
of s-t cut.

What if the capacities are not integers? Does the algorithm
terminate?

There is a network where the edges have non-integer capacities
where the Ford-Fulkerson algorithm does not terminate.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Applications of Network Flow

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Definition (Matching in bipartite graphs)

A subset M of edges such that each node appears in at most one
edge in M.

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give
a maximum matching in the graph.

Example:

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size k .

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size
k.

Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size
k.

Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

Claim 2: Suppose the bipartite graph has a matching of size k .
Then there is an integer flow of value k in the network graph.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Consider the network graph below constructed from the bipartite
graph.

Claim 1: Suppose there is an integer flow of value k in the
network graph. Then the bipartite graph has a matching of size
k.

Consider those bipartite edges along which the flow is 1. Argue
that due to flow conservation these edges form a matching.

Claim 2: Suppose the bipartite graph has a matching of size k .
Then there is an integer flow of value k in the network graph.

Consider the flow where the flow along the edges in the matching
is 1.

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



Network Flow
Bipartite Matching

Problem

Given a bipartite graph G = (L,R,E ), design an algorithm to give a
maximum matching in the graph.

Figure: Network construction from Bipartite graph

Algorithm

Max-Matching(G)

- Construct the network G ′ using G as shown in Figure
- Execute the Ford-Fulkerson algorithm on G ′ to obtain flow f
- Let M be all bipartite edges with flow value 1
- return(M)

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms



End

Ragesh Jaiswal, CSE, IITD COL702: Advanced Data Structures and Algorithms


