
COL702: Advanced Data Structures and 
Algorithms



Divide and Conquer sort
• Starting with a list of integers, the goal is to output the list 

in sorted order.

• Break a problem into similar subproblems
• Split the list into two sublists each of half the size

• Solve each subproblem recursively
• recursively sort the two sublists

• Combine
• put the two sorted sublists together to create a sorted list of all the 

elements.



MergeSort
• function mergesort(𝑎 1…𝑛 )

• if 𝑛 > 1:

• ML = mergesort 𝑎 1… !
"

• MR = mergesort 𝑎 !
"
+ 1,…𝑛

• return merge(ML,MR)
• else:

• return 𝑎



Median
• The median of a list of numbers is the middle number in the 

list.
• If the list has 𝑛 values and 𝑛 is odd, then the middle element 

is clear. It is the 𝑛/2 th smallest element.
• Example:

𝑚𝑒𝑑 8,2,9,11,4 = 8
because 𝑛 = 5 and 8 is the 3𝑟𝑑 = 5/2 th smallest element of 
the list.



Median
• The median of a list of numbers is the middle number in the list.
• If the list has 𝑛 values and 𝑛 is even, then there are two middle 

elements. Let’s say that the median is the  (!
"
)th smallest 

element. Then in either case the median is the 𝑛/2 th smallest 
element

• Example:
𝑚𝑒𝑑 10,23,7,26,17,3 = 10

because 𝑛 = 6 and 10 is the 3𝑟𝑑 = 6/2 th smallest element of the 
list.



Median
• The purpose of the median is to summarize a set of 

numbers. The average is also a commonly used value. The 
median is more typical of the data. 

• For example, suppose in a company with 20 employees, 
the CEO makes 1 million and all the other workers each 
make 50,000.

• Then the average is 97,500 and the median is 50,000, 
which is much closer to the typical worker’s salary.



Median (algorithm)
• Can you think of an efficient way to find the median?
• How long would it take?
• Is there a lower bound on the runtime of all median 

selection algorithms?



Median (algorithm)
• Can you think of an efficient way to find the median?
• How long would it take?
• Is there a lower bound on the runtime of all median selection 

algorithms?

• Sort the list then find the 𝑛/2 th element 𝑂 𝑛 log 𝑛 .
• You can never have a faster runtime than 𝑂(𝑛) because you at 

least have to look at every element.
• All selection algorithms are Ω(𝑛)



Selection
• What if we designed an algorithm that takes as input, a list 

of numbers of length 𝑛 and an integer 1 ≤ 𝑘 ≤ 𝑛 and 
outputs the 𝑘th smallest integer in the list.

• Then we could just plug in 𝑛/2 for 𝑘 and we could find the 
median!!



Selection
• Let’s think about selection in a divide and conquer type of 

way.

• Break a problem into similar subproblems
• Split the list into two sublists

• Solve each subproblem recursively
• recursively select from one of the sublists

• Combine



Selection
• How would you split the list?
• Just splitting the list down the middle does not help so much.

• What we will do is pick a random “pivot” and split the list into all 
integers greater than the pivot and all that are less than the pivot.

• Then we can determine which list to look in to find the 𝑘th

smallest element. (Note that the value of 𝑘 may change 
depending on which list we are looking in.)



Selection
• Example:
• Selection([40,31,6,51,76,58,97,37,86,31,19,30,68],7)

• pick a random pivot….. say 31. Then divide the list into three groups 
SL, Sv, SR such that SL contains all elements smaller than 31, Sv is all 
elements equal to 31 and SR is all elements greater than 31.

• SL=[6,19,30], size = 3
• Sv=[31,31], size = 2
• SR=[40,51,76,58,97,37,86,68], size = 8



Selection
• Selection([40,31,6,51,76,58,97,37,86,31,19,30,68],7)

• SL=[6,19,30], size = 3
• Sv=[31,31], size = 2
• SR=[40,51,76,58,97,37,86,68], size = 8

• Now, since k=7 is bigger than the size of SL, we know the kth biggest 
element cannot be in SL. Since it is bigger than size of SL plus size of 
Sv, it cannot be in Sv, either. Therefore it must be in SR.

• So the 7th biggest element in the original list is what number in SR?



Selection
• So the 7th biggest element in the original list is the 2nd biggest in SR?

• Selection([40,31,6,51,76,58,97,37,86,31,19,30,68],7)

• SL=[6,19,30], size = 3
• Sv=[31,31], size = 2
• SR=[40,51,76,58,97,37,86,68], size = 8

• Selection([40,31,6,51,76,58,97,37,86,31,19,30,68],7)
=Selection ([40,51,76,58,97,37,86,68],2)



Selection (Algorithm)
• Input: list of integers and integer k
• Output: the kth smallest number in the set of integers.

• function Selection(a[1…n],k)
• if n==1:

• return a[1]
• pick a random integer in the list v.
• Split the list into sets SL, Sv, SR.
• if k≤|SL|:

• return Selection(SL,k)
• if k≤|SL|+|Sv|:

• return v
• else:

• return Selection(SR, k-|SL|-|Sv|)



Selection (Runtime)
• Input: list of integers and integer k
• Output: the kth smallest number in the set of integers.

• function Selection(a[1…n],k)
• if n==1:

• return a[1]
• pick a random integer in the list v.
• Split the list into sets SL, Sv, SR.
• if k≤|SL|:

• return Selection(SL,k)
• if k≤|SL|+|Sv|:

• return v
• else:

• return Selection(SR, k-|SL|-|Sv|)



Selection (Runtime)
• The runtime is dependent on how big are |SL| and |SR|.

• If we were so lucky as to choose v to be close to the 
median every time, then |SL|≈|SR|≈ 𝑛/2. And so, no matter 
which set we recurse on, 

𝑇 𝑛 = 𝑇
𝑛
2
+ 𝑂 𝑛

• And by the Master Theorem:



Selection (Runtime)
• The runtime is dependent on how big are |SL| and |SR|.

• Conversely, if we were so unlucky as to choose v to be the 
maximum (resp. minimum) then |SL| (resp. |SR|) = n-1 and

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂 𝑛
• Which is ………….?



Selection (Runtime)
• The runtime is dependent on how big are |SL| and |SR|.

• Conversely, if we were so unlucky as to choose v to be the 
maximum (resp. minimum) then |SL| (resp. |SR|) = n-1 and

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂 𝑛
• Which is 𝑂 𝑛' , worse than sorting then finding.

• So is it worth it even though there is a chance of having a 
high runtime?



Expected runtime
0                                              n-1
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If you randomly select the ith
element, then your list will be 
split into a list of length i and 
a list of length n-i.

So when we recurse on the 
smaller lists, it will take time 
proportional to 

max(𝑖, 𝑛 − 𝑖)



Expected runtime
0                                              n-1

0               i n-1

i

n-i

Clearly, the split with the 
smallest maximum size is 
when i=n/2 

and worst case is i=n or i=1.

n-1

0



Expected runtime

What is the expected runtime?

Well what is our random 
variable?

For each input and sequence 
of random choices of pivots, 
The random variable is the 
runtime of that particular 
outcome.

0                                              n-1

0               i n-1

i

n-i

n-1

0



Expected runtime
0                                              n-1

0               i n-1

i

n-i

So if we want to find the expected 
runtime, we must sum over all 
possibilities of choices.

Let 𝐸𝑇 𝑛 be the expected 
runtime. Then

𝐸𝑇 𝑛 =
1
𝑛(
!"#

$

𝐸𝑇 max 𝑖, 𝑛 − 𝑖 + 𝑂 𝑛

n-1

0



Expected runtime
0                                              n-1

0        !
"

#!
"

n-1

3𝑛
4

What is the probability of choosing 
a value from 1 to 𝑛 in the interval
!
"
, #!
"

if all values are equally 
likely?

n-1

0



Expected runtime

If you did choose a value between 
n/4 and 3n/4 then the sizes of the 
subproblems would both be ≤ #!

"

Otherwise, the subproblems would 
be ≤ 𝑛

So we can compute an upper 
bound on the expected runtime.

𝐸𝑇 𝑛 ≤
1
2𝐸𝑇

3𝑛
4 +

1
2𝐸𝑇 𝑛 +𝑂(𝑛)
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Expected runtime

𝐸𝑇 𝑛 ≤
1
2𝐸𝑇

3𝑛
4 +

1
2𝐸𝑇 𝑛 +𝑂(𝑛)

𝐸𝑇 𝑛 ≤ 𝐸𝑇
3𝑛
4 + 𝑂(𝑛)

Plug into the master theorem with a=1, 
b=4/3, d=1

a<bd so 

𝐸𝑇 𝑛 ≤ 𝑂(𝑛)

0                                              n-1

0        !
"

#!
"

n-1

3𝑛
4

n-1

0



• What have we noticed about the partitioning part of 
Selection?

• After partitioning, the “pivot” is in its correct position in 
sorted order.

• Quicksort takes advantage of that.

quicksort



Quicksort divide and conquer
• Let’s think about selection in a divide and conquer type of way.

• Break a problem into similar subproblems
• Split the list into two sublists by partitioning a pivot

• Solve each subproblem recursively
• recursively sort each sublist

• Combine
• concatenate the lists.



Quicksort divide and conquer
• procedure quicksort(a[1…n])

• if n≤1:
• return a

• set v to be a random element in a.
• partition a into SL,Sv,SR
• return quicksort(SL)∘Sv∘ quicksort(SR)



Quicksort (runtime)
• procedure quicksort(a[1…n])

• if n≤1:
• return a

• set v to be a random element in a.
• partition a into SL,Sv,SR
• return quicksort(SL)∘Sv∘ quicksort(SR)



Quicksort (runtime)

𝐸𝑇 𝑛 =
1
𝑛

:
()*

+

𝐸𝑇 𝑛 − 𝑖 + 𝐸𝑇 𝑖 + 𝑂(𝑛)



Bounding quicksort time

• However we break up inputs into subsets, at most cn total 
time per recursive levels.

• So need to bound depth of recursion.

• Claim: With high probability the depth of recursion is 
O(log n).



Why is quicksort quick?
• Good PR.

• But MergeSort also O(n log n) comparisons.



Factors outside number of steps
• What other factors contribute to how long algorithms take 

on actual machines?   (Architecture, OS)



Factors outside number of steps
• What other factors contribute to how long algorithms take 

on actual machines?   (Architecture, OS)

• ``Locality of reference’’: when data accessed, moved to 
cache.  Often moved in consecutive blocks.  When it is 
accessed frequently, doesn’t get evicted from cache.  

• Quicksort: data in common subproblems moved to be 
close together. Can sort in place, rather than repeatedly 
merging. 



Selection (Deterministic)
• Sometimes this algorithm we have described is called quick 

select because generally it is a very practical linear expected 
time algorithm. This algorithm is used in practice.

• For theoretic computer scientists, it is unsatisfactory to only have 
a randomized algorithm  that could run in quadratic time.

• Blum, Floyd, Pratt, Rivest, and Tarjan have developed a 
deterministic approach to finding the median (or any kth biggest 
element.)

• They use a divide and conquer strategy to find a number close to 
the median and then use that to pivot the values.



Selection (Deterministic)
• The strategy is to split the list into sets of 5 and find the 

medians of all those sets. then find the median of the 
medians using a recursive call T(n/5).

• Then partition the set just like in quickselect and recurse on 
SR or SL just like in quickselect.



• MofM(L,k)
• If L has 10 or fewer elements:

• Sort(L) and return the kth element
• Partition L into sublists S[i] of five elements each
• For 𝑖 = 1,…𝑛/5

• 𝑚 𝑖 =MofM(S[i],3)
• M = MofM([𝑚 1 ,… ,𝑚[𝑛/5]],𝑛/10)
• ???

Median of medians



• MofM(L,k)
• If L has 10 or fewer elements:

• Sort(L) and return the kth element
• Partition L into sublists S[i] of five elements each
• For 𝑖 = 1,…𝑛/5

• 𝑚 𝑖 =MofM(S[i],3)
• M = MofM([𝑚 1 ,… ,𝑚[𝑛/5]],𝑛/10)
• Split the list into sets SL, SM, SR.
• if k≤|SL|:

• return Selection(SL,k)
• if k≤|SL|+|Sv|:

• return v
• else:

• return Selection(SR, k-|SL|-|Sv|)

Median of medians



Selection (Deterministic)
• By construction, it can be shown that |SR|<7n/10 and |SL|<7n/10 

and so no matter which set we recurse on, we have

𝑇 𝑛 = 𝑇
𝑛
5 + 𝑇

7𝑛
10 + 𝑂(𝑛)

• You cannot use the master theorem to solve this, but you can 
use induction to show that if 𝑇(𝑛) ≤ 𝑐𝑛 for some c, then 𝑇(𝑛) ≤
𝑐𝑛.

• And so we have a linear time selection algorithm!!!!! 



Selection (Deterministic)
• We showed that M is between 3n/10 and 7n/10 in sorted 

order.  So both |SR|<7n/10 and |SL|<7n/10 and so no 
matter which set we recurse on, we have

𝑇 𝑛 = 𝑇
𝑛
5
+ 𝑇

7𝑛
10

+ 𝑂(𝑛)

• You cannot use the master theorem to solve this, but you 
can use induction to show that if 𝑇(𝑛) ≤ 𝑐𝑛 for some c, then 
𝑇(𝑛) ≤ 𝑐𝑛.  



Time analysis

n

.49n.14n.14n

.2n .7n

cn

.9cn

.81cn



Total time
• Top heavy:  Work decreasing geometically as we go 

down, total cn (1 +.9 + (.9)^2+ (.9)^3….) =10cn


