COL702: Advanced Data Structures and Algorithms

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

Master Theorem

- How do you solve a recurrence of the form

$$
T(n)=a T\left(\frac{n}{b}\right)+O\left(n^{d}\right)
$$

We will use the master theorem.

Summation Lemma

Consider the summation

$$
\sum_{k=0}^{n} r^{k}
$$

It behaves differently for different values of r.

Summation Lemma

Consider the summation

$$
\sum_{k=0}^{n} r^{k}
$$

It behaves differently for different values of r.
If $r<1$ then this sum converges. This means that the sum is bounded above by some constant c. Therefore

$$
\text { if } r<1 \text {, then } \sum_{k=0}^{n} r^{k}<c \text { for all } n \text { so } \sum_{k=0}^{n} r^{k} \in O(1)
$$

Summation Lemma

Consider the summation

$$
\sum_{k=0}^{n} r^{k}
$$

It behaves differently for different values of r.
If $r=1$ then this sum is just summing 1 over and over n times. Therefore

$$
\text { if } r=1, \quad \text { then } \sum_{k=0}^{n} r^{k}=\sum_{k=0}^{n} 1=n+1 \quad \in \quad O(n)
$$

Summation Lemma

Consider the summation

$$
\sum_{2}
$$

It behaves differently for different values of r.
If $r>1$ then this sum is exponential with base r.

$$
\text { if } r>1 \text {, then } \sum_{k=0}^{n} r^{k}<c r^{n} \text { for all } n, \quad \text { so } \sum_{k=0}^{n} r^{k} \in O\left(r^{n}\right) \quad\left(c>\frac{r}{r-1}\right)
$$

Summation Lemma

Consider the summation

$$
\sum_{k=0}^{n} r^{k}
$$

It behaves differently for different values of r.

$$
\sum_{k=0}^{n} r^{k} \in \begin{cases}O(1) & \text { if } r<1 \\ O(n) & \text { if } r=1 \\ O\left(r^{n}\right) & \text { if } r>1\end{cases}
$$

Master Theorem

Master Theorem: If $T(n)=a T(n / b)+O\left(n^{d}\right)$ for some constants $a>0, b>1, d \geq 0$,

Then

$$
T(n) \in \begin{cases}O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Master Theorem: Solving the recurrence

Master Theorem: Solving the recurrence

After k levels, there are a^{k} subproblems, each of size n / b^{k}.
So, during the k th level of recursion, the time complexity is
$O\left(\left(\frac{n}{b^{k}}\right)^{d}\right) a^{k}=O\left(a^{k}\left(\frac{n}{b^{k}}\right)^{d}\right)$

$$
=O\left(n^{d}\left(\frac{a}{b^{d}}\right)^{k}\right)
$$

Master Theorem: Solving the recurrence

After k levels, there are a^{k} subproblems, each of size n / b^{k}.
So, during the k th level, the time complexity is $O\left(\left(\frac{n}{b^{k}}\right)^{d}\right) a^{k}=O\left(a^{k}\left(\frac{n}{b^{k}}\right)^{d}\right)$

$$
=O\left(n^{d}\left(\frac{a}{b^{d}}\right)^{k}\right)
$$

After $\log _{b} n$ levels, the subproblem size is reduced to 1 , which usually is the size of the base case.

So the entire algorithm is a sum of each level.

$$
T(n)=O\left(n^{d} \sum_{k=0}^{\log _{b} n}\left(\frac{a}{b^{d}}\right)^{k}\right)
$$

Master Theorem: Proof

$$
T(n)=O\left(n^{d} \sum_{k=0}^{\log _{b} n}\left(\frac{a}{b^{d}}\right)^{k}\right)
$$

Case 1: $a<b^{d}$
Then we have that $\frac{a}{b^{d}}<1$ and the series converges to a constant so

$$
T(n)=O\left(n^{d}\right)
$$

Master Theorem: Proof

$$
T(n)=O\left(n^{d} \sum_{k=0}^{\log _{b} n}\left(\frac{a}{b^{d}}\right)^{k}\right)
$$

Case 2: $a=b^{d}$
Then we have that $\frac{a}{b^{d}}=1$ and so each term is equal to 1

$$
T(n)=O\left(n^{d} \log _{b} n\right)
$$

Master Theorem: Proof

$$
T(n)=O\left(n^{d} \sum_{k=0}^{\log _{b} n}\left(\frac{a}{b^{d}}\right)^{k}\right)
$$

Case 2: $a>b^{d}$

Then the summation is exponential and grows proportional to its last term $\left(\frac{a}{b^{d}}\right)^{\log _{b} n}$ so

$$
T(n)=O\left(n^{d}\left(\frac{a}{b^{d}}\right)^{\log _{b} n}\right)=O\left(n^{\log _{b} a}\right)
$$

Master Theorem

Theorem: If $T(n)=a T(n / b)+O\left(n^{d}\right)$ for some constants $a>0, b>1, d \geq 0$,

Then

$$
T(n) \in \begin{cases}O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Top-heavy
Steady-state
Bottom-heavy

Master Theorem Applied to Multiply

The recursion for the runtime of Multiply is $\quad T(n) \epsilon$
$\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}$ $\begin{cases}o\left(n^{d}\right) & \text { if } a<b^{d} \\ 0\left(n^{d} \log ^{d} n\right) & \text { if } a=b^{d} \\ o\left(n^{2} \log _{b}\right) & \text { if } a>b^{d}\end{cases}$
So we have that $\mathrm{a}=4, \mathrm{~b}=2$, and $\mathrm{d}=1$. In this case, $a>b^{d}$ so

$$
T(n) \in O\left(n^{\log _{2} 4}\right)=O\left(n^{2}\right)
$$

Not any improvement of grade-school method.

Master Theorem Applied to MultiplyKS

The recursion for the runtime of Multiply is $T(n)=3 T(n / 2)+c n$

$$
T(n) \epsilon \begin{cases}O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ O\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

So we have that $\mathrm{a}=3, \mathrm{~b}=2$, and $\mathrm{d}=1$. In this case, $a>b^{d}$ so

$$
T(n) \in O\left(n^{\log _{2} 3}\right)=O\left(n^{1.58}\right)
$$

An improvement on grade-school method!!!!!!

Poll: What is the fastest known integer multiplication time?

- $O\left(n^{\log 3}\right)$
- $O\left(n \log n(\log (\log n))^{2}\right)$
- $O\left(n \log n 2^{\wedge}\left\{\log ^{*} n\right\}\right)$
- $O(n \log n)$
- O(n)

Poll: What is the fastest known integer multiplication time? All have/will be correct

- $O\left(n^{\log 3}\right)$ Kuratsuba
- $O(n \log n \log \log n)$ Schonhage-Strassen, 1971
- $O\left(n \log n 2^{\wedge}\left\{c \log ^{*} n\right\}\right)$ Furer, 2007
- $O(n \log n)$ Harvey and van der Hoeven, 2019
- O(n), you, tomorrow?

Can we do better than $n^{1.58} ?$

- Could any multiplication algorithm have a faster asymptotic runtime than $\Theta\left(n^{1.58}\right)$?
- Any ideas?????

Can we do better than $n^{1.58} ?$

- What if instead of splitting the number in half, we split it into thirds.
- $x=\square x_{1}$

Can we do better than $n^{1.58} ?$

- What if instead of splitting the number in half, we split it into thirds.
- $x=2^{2 n / 3} x_{L}+2^{n / 3} x_{M}+x_{R}$
- $y=2^{2 n / 3} y_{L}+2^{n / 3} y_{M}+y_{R}$

Multiplying trinomials

- $\left(a x^{2}+b x+c\right)\left(d x^{2}+e x+f\right)$

Multiplying trinomials

- $\left(a x^{2}+b x+c\right)\left(d x^{2}+e x+f\right)$
$=a d x^{4}+(a e+b d) x^{3}+(a f+b e+c d) x^{2}+(b f+c e) x$ $+c f$

9 multiplications means 9 recursive calls.
Each multiplication is $1 / 3$ the size of the original.

Multiplying trinomials

$\quad\left(a x^{2}+b x+c\right)\left(d x^{2}+e x+f\right)$
$\quad=a d x^{4}+(a e+b d) x^{3}+(a f+b e+c d) x^{2}+(b f+c e) x+c f$

9 multiplications means 9 recursive calls.
Each multiplication is $1 / 3$ the size of the original.

$$
T(n)=9 T\left(\frac{n}{3}\right)+O(n)
$$

Multiplying trinomials

$$
\begin{aligned}
& \left(a x^{2}+b x+c\right)\left(d x^{2}+e x+f\right) \\
& =a d x^{4}+(a e+b d) x^{3}+(a f+b e+c d) x^{2}+(b f+c e) x+c f
\end{aligned}
$$

$$
T(n)=9 T\left(\frac{n}{3}\right)+O(n)
$$

$a=9$
$b=3$
$\mathrm{d}=1$
$9>3^{1}$
$T(n)=O\left(n^{\log _{3} 9}\right)$
$T(n)=O\left(n^{2}\right)$

Multiplying trinomials

- $\left(a x^{2}+b x+c\right)\left(d x^{2}+e x+f\right)$
$=a d x^{4}+(a e+b d) x^{3}+(a f+b e+c d) x^{2}+(b f+c e) x+c f$
- There is a way to reduce from 9 multiplications down to just $5!!!$
- Then the recursion becomes
- $T(n)=5 T(n / 3)+\mathrm{O}(\mathrm{n})$
- So by the master theorem

Multiplying trinomials

- $\left(a x^{2}+b x+c\right)\left(d x^{2}+e x+f\right)$
$=a d x^{4}+(a e+b d) x^{3}+(a f+b e+c d) x^{2}+(b f+c e) x+c f$
- There is a way to reduce from 9 multiplications down to just $5!!!$
- Then the recursion becomes
- $T(n)=5 T(n / 3)+\mathrm{O}(\mathrm{n})$
- So by the master theorem $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(n^{\log _{3} 5}\right)=O\left(n^{1.43}\right)$

Dividing into k subproblems

- What happens if we divide into k subproblems each of size n/k.
- $\left(a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{1} x+a_{0}\right)\left(b_{k-1} x^{k-1}+b_{k-2} x^{k-2}+\cdots b_{1} x+b_{0}\right)$
- How many terms are there? (multiplications.)

Dividing into k subproblems

- What happens if we divide into k subproblems each of size n / k.
- $\left(a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\cdots a_{1} x+a_{0}\right)\left(b_{k-1} x^{k-1}+b_{k-2} x^{k-2}+\cdots b_{1} x+b_{0}\right)$
- How many terms are there? (multiplications.)
- There are k^{2} multiplications. The recursion is

$$
\begin{gathered}
T(n)=k^{2} T\left(\frac{n}{k}\right)+O(n) \ldots \ldots \ldots a=k^{2}, b=k, d=1 \\
T(n)=O\left(n^{\log _{k} k^{2}}\right)=O\left(n^{2}\right)
\end{gathered}
$$

Cook-Toom algorithm

- In fact, if you split up your number into k equally sized parts, then you can combine them with $2 \mathrm{k}-1$ multiplications instead of the k^{2} individual multiplications.
- This means that you can get an algorithm that runs in
- $T(n)=(2 k-1) T(n / k)+O(n)$

Cook-Toom algorithm

- In fact, if you split up your number into k equally sized parts, then you can combine them with $2 \mathrm{k}-1$ multiplications instead of the k^{2} individual multiplications.
- This means that you can get an algorithm that runs in
- $T(n)=(2 k-1) T(n / k)+O(n)$
- $T(n)=O\left(n^{\frac{\log (2 k-1)}{\log k}}\right)$ time!!!!

Cook-Toom algorithm

$T(n)=(2 k-1) T(n / k)+\mathrm{O}(\mathrm{n})$

- $T(n)=O\left(n^{\frac{\log 2 k-1}{\log k}}\right)$ time.
- So we can have a near-linear time algorithm if we take k to be sufficiently large. The $\mathrm{O}(\mathrm{n})$ term in the recursion takes a lot of time the bigger k gets. So is it worth it to make k very large?

Divide and Conquer Trees

- Let's say we have a full and balanced binary tree (all parents have two children and all leaves are on the bottom level.)

Divide and Conquer Trees

- Notice that each child's subtree is half of the problem so we get a nice divide and conquer structure.

Divide and Conquer Trees

- If the tree is uneven, we can still use the same strategy but we need to take a bit of care when calculating runtime.

Least common ancestor

- Given a binary tree with n vertices, we wish to compute $\operatorname{LCA}(x, y)$ for each pair of vertices x, y.
- $\operatorname{LCA}(x, y)$ is the least common ancestor of x and y. Or in other words, the "youngest" common ancestor of x and y.
- For example, the LCA of me and my brother is our parent. The LCA of me and my uncle is my grandparent (his parent.) A vertex can be its own ancestor so the LCA of me and my father is my father.

Least common ancestor

- What pairs of vertices will have the root r as their least common ancestor?

Least common ancestor

- What pairs of vertices will have the root r as their least common ancestor?
- For each vertex v, set $l c a(v, r)=r$.
- For each pair of vertices u, v such that u is in the left subtree and v is in the right subtree, set $l c a(u, v)=r$.
- Now what? Are we done?
- Recurse on the left and right subtrees!!!!!

Pseudocode

Def LCA(r):
Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices u in Lsubtree:
lca $(u, r)=r$
for all vertices v in Rsubtree:

$$
\operatorname{lca}(r, v)=r
$$

for all vertices u in Lsubtree:
for all vertices v in Rsubtree:
lca $(u, v)=r$
LCA(r.lc)
LCA(r.rc)

Pseudocode (runtime)

Def LCA(r):
Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices u in Lsubtree:
lca $(u, r)=r$
for all vertices v in Rsubtree:

$$
\operatorname{lca}(r, v)=r
$$

for all vertices u in Lsubtree:
for all vertices v in Rsubtree:
lca $(u, v)=r$
LCA(r.lc)
LCA(r.rc)

If the binary tree is balanced, then each recursive call is of size $\frac{n-1}{2}$ or roughly half.
How long does the non-recursive part take?

Pseudocode (runtime)

Def LCA(r):
Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices u in Lsubtree:

$$
l c a(u, r)=r
$$

for all vertices v in Rsubtree:

$$
\operatorname{lca}(r, v)=r
$$

for all vertices u in Lsubtree:
for all vertices v in Rsubtree:

$$
\operatorname{lca}(u, v)=r
$$

LCA(r.lc)
LCA(r.rc)

If the binary tree is balanced, then each recursive call is of size $\frac{n-1}{2}$ or roughly half.
How long does the non-recursive part take?

$$
T(n)=2 T\left(\frac{n-1}{2}\right)+0\left(\mathrm{n}^{2}\right)
$$

Using the master theorem with $a=2, b=2, d=2$,

$$
T(n)=O\left(n^{2}\right)
$$

Pseudocode (runtime uneven)

Def LCA(r):
Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices u in Lsubtree:
lca $(u, r)=r$
for all vertices v in Rsubtree:

$$
\operatorname{lca}(r, v)=r
$$

for all vertices u in Lsubtree:
for all vertices v in Rsubtree:

$$
\operatorname{lca}(u, v)=r
$$

LCA(r.lc)
LCA(r.rc)

If the binary tree is uneven then the runtime recurrence is

$$
T(n)=T(L)+T(R)+O(L R)
$$

Where L is the size of the left subrtree and R is the size of the right subtree.

What do you think the total runtime will be? Take a guess and we can check it!!!

Uneven DC runtime

- $T(n)=T(L)+T(\mathrm{R})+\mathrm{O}(\mathrm{LR})$
- We guess that it would take $O\left(n^{2}\right)$. So let's try to prove this using induction.
- Claim: $T(n) \leq c n^{2}$ for all $n \geq 1$ and for some constant c that is bigger than $T(1)$ and bigger than the coefficient in the $O(L R)$ term.

Uneven DC runtime

- Base case. $T(1)<c\left(1^{2}\right)$. True by choice of c.
- Suppose that for some $n>1, T(k)<c k^{2}$ for all k such that $1 \leq k<n$.
- Then

$$
\begin{gathered}
T(n)<T(L)+T(R)+c L R \leq c L^{2}+c R^{2}+c L R \\
<c L^{2}+c R^{2}+2 c L R=c(L+R)^{2}=c(n-1)^{2}<c n^{2}
\end{gathered}
$$

Make Heap

- Problem: Given a list of n elements, form a heap containing all elements.

Divide and conquer strategy

- Assume $n=2^{k}-1$. (Add blank elements if needed)
- Divide the list into two lists of size $\frac{n-1}{2}$ and a left-over element
- Make heaps with both (in sub-trees of root)
- Put left-over element at root.
- "Trickle down" top element to reinstate heap property

Time analysis

- To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.
- $T(n)=T(\quad)+O(\quad)$

Time analysis

- To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.
- $T(n)=2 T(n / 2)+O(\log n)$
- Doesn't fit master theorem.

Time analysis: sandwiching

- To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.
- $T(n)=2 T(n / 2)+O(\log n)$
- Define $L(n)=2 T(n / 2)+O(1), H(n)=2 T(n / 2)+O\left(n^{\left\{\frac{1}{2}\right\}}\right)$
- $\mathrm{L}(\mathrm{n})<\mathrm{T}(\mathrm{n})<\mathrm{H}(\mathrm{n})$
- Apply Master Theorem: Both $\mathrm{L}(\mathrm{n})$ and $\mathrm{H}(\mathrm{n})$ are $\mathrm{O}(\mathrm{n})$,
- So $T(n)$ is $O(n)$

minimum distance

- Given a list of coordinates, $\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right]$, find the distance between the closest pair.
- Brute force solution?
- min = 0
- for i from 1 to $\mathrm{n}-1$:
- for j from $\mathrm{i}+1$ to n :
- if min $>$ distance $\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right)$
- return min

Example

Example

Divide and conquer

- Partition the points by x , according to whether they are to the left or right of the median
- Recursively find the minimum distance points on the two sides.
- Need to compare to the smallest "cross distance" between a point on the left and a point on the right
- Only need to look at "close" points

Combine

- How will we use this information to find the distance of the closest pair in the whole set?
- We must consider if there is a closest pair where one point is in the left half and one is in the right half.
- How do we do this?
- Let $d=\min \left(d_{L}, d_{R}\right)$ and compare only the points $\left(x_{i}, y_{i}\right)$ such that $x_{m}-d \leq x_{i}$ and $x_{i} \leq x_{m}+d$.

Example

Combine

- How will we use this information to find the distance of the closest pair in the whole set?
- We must consider if there is a closest pair where one point is in the left half and one is in the right half.
- How do we do this?
- Let $d=\min \left(d_{L}, d_{R}\right)$ and compare only the points $\left(x_{i}, y_{i}\right)$ such that $x_{m}-d \leq x_{i}$ and $x_{i} \leq x_{m}+d$.
- Worst case, how many points could this be?

Combine step

- Given a point $(x, y) \in P_{m}$, let's look in a $2 d \times d$ rectangle with that point at its upper boundary:

- There could not be more than 8 points total because if we divide the rectangle into $8 \frac{d}{2} \times \frac{d}{2}$ squares then there can never be more than one point per square.
- Why???

Combine step

- So instead of comparing (x, y) with every other point in P_{m} we only have to compare it with at most a constant \mathbf{c} points lower than it (smaller y)
- To gain quick access to these points, let's sort the points in P_{m} by y values.
- The points above must be in the \mathbf{c} points before our current point in this sorted list
- Now, if there are k vertices in P_{m} we have to sort the vertices in $O(k \log k)$ time and make at most ck comparisons in $O(k)$ time for a total combine step of $O(k \log k)$.
- But we said in the worst case, there are n vertices in P_{m} and so worst case, the combine step takes $O(n \log n)$ time.

Time analysis

- But we said in the worst case, there are n vertices in P_{m} and so worst case, the combine step takes $O(n \log n)$ time.
- Runtime recursion:

$$
T(n)=2 T\left(\frac{n}{2}\right)+O(n \log n)
$$

This is $T(n)=O\left(n(\log n)^{\wedge} 2\right)$
Pre-processing : Sort by both x and y , keep pointers between sorted lists Maintain sorting in recursive calls reduces to $T(n)=2 T(n / 2)+O(n)$, so $T(n)$ is $O(n \log n)$

