
Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

COL702: Advanced Data Structures and Algorithms

ALGORITHM MINING TECHNIQUES

Deeper Analysis: What else does the algorithm already give us?

Augmentation: What additional information could we glean just by
keeping track of the progress of the algorithm?

Modification: How can we use the same idea to solve new problems
in a similar way?

Reduction: how can we use the algorithm as a black box to solve
new problems?

GRAPH REACHABILITY AND DFS

Graph reachability: Given a directed graph 𝐺 , and a starting vertex 𝑣 ,
return an array that specifies for each vertex 𝑢 whether 𝑢 is reachable
from 𝑣

Depth-First Search (DFS): An efficient algorithm for Graph
reachability
Breadth-First Search (BFS): Another efficient algorithm for Graph
reachability.

Graph represents network, with edges representing communication
links.

Edge weights are bandwidth of link, how much can be sent

MAX BANDWIDTH PATH

A B
C

F
G H

D E

5

3 56

4

7

8
3

8

9

6

5
7

What is the largest bandwidth of a path from A to H?

Instance: Directed graph 𝐺 = (𝑉, 𝐸) with positive edge weights, 𝑤(𝑒),
two vertices s, t ∈ 𝑉

Solution type: a path 𝑝 from 𝑠 to 𝑡 in 𝐺 .

Bandwidth of a path:
BW 𝑝 = min

!∈#
𝑤(𝑒)

Objective: Over all possible paths 𝑝 between 𝑠 and 𝑡 , find one that
maximizes BW 𝑝 .

PROBLEM STATEMENT

Two kinds of ideas:
Modify an existing algorithm (DFS, BFS, Dijkstra’s algorithm)
Use an existing algorithm (DFS) as a sub-routine (possibly

modifying the input when you run the algorithm

BRAINSTORMING RESULTS

One approach: “Add edges from highest weight to lowest, stopping
when there is a path from 𝑠 to 𝑡”

RELATED APPROACH

A B
C

F
G H

D E

5

3 56

4

7

8
3

8

9

6

5
7

What is the largest bandwidth of a path from A to H?

These approaches use reductions
We are using a known algorithm for a related problem to create a

new algorithm for a new problem

Here the known problem is : Graph search or Graph reachability

The known algorithms for this problem include Depth-first search and
Breadth-first search

In a reduction, we map instances of one problem to instances of
another. We can then use any known algorithm for that second
problem as a sub-routine to create an algorithm for the first.

REDUCING TO GRAPH SEARCH

Graph reachability:
Given a directed graph

𝐺 and a start vertex 𝑠,

produce the set 𝑋 ⊆ 𝑉 of all vertices 𝑣 reachable from 𝑠 by a directed path in 𝐺.

REDUCTION FROM A DECISION VERSION

• Reachability is Boolean (yes, it is reachable or no it is not) whereas
MaxBandwidth is optimization (what is the best bandwidth path)

• To show the connection, let’s look at a Decision version of Max
bandwidth path:

• Decision Version of MaxBandwidth
Given 𝐺, 𝑠, 𝑡 , 𝐵 , is there a path of bandwidth 𝐵 or better from 𝑠 to 𝑡?

Say 𝐵 = 7, and we want to decide whether there is a bandwidth 7 or
better path from A to H. Which edges could we use in such a path?
Can we use any such edges?

MAX BANDWIDTH PATH

A B
C

F
G H

D E

5

3 56

4

7

8
3

8

9

6

5
7

Let 𝐸$ = { 𝑒 ∶ 𝑤(𝑒) ≥ 𝐵}

Lemma: There is a path from 𝑠 to 𝑡 of bandwidth at least 𝐵
if and only if there is a path from 𝑠 to 𝑡 in 𝐸$

DECISION TO REACHABILITY

Let 𝐸! = { 𝑒 ∶ 𝑤(𝑒) ≥ 𝐵}

Lemma: There is a path from 𝑠 to 𝑡 of bandwidth at least 𝐵
if and only if there is a path from 𝑠 to 𝑡 in 𝐸!

Proof: If 𝑝 is a path of bandwidth 𝐵𝑊 𝑝 ≥ 𝐵 , then every edge in 𝑝 must
have 𝑤 𝑒 ≥ 𝐵 and so is in 𝐸! . Conversely, if there is a path from 𝑠 to 𝑡
with every edge in 𝐸! , the minimum weight edge 𝑒 in that path must be in
𝐸! , so 𝐵𝑊 𝑝 = 𝑤 𝑒 ≥ 𝐵

So to decide the decision problem, we can use reachability: Construct 𝐸!
by testing each edge. Then use reachability on 𝑠, 𝑡 , 𝐸!

DECISION TO REACHABILITY

Solving one reachability problem, using any known algorithm for
reachability, we can answer a ``higher/lower’’ question about the max
bandwidth:

“Is the max bandwidth of a path at least 𝐵?”

WHAT THIS ALLOWS US TO DO

Suggested approach
“If we can test whether the best is at least B, we can find the best
value by starting at the largest possible one and reducing it until we
get a yes answer.”
Here, possible bandwidths = weights of edges
In our example, this is the list: 3, 5, 6, 7, 8, 9
Is there a path of bandwidth 9? If not,
Is there a path of bandwidth 8? If not
Is there a path of bandwidth 7? If not,….

REDUCING OPTIMIZATION TO DECISION

Let 𝑛 = |𝑉|, 𝑚 = |𝐸|
From previous classes, we know DFS time 𝑂(𝑛 + 𝑚)
When we run it on 𝐸$, no worse than running on E, since

|𝐸$| ≤ |𝐸|
In the above strategy, how many DFS runs do we make in the worst-
case?

What is the total time?

TIME FOR THIS APPROACH

Let 𝑛 = |𝑉|, 𝑚 = |𝐸|
From previous classes, we know DFS time 𝑂(𝑛 + 𝑚)
When we run it on 𝐸$, no worse than running on E, since

|𝐸$| ≤ |𝐸|
In the above strategy, how many DFS runs do we make in the worst-
case? Each edge might have a different weight, and we might not find a
path until we reach the smallest, so we might run DFS 𝑚 times

What is the total time? Running an 𝑂(𝑛 + 𝑚) algorithm 𝑚 times means
total time 𝑂(𝑚(𝑚 + 𝑛)) = 𝑂(𝑚%)

TIME FOR THIS APPROACH

Is there a better way we could search for the optimal value?

IDEAS FOR IMPROVEMENT

Create sorted array of possible edge weights.
3 5 6 7 8 9

See if there is a path of bandwidth at least the median value
Is there a path of bandwidth 6? Yes
If so, look in the upper part of the values, if not, the lower part,

always testing the value in the middle
6 7 8 9 Is there a path of bandwidth 8? No
6 7 Is there one of bandwidth 7? No.
Therefore, best is 6

BINARY SEARCH

How many DFS runs do we need in this version, in the worst case?

What is the total time of the algorithm?

TOTAL TIME FOR BINARY SEARCH VERSION

How many DFS runs do we need in this version, in the worst case?
log m runs total = O(log n) runs
What is the total time of the algorithm?
Sorting array : O(m log n) with mergesort
O(log n) runs of DFS at O(n+m) time per run = O((n+m)log n) time
Total : O((n+m) log n)

TOTAL TIME FOR BINARY SEARCH VERSION

This is pretty good, but maybe we can do even better by looking at
how graph search algorithms work, rather than just using them as a
“black box”

Let’s return to a linear search, where we ask “Is there a path of the
highest edge weight bandwidth? Second highest?” and so on.

We will use the idea of synergy, that we looked at before. Although
each such search takes linear time worst-case, and we have a linear
number of them, we’ll show how to do ALL of them together in the
worst-case time essentially of doing ONE search.

MODIFYING GRAPH SEARCH

Can think of adding just one edge at a time, from highest weight to
lowest weight. So the different searches just differ by a single edge.
What can happen? Before we add in the next edge, say from u to v,
some of the nodes were marked visited, others not. s must be marked,
but not t

WHAT IS THE DIFFERENCE BETWEEN SEARCHES?

Visited Not
visited

u

s

v

t

What are the possible cases about u, v?
What happens to reachable set in each case?

Case 1: u and v were both visited. How does the set of visited vertices
change?

UPDATING VISITED: CASE 1

Case 2: u is not reachable (and v can be either reachable or not). How
does the set of reachable vertices change ?

UPDATING VISITED: CASE 2

Case 3: u is reachable and v is not reachable. How does the set of
reachable vertices change ?

UPDATING VISITED: CASE 3

Case 3: u is reachable and v is not reachable. Anything reachable
from v should become reachable, but we don’t need to re-explore
already discovered parts of the graph.
Run explore(G,v), but don’t erase visited before doing it.

UPDATING VISITED: CASE 3

Note: other cases, constant time per edge.
Case 3: u is reachable and v is not reachable. Run explore(G,v), but
don’t erase visited before doing it. Could be up to linear time BUT:

UPDATING VISITED: CASE 3 TIME ANALYSIS

Note: other cases, constant time per edge.
Case 2: 𝑢 is reachable and 𝑣 is not reachable. Run explore(𝐺, 𝑣), but
don’t erase visited before doing it. Could be up to linear time BUT time
For this search is at most size of region discovered in THIS search,
which is disjoint from past and future searches!

UPDATING VISITED: CASE 3 TIME ANALYSIS

Visited us v

t
Past

Current
Future

Could be up to linear time BUT time
For this search is at most size of region discovered in THIS search,
which is disjoint from past and future searches! Therefore, total time for
ALL searches is at most sum of sizes of parts discovered in each, at
most all the edges.

UPDATING VISITED: CASE 3 TIME ANALYSIS

Visited us v

t
Past

Current
Future

Although we are performing explores in a different order, we still only
explore from each vertex ONCE, overall.
So total time for all explores is still 𝑂(𝑛 + 𝑚) for the same reason as

Before.

One cheat: We assumed the edges came sorted. If we need to sort
them , this could take 𝑂(𝑚 log 𝑚) time, for a total of 𝑂(𝑛 + 𝑚 log 𝑚),
essentially the same as the binary search method. (Under many
circumstances, there are faster ways to sort, e.g., counting, radix sort)

ANOTHER WAY TO VIEW IT

Reduction is in many ways easier and less confusing, once you get
the hang of it. It is more modular, in that you can treat the original
algorithm, its correctness and its time analysis all in a “black box”
manner.

Modification is sometimes necessary if we can’t come up with a
reduction. It can also lead sometimes to better algorithms than
reductions. But using modifications successfully require us not just to
know WHAT the starting algorithm is, but WHY it works and WHY it is
fast.

REDUCTION VS. MODIFICATION

Sometimes, solving related problems many times is cheaper in bulk
than solving them each individually would be. We should look for
places where problems overlap, or where the problems are changing
incrementally.

SYNERGY

