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ALGORITHM MINING TECHNIQUES

Deeper Analysis: What else does the algorithm already give us?  

Augmentation:  What additional information could we glean just by 
keeping track of the progress of the algorithm?

Modification: How can we use the same idea to solve new problems 
in a similar way?

Reduction:  how can we use the algorithm as a black box to solve 
new problems? 



GRAPH REACHABILITY AND DFS

Graph reachability: Given a directed graph 𝐺 , and a starting vertex 𝑣 , 
return an array that specifies for each vertex 𝑢 whether 𝑢 is reachable 
from 𝑣

Depth-First Search (DFS):  An efficient algorithm for Graph 
reachability
Breadth-First Search (BFS): Another efficient algorithm for Graph 
reachability.  



Graph represents network, with edges representing communication 
links.  

Edge weights are bandwidth of link, how much can be sent
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What is the largest bandwidth of a path from A to H? 



Instance: Directed graph 𝐺 = (𝑉, 𝐸) with positive edge weights, 𝑤(𝑒), 
two vertices s, t ∈ 𝑉

Solution type: a path 𝑝 from 𝑠 to 𝑡 in 𝐺 .

Bandwidth of a path:
BW 𝑝 = min

!∈#
𝑤(𝑒)

Objective: Over all possible paths 𝑝 between 𝑠 and 𝑡 , find one that 
maximizes BW 𝑝 .

PROBLEM STATEMENT



Two kinds of ideas:
Modify an existing algorithm (DFS, BFS, Dijkstra’s algorithm)
Use an existing algorithm (DFS) as a sub-routine (possibly 

modifying the input when you run the algorithm

BRAINSTORMING RESULTS



One approach:  “Add edges from highest weight to lowest, stopping 
when there is a path from 𝑠 to 𝑡”

RELATED APPROACH
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What is the largest bandwidth of a path from A to H? 



These approaches use reductions 
We are using a known algorithm for a related problem to create a 

new algorithm for a new problem

Here the known problem is : Graph search or Graph reachability

The known algorithms for this problem include Depth-first search and 
Breadth-first search

In a reduction, we map instances of one problem to instances of 
another.  We can then use any known algorithm for that second 
problem as a sub-routine to create an algorithm for the first.

REDUCING TO GRAPH SEARCH



Graph reachability:
Given a directed graph 

𝐺 and a start vertex 𝑠, 

produce the set 𝑋 ⊆ 𝑉 of all vertices 𝑣 reachable from 𝑠 by a directed path in 𝐺.



REDUCTION FROM A DECISION VERSION

• Reachability is Boolean (yes, it is reachable or no it is not) whereas 
MaxBandwidth is optimization (what is the best bandwidth path)

• To show the connection, let’s look at a Decision version of  Max 
bandwidth path:  

• Decision Version of MaxBandwidth
Given 𝐺, 𝑠, 𝑡 , 𝐵 , is there a path of bandwidth 𝐵 or better from 𝑠 to 𝑡?



Say 𝐵 = 7, and we want to decide whether there is a bandwidth 7 or 
better path from A to H.  Which edges could we use in such a path? 
Can we use any such edges?
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Let 𝐸$ = { 𝑒 ∶ 𝑤(𝑒) ≥ 𝐵}

Lemma:  There is a path from 𝑠 to 𝑡 of bandwidth at least 𝐵
if and only if there is a path from 𝑠 to 𝑡 in 𝐸$

DECISION TO REACHABILITY



Let 𝐸! = { 𝑒 ∶ 𝑤(𝑒) ≥ 𝐵}

Lemma:  There is a path from 𝑠 to 𝑡 of bandwidth at least 𝐵
if and only if there is a path from 𝑠 to 𝑡 in 𝐸!

Proof:  If 𝑝 is a path of bandwidth 𝐵𝑊 𝑝 ≥ 𝐵 , then every edge in 𝑝 must 
have 𝑤 𝑒 ≥ 𝐵 and so is in 𝐸! .  Conversely, if there is a path from 𝑠 to 𝑡
with every edge in 𝐸! , the minimum weight edge 𝑒 in that path must be in 
𝐸! , so 𝐵𝑊 𝑝 = 𝑤 𝑒 ≥ 𝐵

So to decide the decision problem, we can use reachability:  Construct 𝐸!
by testing each edge. Then use reachability on 𝑠, 𝑡 , 𝐸!

DECISION TO REACHABILITY



Solving one reachability problem, using any known algorithm for 
reachability, we can answer a ``higher/lower’’ question about the max 
bandwidth:

“Is the max bandwidth of a path at least 𝐵?”

WHAT THIS ALLOWS US TO DO



Suggested approach
“If we can test whether the best is at least B, we can find the best 
value by starting at the largest possible one and reducing it until we 
get a yes answer.”
Here, possible bandwidths = weights of edges
In our example, this is the list: 3, 5, 6, 7, 8, 9 
Is there a path of bandwidth 9?  If not,
Is there a path of bandwidth 8?  If not
Is there a path of bandwidth 7?  If not,….

REDUCING OPTIMIZATION TO DECISION



Let 𝑛 = |𝑉|, 𝑚 = |𝐸|
From previous classes, we know DFS time 𝑂(𝑛 + 𝑚)
When we run it on 𝐸$ , no worse than running on E, since

|𝐸$| ≤ |𝐸|
In the above strategy, how many DFS runs do we make in the worst-
case?

What is the total time?  

TIME FOR THIS APPROACH



Let 𝑛 = |𝑉|, 𝑚 = |𝐸|
From previous classes, we know DFS time 𝑂(𝑛 + 𝑚)
When we run it on 𝐸$ , no worse than running on E, since

|𝐸$| ≤ |𝐸|
In the above strategy, how many DFS runs do we make in the worst-
case? Each edge might have a different weight, and we might not find a 
path until we reach the smallest, so we might run DFS 𝑚 times

What is the total time?  Running an 𝑂(𝑛 + 𝑚) algorithm 𝑚 times means 
total time 𝑂(𝑚(𝑚 + 𝑛)) = 𝑂(𝑚%)

TIME FOR THIS APPROACH



Is there a better way we could search for the optimal value?

IDEAS FOR IMPROVEMENT



Create sorted array of possible edge weights.  
3  5  6  7 8 9

See if there is a path of bandwidth at least the median value
Is there a path of bandwidth 6?  Yes
If so, look in the upper part of the values, if not, the lower part,

always testing the value in the middle 
6 7 8 9  Is there a path of bandwidth 8?  No
6 7  Is there one of bandwidth 7?  No.
Therefore, best is 6

BINARY SEARCH



How many DFS runs do we need in this version, in the worst case?

What is the total time of the algorithm?

TOTAL TIME FOR BINARY SEARCH VERSION



How many DFS runs do we need in this version, in the worst case?
log m runs total = O(log n) runs
What is the total time of the algorithm?
Sorting array : O(m log n) with mergesort
O(log n) runs of DFS at O(n+m) time per run = O((n+m)log n) time
Total : O((n+m) log n)

TOTAL TIME FOR BINARY SEARCH VERSION



This is pretty good, but maybe we can do even better by looking at 
how graph search algorithms work, rather than just using them as a 
“black box” 

Let’s return to a linear search, where we ask “Is there a path of the 
highest edge weight bandwidth?  Second highest?” and so on.  

We will use the idea of synergy, that we looked at before. Although 
each such search takes linear time worst-case, and we have a linear 
number of them, we’ll show how to do ALL of them together in the 
worst-case time essentially of doing ONE search.

MODIFYING GRAPH SEARCH



Can think of adding just one edge at a time, from highest weight to 
lowest weight.  So the different searches just differ by a single edge.
What can happen?    Before we add in the next edge, say from u to v,
some of the nodes were marked visited, others not.  s must be marked, 
but not t

WHAT IS THE DIFFERENCE BETWEEN SEARCHES?

Visited Not 
visited

u

s

v

t

What are the possible cases about u, v?  
What happens to reachable set in each case?



Case 1:  u and v were both visited.  How does the set of visited vertices 
change?  

UPDATING VISITED: CASE 1



Case 2:  u is not reachable (and v can be either reachable or not). How 
does the set of reachable vertices  change ? 

UPDATING VISITED: CASE 2



Case 3:  u is reachable and v is not reachable. How does the set of 
reachable vertices  change ? 

UPDATING VISITED: CASE 3



Case 3:  u is reachable and v is not reachable.  Anything reachable 
from v should become reachable, but we don’t need to re-explore 
already discovered parts of the graph.  
Run explore(G,v), but don’t erase visited before doing it.

UPDATING VISITED: CASE 3



Note: other cases, constant time per edge.
Case 3:  u is reachable and v is not reachable. Run explore(G,v), but 
don’t erase visited before doing it. Could be up to linear time BUT:

UPDATING VISITED: CASE 3 TIME ANALYSIS



Note: other cases, constant time per edge.
Case 2:  𝑢 is reachable and 𝑣 is not reachable. Run explore(𝐺, 𝑣), but 
don’t erase visited before doing it. Could be up to linear time BUT time
For this search is at most size of region discovered in THIS search, 
which is disjoint from past and future searches! 

UPDATING VISITED: CASE 3 TIME ANALYSIS
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Could be up to linear time BUT time
For this search is at most size of region discovered in THIS search, 
which is disjoint from past and future searches! Therefore, total time for 
ALL searches is at most sum of sizes of parts discovered in each, at 
most all the edges.  

UPDATING VISITED: CASE 3 TIME ANALYSIS
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Although we are performing explores in a different order, we still only 
explore from each vertex ONCE, overall.
So total time for all explores is still 𝑂(𝑛 + 𝑚) for the same reason as

Before.

One cheat:  We assumed the edges came sorted.  If we need to sort 
them , this could take 𝑂(𝑚 log 𝑚) time, for a total of 𝑂(𝑛 + 𝑚 log 𝑚),
essentially the same as the binary search method.   (Under many 
circumstances, there are faster ways to sort, e.g., counting, radix sort)

ANOTHER WAY TO VIEW IT



Reduction is in many ways easier and less confusing, once you get 
the hang of it.  It is more modular, in that you can treat the original 
algorithm, its correctness and its time analysis all in a “black box” 
manner.

Modification is sometimes necessary if we can’t come up with a 
reduction.  It can also lead sometimes to better algorithms than 
reductions. But using modifications successfully require us not just to 
know WHAT the starting algorithm is, but WHY it works and WHY it is 
fast.  

REDUCTION VS. MODIFICATION



Sometimes, solving related problems many times is cheaper in bulk 
than solving them each individually would be.  We should look for 
places where problems overlap, or where the problems are changing 
incrementally.

SYNERGY


