COL702: Advanced Data Structures and Algorithms

Ragesh Jaiswal, IITD

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- Idea\#1: Implement them on some platform, run and check.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- Idea\#1: Implement them on some platform, run and check.
- The speed of programs P1 (implementation of A1) and P2 (implementation of A2) may depend on various factors:
- Input
- Hardware platform
- Software platform
- Quality of the underlying algorithm

Introduction

- Idea\#1: Implement them on some platform, run and check.
- Let P1 denote implementation of A1 and P2 denote implementation of A2.
- Issues with Idea\#1:
- If P1 and P2 are run on different platforms; then the performance results are incomparable.
- Even if P1 and P2 are run on the same platform, it does not tell us how A1 and A2 compare on some other platform.
- There might be infinitely many inputs to compare the performance on.
- There is the extra burden of implementing both algorithms, whereas what we wanted was first to figure out which one is better and then implement just that one.
- So, we need a platform-independent way of comparing algorithms.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution:
- Any algorithm is expressed in terms of basic operations such as assignment, method call, arithmetic, comparison.
- For a fixed input, we will count the number of these basic operations in our algorithm. Suppose the number of these operations is b.
- We will assume that the amount of time required to execute these basic operations is at most some constant T, which is independent of the input size.
- The running time of the algorithm will be at most ($b \cdot T$).

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution:
- Any algorithm is expressed in terms of basic operations such as assignment, method call, arithmetic, comparison.
- For a fixed input, we will count the number of these basic operations in our algorithm. Suppose the number of these operations is b.
- We will assume that the amount of time required to execute these basic operations is at most some constant T, which is independent of the input size.
- The running time of the algorithm will be at most ($b \cdot T$).
- But, what about other inputs? We are interested in measuring the performance of an algorithm and not the performance of an algorithm on a given input.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Count the number of basic operations.
- How do we measure performance for all inputs?

Example

FindPositiveSum (A, n)

- sum $\leftarrow 0$
- For $i=1$ to n
- if $(A[i]>0)$ sum $\leftarrow \operatorname{sum}+A[i]$
- return(sum)
- Note that the number of operations grows with the array size n.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Count the number of basic operations.
- How do we measure performance for all inputs?

Example

```
FindPositiveSum ( \(A, n\) )
    - sum \(\leftarrow 0\)
    - For \(i=1\) to \(n\)
    - if \((A[i]>0)\) sum \(\leftarrow \operatorname{sum}+A[i]\)
- return(sum)
```

- Note that the number of operations grows with the array size n.
- Even for all arrays of a fixed size n, the number of operations may vary depending on the numbers present in the array.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Count the number of basic operations.
- How do we measure performance for all inputs?

Example

FindPositiveSum (A, n)

- sum $\leftarrow 0$
- For $i=1$ to n
- if $(A[i]>0)$ sum $\leftarrow \operatorname{sum}+A[i]$
- return(sum)
- Note that the number of operations grows with the array size n.
- Even for all arrays of a fixed size n, the number of operations may vary depending on the numbers present in the array.
- For inputs of size n, we will count the number of operations in the worst-case. That is the number of operations for the worst-case input of size n.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Count the worst-case number of basic operations $b(n)$ for inputs of size n and then analyse how this function $b(n)$ behaves as n grows. This is known as worst-case analysis.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Count the worst-case number of basic operations $b(n)$ for inputs of size n and then analyse how this function $b(n)$ behaves as n grows. This is known as worst-case analysis.

Example

FindPositiveSum (A, n)	
\quad - sum $\leftarrow 0$	$[1$ assignment $]$
- For $i=1$ to n	$[1 \text { assignment }+1 \text { comparison }+1 \text { arithmetic }]^{*} n$
$\quad-$ if $(A[i]>0)$ sum \leftarrow sum $+A[i]$	$[1 \text { assignment }+1 \text { arithmetic }+1 \text { comparison }]^{*} n$
$-\operatorname{return}($ sum $)$	$[1$ return $]$
	Total: $6 n+2$

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Count the worst-case number of basic operations $b(n)$ for inputs of size n and then analyse how this function $b(n)$ behaves as n grows. This is known as worst-case analysis.
- Few observations:
- Usually, the running time grows with the input size n.
- Consider two algorithm A1 and A2 for the same problem. A1 has a worst-case running time $(100 n+1)$ and A2 has a worst-case running time $\left(2 n^{2}+3 n+1\right)$. Which one is better?
- A2 runs faster for small inputs (e.g., $n=1,2$)
- A1 runs faster for all large inputs (for all $n \geq 49$)

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Count the worst-case number of basic operations $b(n)$ for inputs of size n and then analyse how this function $b(n)$ behaves as n grows. This is known as worst-case analysis.
- Few observations:
- Usually, the running time grows with the input size n.
- Consider two algorithm A1 and A2 for the same problem. A1 has a worst-case running time $(100 n+1)$ and A2 has a worst-case running time $\left(2 n^{2}+3 n+1\right)$. Which one is better?
- A2 runs faster for small inputs (e.g., $n=1,2$)
- A1 runs faster for all large inputs (for all $n \geq 49$)
- We would like to make a statement independent of the input size. What is a meaningful solution?

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Count the worst-case number of basic operations $b(n)$ for inputs of size n and then analyse how this function $b(n)$ behaves as n grows. This is known as worst-case analysis.
- Observations regarding worst-case analysis:
- Usually, the running time grows with the input size n.
- Consider two algorithm A1 and A2 for the same problem. A1 has a worst-case running time $(100 n+1)$ and A2 has a worst-case running time $\left(2 n^{2}+3 n+1\right)$. Which one is better?
- A2 runs faster for small inputs (e.g., $n=1,2$)
- A1 runs faster for all large inputs (for all $n \geq 49$)
- We would like to make a statement independent of the input size.
- Solution: Asymptotic analysis
- We consider the running time for large inputs.
- A1 is considered better than A2 since A1 will beat A2 eventually.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Do an asymptotic worst-case analysis.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Do an asymptotic worst-case analysis.
- Observations regarding asymptotic worst-case analysis:
- It is difficult to count the number of operations at an extremely fine level.
- Asymptotic analysis means that we are interested only in the rate of growth of the running time function w.r.t. the input size. For example, note that the rates of growth of functions $\left(n^{2}+5 n+1\right)$ and $\left(n^{2}+2 n+5\right)$ is determined by the n^{2} (quadratic) term. The lower-order terms are insignificant. So, we may as well drop them.

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Do an asymptotic worst-case analysis.
- Observations regarding asymptotic worst-case analysis:
- It is difficult to count the number of operations at an extremely fine level and keep track of these constants.
- Asymptotic analysis means that we are interested only in the rate of growth of the running time function w.r.t. the input size. For example, note that the rates of growth of functions $\left(n^{2}+5 n+1\right)$ and $\left(n^{2}+2 n+5\right)$ is determined by the n^{2} (quadratic) term. The lower-order terms are insignificant. So, we may as well drop them.
- The nature of the growth rate of functions $2 n^{2}$ and $5 n^{2}$ are the same. Both are quadratic functions. It makes sense to drop these constants, too, when interested in the nature of the growth functions.
- We need a notation to capture the above ideas.

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- Show that: $8 n+5=O(n)$.

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- Show that: $8 n+5=O(n)$.
- For constants $c=13$ and $n_{0}=1$, we show that
$\forall n \geq n_{0}, 8 n+5 \leq 13 \cdot n$. So, by definition of big-O, $8 n+5=O(n)$.

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- $g(n)$ may be interpreted as an upper bound on $f(n)$.
- Show that: $8 n+5=O(n)$.
- Is this true $8 n+5=O\left(n^{2}\right)$?

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

- Another short way of saying that $f(n)=O(g(n))$ is " $f(n)$ is order of $g(n)$ ".
- $g(n)$ may be interpreted as an upper bound on $f(n)$.
- Show that: $8 n+5=O(n)$.
- Is this true $8 n+5=O\left(n^{2}\right)$? Yes
- $g(n)$ may be interpreted as an upper bound on $f(n)$.
- How do we capture lower bound?

Introduction

Big-O Notation

Definition (Big-Omega)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $\Omega(g(n))$ (or $f(n)=\Omega(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \geq c \cdot g(n)
$$

Introduction

Big-O Notation

Definition (Big-Omega)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $\Omega(g(n))$ (or $f(n)=\Omega(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \geq c \cdot g(n)
$$

- Show that: $f(n)=\Omega(g(n))$ iff $g(n)=O(f(n))$.

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

Definition (Big-Omega)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $\Omega(g(n))$ (or $f(n)=\Omega(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \geq c \cdot g(n)
$$

- How do we say that $g(n)$ is both an upper bound and lower bound for a function $f(n)$? In other words, $g(n)$ is a tight bound on $f(n)$.

Introduction

Big-O Notation

Definition (Big-O)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $O(g(n))$ (or $f(n)=O(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \leq c \cdot g(n)
$$

Definition (Big-Omega)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $\Omega(g(n))$ (or $f(n)=\Omega(g(n))$ in short) iff there is a real constant $c>0$ and an integer constant $n_{0} \geq 1$ such that:

$$
\forall n \geq n_{0}, f(n) \geq c \cdot g(n)
$$

Definition (Big-Theta)

Let $f(n)$ and $g(n)$ be functions mapping positive integers to positive real numbers. We say that $f(n)$ is $\Theta(g(n))$ (or $f(n)=\Theta(g(n)))$ iff $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$.

- Question: Show that $3 n \log n+4 n+5 \log n$ is $\Theta(n \log n)$.

Big-O Notation

- Growth rates:
- Arrange the following functions in ascending order of growth rate:
- n
- $2^{\sqrt{\log n}}$
- $n^{\log n}$
- $2^{\log n}$
- $n / \log n$
- n^{n}

Introduction

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
- What we need is a platform-independent way of comparing algorithms.
- Solution: Do an asymptotic worst-case analysis recording the running time using $\operatorname{Big}-(\mathrm{O}, \Omega, \Theta)$ notation.

Introduction

- How do we describe an algorithm?
- Using a pseudocode.
- What are the desirable features of an algorithm?
(1) It should be correct.
- We use proof of correctness to argue correctness.
(2) It should run fast.
- We do an asymptotic worst-case analysis noting the running time in $\operatorname{Big}-(O, \Omega, \Theta)$ notation and use it to compare algorithms.

End

