
COL702: Advanced Data Structures and
Algorithms

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

Idea#1: Implement them on some platform, run and check.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

Idea#1: Implement them on some platform, run and check.
The speed of programs P1 (implementation of A1) and P2
(implementation of A2) may depend on various factors:

Input
Hardware platform
Software platform
Quality of the underlying algorithm

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Idea#1: Implement them on some platform, run and check.

Let P1 denote implementation of A1 and P2 denote
implementation of A2.

Issues with Idea#1:

If P1 and P2 are run on different platforms; then the
performance results are incomparable.
Even if P1 and P2 are run on the same platform, it does not
tell us how A1 and A2 compare on some other platform.
There might be infinitely many inputs to compare the
performance on.
There is the extra burden of implementing both algorithms,
whereas what we wanted was first to figure out which one is
better and then implement just that one.

So, we need a platform-independent way of comparing
algorithms.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

What we need is a platform-independent way of comparing
algorithms.

Solution:

Any algorithm is expressed in terms of basic operations such as
assignment, method call, arithmetic, comparison.
For a fixed input, we will count the number of these basic
operations in our algorithm. Suppose the number of these
operations is b.
We will assume that the amount of time required to execute
these basic operations is at most some constant T , which is
independent of the input size.
The running time of the algorithm will be at most (b · T ).

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

What we need is a platform-independent way of comparing
algorithms.

Solution:

Any algorithm is expressed in terms of basic operations such as
assignment, method call, arithmetic, comparison.
For a fixed input, we will count the number of these basic
operations in our algorithm. Suppose the number of these
operations is b.
We will assume that the amount of time required to execute
these basic operations is at most some constant T , which is
independent of the input size.
The running time of the algorithm will be at most (b · T ).
But, what about other inputs? We are interested in
measuring the performance of an algorithm and not the
performance of an algorithm on a given input.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform-independent way of comparing
algorithms.
Solution: Count the number of basic operations.

How do we measure performance for all inputs?

Example

FindPositiveSum(A, n)
- sum← 0
- For i = 1 to n

- if (A[i ] > 0) sum← sum + A[i ]
- return(sum)

Note that the number of operations grows with the array size n.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform-independent way of comparing
algorithms.
Solution: Count the number of basic operations.

How do we measure performance for all inputs?

Example

FindPositiveSum(A, n)
- sum← 0
- For i = 1 to n

- if (A[i ] > 0)sum← sum + A[i ]
- return(sum)

Note that the number of operations grows with the array size n.
Even for all arrays of a fixed size n, the number of operations may
vary depending on the numbers present in the array.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform-independent way of comparing
algorithms.
Solution: Count the number of basic operations.

How do we measure performance for all inputs?

Example

FindPositiveSum(A, n)
- sum← 0
- For i = 1 to n

- if (A[i ] > 0)sum← sum + A[i ]
- return(sum)

Note that the number of operations grows with the array size n.
Even for all arrays of a fixed size n, the number of operations may
vary depending on the numbers present in the array.
For inputs of size n, we will count the number of operations in
the worst-case. That is the number of operations for the
worst-case input of size n.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

What we need is a platform-independent way of comparing
algorithms.

Solution: Count the worst-case number of basic operations
b(n) for inputs of size n and then analyse how this function
b(n) behaves as n grows. This is known as worst-case analysis.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform-independent way of comparing
algorithms.
Solution: Count the worst-case number of basic operations b(n)
for inputs of size n and then analyse how this function b(n)
behaves as n grows. This is known as worst-case analysis.

Example

FindPositiveSum(A, n)
- sum← 0 [1 assignment]

- For i = 1 to n [1 assignment + 1 comparison + 1 arithmetic]*n

- if (A[i ] > 0)sum← sum + A[i ] [1 assignment + 1 arithmetic + 1 comparison]*n

- return(sum) [1 return]

Total: 6n + 2

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform-independent way of comparing
algorithms.
Solution: Count the worst-case number of basic operations b(n)
for inputs of size n and then analyse how this function b(n)
behaves as n grows. This is known as worst-case analysis.
Few observations:

Usually, the running time grows with the input size n.
Consider two algorithm A1 and A2 for the same problem. A1 has a
worst-case running time (100n + 1) and A2 has a worst-case
running time (2n2 + 3n + 1). Which one is better?

A2 runs faster for small inputs (e.g., n = 1, 2)
A1 runs faster for all large inputs (for all n ≥ 49)

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform-independent way of comparing
algorithms.
Solution: Count the worst-case number of basic operations b(n)
for inputs of size n and then analyse how this function b(n)
behaves as n grows. This is known as worst-case analysis.
Few observations:

Usually, the running time grows with the input size n.
Consider two algorithm A1 and A2 for the same problem. A1 has a
worst-case running time (100n + 1) and A2 has a worst-case
running time (2n2 + 3n + 1). Which one is better?

A2 runs faster for small inputs (e.g., n = 1, 2)
A1 runs faster for all large inputs (for all n ≥ 49)

We would like to make a statement independent of the input size.
What is a meaningful solution?

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform-independent way of comparing
algorithms.
Solution: Count the worst-case number of basic operations b(n)
for inputs of size n and then analyse how this function b(n)
behaves as n grows. This is known as worst-case analysis.
Observations regarding worst-case analysis:

Usually, the running time grows with the input size n.
Consider two algorithm A1 and A2 for the same problem. A1 has a
worst-case running time (100n + 1) and A2 has a worst-case
running time (2n2 + 3n + 1). Which one is better?

A2 runs faster for small inputs (e.g., n = 1, 2)
A1 runs faster for all large inputs (for all n ≥ 49)

We would like to make a statement independent of the input size.
Solution: Asymptotic analysis

We consider the running time for large inputs.
A1 is considered better than A2 since A1 will beat A2 eventually.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform-independent way of comparing
algorithms.
Solution: Do an asymptotic worst-case analysis.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform-independent way of comparing
algorithms.
Solution: Do an asymptotic worst-case analysis.
Observations regarding asymptotic worst-case analysis:

It is difficult to count the number of operations at an extremely
fine level.
Asymptotic analysis means that we are interested only in the rate
of growth of the running time function w.r.t. the input size. For
example, note that the rates of growth of functions (n2 + 5n + 1)
and (n2 + 2n + 5) is determined by the n2 (quadratic) term. The
lower-order terms are insignificant. So, we may as well drop them.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we decide
which one runs faster?
What we need is a platform-independent way of comparing
algorithms.
Solution: Do an asymptotic worst-case analysis.
Observations regarding asymptotic worst-case analysis:

It is difficult to count the number of operations at an extremely
fine level and keep track of these constants.
Asymptotic analysis means that we are interested only in the rate
of growth of the running time function w.r.t. the input size. For
example, note that the rates of growth of functions (n2 + 5n + 1)
and (n2 + 2n + 5) is determined by the n2 (quadratic) term. The
lower-order terms are insignificant. So, we may as well drop them.
The nature of the growth rate of functions 2n2 and 5n2 are the
same. Both are quadratic functions. It makes sense to drop these
constants, too, when interested in the nature of the growth
functions.
We need a notation to capture the above ideas.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-O)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is O(g(n)) (or f (n) = O(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≤ c · g(n)

Another short way of saying that f (n) = O(g(n)) is “f (n) is
order of g(n)”.
Show that: 8n + 5 = O(n).

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-O)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is O(g(n)) (or f (n) = O(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≤ c · g(n)

Another short way of saying that f (n) = O(g(n)) is “f (n) is
order of g(n)”.
Show that: 8n + 5 = O(n).

For constants c = 13 and n0 = 1,we show that
∀n ≥ n0, 8n+ 5 ≤ 13 ·n. So, by definition of big-O, 8n+ 5 = O(n).

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-O)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is O(g(n)) (or f (n) = O(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≤ c · g(n)

Another short way of saying that f (n) = O(g(n)) is “f (n) is
order of g(n)”.
g(n) may be interpreted as an upper bound on f (n).
Show that: 8n + 5 = O(n).
Is this true 8n + 5 = O(n2)?

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-O)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is O(g(n)) (or f (n) = O(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≤ c · g(n)

Another short way of saying that f (n) = O(g(n)) is “f (n) is
order of g(n)”.
g(n) may be interpreted as an upper bound on f (n).
Show that: 8n + 5 = O(n).
Is this true 8n + 5 = O(n2)? Yes
g(n) may be interpreted as an upper bound on f (n).
How do we capture lower bound?

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-Omega)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is Ω(g(n)) (or f (n) = Ω(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≥ c · g(n)

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-Omega)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is Ω(g(n)) (or f (n) = Ω(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≥ c · g(n)

Show that: f (n) = Ω(g(n)) iff g(n) = O(f (n)).

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-O)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is O(g(n)) (or f (n) = O(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≤ c · g(n)

Definition (Big-Omega)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is Ω(g(n)) (or f (n) = Ω(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≥ c · g(n)

How do we say that g(n) is both an upper bound and lower
bound for a function f (n)? In other words, g(n) is a tight bound
on f (n).

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction
Big-O Notation

Definition (Big-O)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is O(g(n)) (or f (n) = O(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≤ c · g(n)

Definition (Big-Omega)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is Ω(g(n)) (or f (n) = Ω(g(n)) in
short) iff there is a real constant c > 0 and an integer constant n0 ≥ 1
such that:

∀n ≥ n0, f (n) ≥ c · g(n)

Definition (Big-Theta)

Let f (n) and g(n) be functions mapping positive integers to positive
real numbers. We say that f (n) is Θ(g(n)) (or f (n) = Θ(g(n))) iff
f (n) is O(g(n)) and f (n) is Ω(g(n)).

Question: Show that 3n log n + 4n + 5 log n is Θ(n log n).

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction
Big-O Notation

Growth rates:
Arrange the following functions in ascending order of growth
rate:

n
2
√
log n

nlog n

2log n

n/ log n
nn

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

Given two algorithms A1 and A2 for a problem, how do we
decide which one runs faster?

What we need is a platform-independent way of comparing
algorithms.

Solution: Do an asymptotic worst-case analysis recording the
running time using Big-(O, Ω, Θ) notation.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



Introduction

How do we describe an algorithm?

Using a pseudocode.

What are the desirable features of an algorithm?
1 It should be correct.

We use proof of correctness to argue correctness.

2 It should run fast.

We do an asymptotic worst-case analysis noting the running
time in Big-(O, Ω, Θ) notation and use it to compare
algorithms.

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms



End

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms


