A more careful analysis

```
function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)
function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
fib[2] = 1
for i = 3 to n:
    fib[i] = fib[i-1] + fib[i-2]
return fib[n]
```

Problem: we cannot count these additions as single operations! How many bits does F_n have?

Addition of *n*-bit numbers takes *O*(*n*) time.

Fib1: O(n 2^{0.7n}) time

Fib2: $O(n^2)$ time

Addition

Adding two *n*-bit numbers takes *O*(*n*) simple operations:

E.g. 22 + 13:

[22]10110[13]1101

Big-O notation

```
function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
    fib[i] = fib[i-1] + fib[i-2]
return fib[n]
```

Running time is proportional to n².

But what is the constant: is it 2n² or 3n² or what?

The constant depends upon:

The units of time – minutes, seconds, milliseconds,...

Specifics of the computer architecture.

It is *much* too hairy to figure out exactly. Moreover it is nowhere as important as the huge gulf between n^2 and 2^n . So we simply say the running time is $O(n^2)$.

Why graphs?

A cartographer's problem

Graph specified by nodes and edges.

node = country edge = neighbors

Graph coloring problem: color nodes of graph with as few colors as possible, so that there is no edge between nodes of the same color.

Exam scheduling

Example <t

210 1/19/1985 Kinder, LA

Schedule final exams:

- use as few time slots as possible
- can't schedule two exams in the same slot if there's a student taking both classes.

This is also graph coloring! Node = exam Edge = some student is taking both endpoint-exams Color = time slot

Animal crossing

Animals need to be ferried across a river

- Use as few boats as possible
- Cannot put two animals in the same boat if one will eat the other

This is, yet again, graph coloring!

Node = animal Edge = one endpoint-animal will eat the other Color = boat

Graph representations

G = (V,E) where V: vertices/nodes

E: edges

V = {1,2,3,4,5} E = {{1,2}, {2,3}, {3,4}, {2,5}, {4,5}} Undirected edges: symmetric relationship *Directed* graphs (x,y): edge *from* x *to* y

e.g.World wide web node URL edge (u,v) u points to v Billions of nodes and edges!

How are graphs stored on a computer?

Adjacency matrix

V x V matrix A A(i,j) = 1 if (i,j) is in E 0 otherwise

Symmetric if G undirected

 $\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$

Adjacency list

For each node, list of outgoing edges

PRO check for an edge in O(1) time CON uses up O(V²) space

PRO just O(V + E) spaceCON check for an edge in O(V) timePRO easily iterate through node's neighbors

Undirected graphs: adjacency list

Directed graphs: adjacency list

Reachability in undirected graphs

What parts of a graph are reachable from a given vertex?

With an adjacency list representation, this is like navigating a maze...

Potential difficulty	Don't go round in circles	Don't miss anything
Classical solution	Piece of chalk to mark visited junctions	Ball of string – leads back to starting point
Cyber-analog	Boolean variable for each vertex: visited or not	STACK

An exploration procedure

е

Does "explore" work?

```
procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
    if not visited[u]:
        explore(G,u)
```

Does it actually halt?

For any node u, explore(G,u) is called at most once; thereafter visited[u] is set. Does it visit everything reachable from v?

Suppose it misses node u reachable from v; we'll derive a contradiction.

Pick any path from v to u, and let z be the last node on the path that was visited.

But w would not have been overlooked during explore(G,z); this is a contradiction.

Alternative proof

```
procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
    if not visited[u]:
        explore(G,u)
```

Does explore(G,v) visit everything reachable from v?

Do a proof by induction.

Undirected connectivity

An undirected graph is *connected* if there is a path between any pair of nodes.

This graph has 2 connected components.

explore(G,v) returns the connected component containing v.

To explore the rest of the graph, restart explore() elsewhere.

DFS decomposes an undirected graph into its connected components!

procedure dfs(G)		
for all v in V:		
visited[v] = false		
for all v in V:		
if not visited[v]:		
explore(G,v)		

Running time analysis

```
procedure explore(G,v)
```

```
visited[v] = true
```

```
for each edge (v, u) in E:
```

```
if not visited[u]:
```

explore(G,u)

```
procedure dfs(G)
```

```
for all v in V:
    visited[v] = false
```

```
for all v in V:
```

```
if not visited[v]:
```

```
explore(G,v)
```

How long does dfs(G) take?

explore(G,v) is called exactly once for each node v.

DFS search forest

Terminology: DFS search forest consisting of two DFS search trees

— tree edge: traversed by DFS

back edge: not traversed (led to a node already visited)