
A more careful analysis

function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:

fib[i] = fib[i-1] + fib[i-2]
return fib[n]

Problem: we cannot count these additions as single operations!

How many bits does Fn have?

Addition of n-bit numbers takes O(n) time.

Fib1: O(n 20.7n) time

Fib2: O(n2) time

function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)



Addition

Adding two n-bit numbers takes O(n) simple operations:

E.g. 22 + 13:

[22] 1 0 1 1 0
[13] 1 1 0 1



Big-O notation

The constant depends upon:
The units of time – minutes, seconds, milliseconds,…
Specifics of the computer architecture.

It is much too hairy to figure out exactly. Moreover it is 
nowhere as important as the huge gulf between n2 and 2n.
So we simply say the running time is O(n2).

function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:

fib[i] = fib[i-1] + fib[i-2]
return fib[n]

Running time is 
proportional to n2.

But what is the constant: 
is it 2n2 or 3n2 or what?



Why graphs?

Graph specified by nodes and edges.
node = country
edge = neighbors

Graph coloring problem: color nodes of graph with as few colors as 
possible, so that there is no edge between nodes of the same color.

A cartographer’s problem
Costa Rica

Panama Honduras

Nicaragua Mexico

Guatemala

El Salvador

Belize

1

2

6 4

5 73

8



Exam scheduling

This is also graph coloring!
Node = exam
Edge = some student is taking

both endpoint-exams
Color = time slot

1

2 3

4

5

Schedule final exams:

- use as few time slots as possible

- can’t schedule two exams in the 
same slot if there’s a student 
taking both classes.

The registrar’s problem



Animal crossing

This is, yet again, graph coloring!

Node = animal
Edge = one endpoint-animal will eat the other
Color = boat

- Use as few boats as possible

- Cannot put two animals in the same boat if one will eat the other

Animals need to be ferried across a river



Graph representations

G = (V,E) where
V: vertices/nodes
E: edges

V = {1,2,3,4,5}
E = {{1,2}, {2,3}, {3,4}, {2,5}, {4,5}}
Undirected edges: symmetric 

relationship

Directed graphs
(x,y): edge from x to y

e.g.World wide web
node URL
edge (u,v) u points to v

Billions of nodes and edges!1

2 3

4

5



How are graphs stored on a computer?
Adjacency matrix
V x V matrix A
A(i,j) = 1 if (i,j) is in E

0 otherwise

Symmetric if G undirected

1

2 3
4

5

÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç

è

æ

01010
10100
01010
10101
00010

Adjacency list

For each node, list of 
outgoing edges

PRO  check for an edge in O(1) time
CON  uses up O(V2) space

1
2

2

3

5
4

1

3

5
4
3

2

42
5

PRO  just O(V + E) space
CON  check for an edge in O(V) time
PRO  easily iterate through node’s neighbors



Undirected graphs: adjacency list

1

2 3
4

5

1
2

2

3

5
4

1

3

5
4
3

2

42
5



Directed graphs: adjacency list

1

2 3
4

5

1
2

2

3

5
4

53

4
5



Reachability in undirected graphs
What parts of a graph are reachable from a given vertex?

a

b c

e

d

j

i

h

g

f

With an adjacency list representation, this is like navigating a maze...

Potential difficulty Don’t go round in
circles Don’t miss anything

Classical solution

Cyber-analog

Piece of chalk to mark
visited junctions

Ball of string – leads
back to starting point

Boolean variable for each
vertex: visited or not STACK



An exploration procedure

procedure explore(G,v)

input: graph G = (V,E); node v in V
output: visited[u] is set to true 

for all u reachable from v

visited[v] = true
for each edge (v,u) in E:

if not visited[u]:
explore(G,u)

a

c d

e

g

fb

explore(G,a):

a

b c

e

d

j

i

h

g

f



Does “explore” work?

procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:

if not visited[u]:
explore(G,u)

Does it actually halt?

For any node u, explore(G,u) is 
called at most once;
thereafter visited[u] is set.

Does it visit everything reachable from v?

Suppose it misses node u reachable from v; 
we’ll derive a contradiction.

Pick any path from v to u, and let z be the 
last node on the path that was visited.

But w would not have been overlooked 
during explore(G,z); this is a contradiction.

v z w u



Alternative proof

procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:

if not visited[u]:
explore(G,u)

Does explore(G,v) visit everything 
reachable from v?

Do a proof by induction.





Undirected connectivity

An undirected graph is connected if there 
is a path between any pair of nodes.

This graph has 2 connected components.

procedure dfs(G)

for all v in V:

visited[v] = false

for all v in V:

if not visited[v]:
explore(G,v)

explore(G,v) returns the connected 
component containing v. 
To explore the rest of the graph, 
restart explore() elsewhere.

a

c d

e

g

fb
i

h

j

explore(G,a) explore(G,h)

a

b c

e

d

j

i

h

g

f

DFS decomposes an undirected graph 
into its connected components!



Running time analysis

procedure explore(G,v) 
visited[v] = true 
for each edge (v,u) in E: 
 if not visited[u]: 
  explore(G,u)

procedure dfs(G) 
for all v in V: 
 visited[v] = false 
for all v in V: 
 if not visited[v]: 
  explore(G,v)

How long does dfs(G) take? 

explore(G,v) is called exactly once 
for each node v. 



Running time analysis

procedure explore(G,v)

visited[v] = true

for each edge (v,u) in E:

if not visited[u]:

explore(G,u)

procedure dfs(G)

for all v in V:

visited[v] = false

for all v in V:

if not visited[v]:
explore(G,v)

How long does dfs(G) take?

explore(G,v) is called exactly once 
for each node v.

DFS search forest

a

c d

e

g

fb
i

h

j

Terminology:  
DFS search forest consisting of 
two DFS search trees

tree edge: traversed by DFS

back edge: not traversed (led 
to a node already visited)

a

b c

e

d

j

i

h

g

f


