A more careful analysis

```
function Fib1(n)
if n = 1 return 1
if n = 2 return 1
return Fib1(n-1) + Fib1(n-2)
```

```
function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
    fib[i] = fib[i-1] + fib[i-2]
return fib[n]
```

Problem: we cannot count these additions as single operations!
How many bits does F_{n} have?

Addition of n-bit numbers takes $O(n)$ time.
Fib1: O(n $\left.2^{0.7 n}\right)$ time
Fib2: $O\left(n^{2}\right)$ time

Addition

Adding two n-bit numbers takes $O(n)$ simple operations:
E.g. $22+13$:
[22]
[13]
1
$\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}$

Big-O notation

```
function Fib2(n)
Create an array fib[1..n]
fib[1] = 1
fib[2] = 1
for i = 3 to n:
    fib[i] = fib[i-1] + fib[i-2]
return fib[n]
```

Running time is proportional to n^{2}.

But what is the constant: is it $2 n^{2}$ or $3 n^{2}$ or what?

The constant depends upon:
The units of time - minutes, seconds, milliseconds,... Specifics of the computer architecture.
It is much too hairy to figure out exactly. Moreover it is nowhere as important as the huge gulf between n^{2} and 2^{n}. So we simply say the running time is $O\left(n^{2}\right)$.

Why graphs?

A cartographer's problem

Graph specified by nodes and edges.

node	$=$	country
edge	$=$	neighbors

Graph coloring problem: color nodes of graph with as few colors as possible, so that there is no edge between nodes of the same color.

Exam scheduling

The registrar's problem

Schedule final exams:

- use as few time slots as possible
- can't schedule two exams in the same slot if there's a student taking both classes.

This is also graph coloring!
Node = exam
Edge = some student is taking both endpoint-exams
Color $=$ time slot

Animal crossing

Animals need to be ferried across a river

- Use as few boats as possible
- Cannot put two animals in the same boat if one will eat the other

This is, yet again, graph coloring!
Node = animal
Edge = one endpoint-animal will eat the other
Color = boat

Graph representations

$G=(V, E)$ where
V: vertices/nodes

E : edges

$V=\{1,2,3,4,5\}$
$E=\{\{1,2\},\{2,3\},\{3,4\},\{2,5\},\{4,5\}\}$ Undirected edges: symmetric relationship

Directed graphs
(x, y): edge from x to y
e.g.World wide web node URL edge (u, v) u points to v
Billions of nodes and edges!

How are graphs stored on a computer?

Adjacency matrix
$\mathrm{V} \times \mathrm{V}$ matrix A
$A(i, j)=1$ if (i, j) is in E 0 otherwise

Symmetric if G undirected

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

PRO check for an edge in O(1) time CON uses up $\mathrm{O}\left(\mathrm{V}^{2}\right)$ space

Adjacency list

For each node, list of outgoing edges

PRO just $O(V+E)$ space
CON check for an edge in $\mathrm{O}(\mathrm{V})$ time
PRO easily iterate through node's neighbors

Undirected graphs: adjacency list

1	$\rightarrow 2$
2	$\rightarrow 1 \rightarrow 3$
3	$\rightarrow 2 \rightarrow 4$
4	$\rightarrow 3$
5	$\rightarrow 2$
	$\rightarrow 4$

Directed graphs: adjacency list

1	$\rightarrow 2$
2	$\rightarrow 3$
3	$\rightarrow 5$
4	$\rightarrow 5$
5	$\rightarrow 4$

Reachability in undirected graphs

What parts of a graph are reachable from a given vertex?

With an adjacency list representation, this is like navigating a maze...

Potential difficulty	Don't go round in circles	Don't miss anything
Classical solution	Piece of chalk to mark visited junctions	Ball of string - leads back to starting point
Cyber-analog	Boolean variable for each vertex: visited or not	STACK

An exploration procedure

```
procedure explore(G,v)
```

input: graph $G=(V, E)$; node v in V
output: visited[u] is set to true
for all u reachable from v
visited[v] = true
for each edge (v, u) in E :
if not visited[u]:
explore (G,u)

Does "explore" work?

```
procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
    if not visited[u]:
        explore(G,u)
```

Does it visit everything reachable from v?
Suppose it misses node u reachable from v; we'll derive a contradiction.

Pick any path from v to u, and let z be the last node on the path that was visited.

Does it actually halt?

For any node u, explore(G, u) is called at most once; thereafter visited[u] is set.

But w would not have been overlooked during explore(G,z); this is a contradiction.

Alternative proof

```
procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
    if not visited[u]:
        explore(G,u)
```

Does explore(G,v) visit everything reachable from v?

Do a proof by induction.

Undirected connectivity

An undirected graph is connected if there is a path between any pair of nodes.


```
procedure dfs(G)
for all v in V:
    visited[v] = false
for all v in V:
    if not visited[v]:
        explore(G,v)
```

explore (Ga) explore (G,h)

DFS decomposes an undirected graph into its connected components!

explore (G,v) returns the connected component containing v .
To explore the rest of the graph, restart explore() elsewhere.

Running time analysis

```
procedure explore(G,v)
visited[v] = true
for each edge (v,u) in E:
    if not visited[u]:
            explore(G,u)
procedure dfs(G)
for all v in V:
    visited[v] = false
for all v in v:
    if not visited[v]:
        explore(G,v)
```

How long does dfs(G) take?
explore(G,v) is called exactly once for each node v.

DFS search forest

__ tree edge: traversed by DFS
--_ back edge: not traversed (led to a node already visited)

