COL702: Advanced Data Structures and Algorithms

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms

□ > < = > <

Data Structures and Algorithms

э

▲□ ▶ ▲ 臣 ▶ ▲ 臣

- <u>Data Structure</u>: Systematic way of organising and accessing data.
- Algorithm: A step-by-step procedure for performing some task.

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language-specific syntax and the implementation details.

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language-specific syntax and the implementation details.
 - A concise way of describing an algorithm is pseudocode.
 - Pseudocode is not an actual code.
 - It consists of:

high-level programming constructs (if-then, for etc.) + natural language.

- 4 同 ト - 4 目 ト

Introduction

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language-specific syntax and the implementation details.
 - A concise way of describing an algorithm is pseudocode.
 - Pseudocode is not an actual code.
 - It consists of:

high-level programming constructs (if-then, for etc.) + natural language.

Algorithm

FindMin(A, n)

- $min \leftarrow A[1]$
- for i = 2 to n

- **if**
$$(A[i] < min)$$

-
$$min \leftarrow A[i]$$

- return(min)

Introduction

- How do we describe an algorithm?
 - Algorithms are platform independent and so should be their description.
 - This allows us to focus on the main ideas rather than spend time parsing the programming language-specific syntax and the implementation details.
 - A concise way of describing an algorithm is pseudocode.
 - Pseudocode is not an actual code.
 - It consists of:

high-level programming constructs (if-then, for etc.) + natural language.

Algorithm

FindMin(A, n)

- $min \leftarrow A[1]$
- for i = 2 to n
 - if A[i] is smaller than min

-
$$min \leftarrow A[i]$$

- return(min)

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - It should be correct.
 - It should run fast.
 - It should take a small amount of space (RAM).
 - It should consume a small amount of power.
 - :

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - **1** It should be correct.
 - It should run fast.
- How do we argue that an algorithm is correct?

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for **all** inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size *n*.

Algorithm

FindSum(A, n)

- $sum \leftarrow 0$
- for i = 1 to n
 - $sum \leftarrow sum + A[i]$
- return(sum)

同 ト イ ヨ ト イ ヨ

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for **all** inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size *n*.

• To prove the algorithm correct, let us define the following loop-invariant:

P(i): At the end of the i^{th} iteration, the variable sum contains the sum of first i elements of the array A.

Introduction

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for **all** inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size *n*.

Algorithm

```
FindSum(A, n)
```

- $sum \leftarrow 0$

```
- for i = 1 to n
```

```
- sum \leftarrow sum + A[i]
```

- return(sum)

• To prove the algorithm correct, let us define the following loop-invariant:

P(i): At the end of the i^{th} iteration, the variable sum contains the sum of first *i* elements of the array *A*.

• How do we prove statements of the form $\forall i, P(i)$?

Introduction

- How do we argue that an algorithm is correct?
 - Proof of correctness: An argument that the algorithm works correctly for **all** inputs.
 - <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
- Consider the following algorithm that is supposed to output the sum of elements of an integer array of size *n*.

Algorithm

```
FindSum(A, n)
```

- $sum \leftarrow 0$

```
- for i = 1 to n
```

```
- sum \leftarrow sum + A[i]
```

- return(sum)

• To prove the algorithm correct, let us define the following loop-invariant:

P(i): At the end of the *i*th iteration, the variable *sum* contains the sum of first *i* elements of the array *A*.

How do we prove statements of the form ∀i, P(i)?Induction

- <u>Proof</u>: A valid argument that establishes the truth of a mathematical statement.
 - The statements used in a proof can include axioms, definitions, the premises, if any, of the theorem, and previously proven theorems and uses rules of inference to draw conclusions.
- A proof technique very commonly used when proving the correctness of Algorithms is *Mathematical Induction*.

Definition (Strong Induction)

To prove that P(n) is true for all positive integers, where P(.) is a propositional function, we complete two steps:

- Basis step: We show that P(1) is true.
- Inductive step: We show that for all k, if P(1), P(2), ..., P(k) are true, then P(k+1) is true.

・ロト ・ 同ト ・ ヨト ・ ヨ

Definition (Strong Induction)

To prove that P(n) is true for all positive integers, where P(.) is a propositional function, we complete two steps:

- Basis step: We show that P(1) is true.
- Inductive step: We show that for all k, if P(1), P(2), ..., P(k) are true, then P(k+1) is true.
- <u>Question</u>: Show that for all n > 0, $1 + 3 + ... + (2n 1) = n^2$.

• Question: Show that for all n > 0, $1 + 3 + ... + (2n - 1) = n^2$.

Proof

- Let P(n) be the proposition that 1 + 3 + 5 + ... + (2n 1) equals n^2 .
- Basis step: P(1) is true since the summation consists of only a single term 1 and $1^2 = 1$.
- Inductive step: Assume that P(1), P(2), ..., P(k) are true for any arbitrary integer k. Then we have:

$$1+3+\ldots+(2(k+1)-1) = 1+3+\ldots+(2k-1)+(2k+1)$$

= k^2+2k+1 (since $P(k)$ is true)
= $(k+1)^2$

This shows that P(k+1) is true.

Using the principle of Induction, we conclude that P(n) is true for all n > 0.

(4 同) (4 回) (4 回)

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - It should be correct.
 - We use proof of correctness to argue correctness.
 - It should run fast.

伺き くほき くほう

- How do we describe an algorithm?
 - Using a pseudocode.
- What are the desirable features of an algorithm?
 - It should be correct.
 - We use proof of correctness to argue correctness.

It should run fast.

• Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?

同 ト イ ヨ ト イ ヨ

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
 - Idea#1: Implement them on some platform, run and check.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

- Given two algorithms A1 and A2 for a problem, how do we decide which one runs faster?
 - Idea#1: Implement them on some platform, run and check.
 - The speed of programs P1 (implementation of A1) and P2 (implementation of A2) may depend on various factors:
 - Input
 - Hardware platform
 - Software platform
 - Quality of the underlying algorithm

End

Ragesh Jaiswal, IITD COL702: Advanced Data Structures and Algorithms

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

990