
COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2022-23) Homework-3

• The instructions are the same as in Homework 1 and 2.

There are 6 questions for a total of 82 points.

1. (10 points) Given a strongly connected directed graph, G = (V,E) with positive edge weights along
with a particular node v ∈ V . You wish to pre-process the graph so that queries of the form “what is
the length of the shortest path from s to t that goes through v” can be answered in constant time for
any pair of distinct vertices s and t. The pre-processing should take the same asymptotic run-time as
Dijkstra’s algorithm. Analyse the runtime and provide proof of correctness.

2. Counterexamples are effective in ruling out certain algorithmic ideas. In this problem, we will see a few
such cases.

(a) (3 points) Recall the following event scheduling problem discussed in class:

You have a conference to plan with n events and an unlimited supply of rooms. Design an
algorithm to assign events to rooms in such a way as to minimise the number of rooms.

The following algorithm was suggested during class discussion.

ReduceToSingleRoom(E1, ..., En)

- U ← {E1, ..., En}; i← 1
- While U is not empty:

- Use Earliest Finish Time greedy algorithm on events in set U
to schedule a subset T ⊆ U of events in room i

- i← i + 1; U ← U \ T

Show that the above algorithm does not always return an optimal solution.

(b) (3 points) A longest simple path from a node s to t in a weighted, directed graph is a simple path
from s to t such that the sum of weights of edges in the path is maximised. Here is an idea for
finding a longest path from a given node s to t in any weighted, directed graph G = (V,E):

Let the weight of the edge e ∈ E be denoted by w(e) and let wmax be the weight of the
maximum weight edge in G. Let G′ be a graph that has the same vertices and edges as
G but for every edge e ∈ E, the weight of the edge is (wmax + 1 − w(e)). (For example,
consider the graph G below and its corresponding graph G′.)

Run Dijkstra’s algorithm on G′ with starting vertex s and return the shortest path from s
to t.

Show that the above algorithm does not necessarily output the longest simple path.

1 of 4



COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2022-23) Homework-3

(c) (3 points) Recall that a Spanning Tree of a given connected, weighted, undirected graph G = (V,E)
is a graph G′ = (V,E′) with E′ ⊆ E such that G′ is a tree. The cost of a spanning tree is defined
to be the sum of the weight of its edges. A Minimum Spanning Tree (MST) of a given connected,
weighted, undirected graph is a spanning tree with minimum cost. The following idea was suggested
for finding an MST for a given graph in the class.

Dijkstra’s algorithm gives a shortest path tree rooted at a starting node s. Note that a
shortest path tree is also a spanning tree. So, simply use Dijkstra’s algorithm and return
the shortest path tree.

Show that the above algorithm does not necessarily output an MST. In other words, a shortest
path tree may not necessarily be an MST. (For this question, you may consider only graphs with
positive edge weights.)

3. (Example for “greedy stays ahead”) Suppose you are placing sensors on a one-dimensional road. You
have identified n possible locations for sensors, at distances d1 ≤ d2 ≤ ... ≤ dn from the start of the
road, with 0 ≤ d1 ≤ M and di+1 − di ≤ M . You must place a sensor within M of the start of the road
and place each sensor after that within M of the previous one. The last sensor must be within M of dn.
Given that, you want to minimise the number of sensors used. The following greedy algorithm, which
places each sensor as far as possible from the previous one, will return a list di1 ≤ di2 ≤ ... ≤ dik of
locations where sensors can be placed.

GreedySensorMin(d1...dn,M)

- Initialize an empty list
- Initialize I = 1, PreviousSensor = 0.
- While (I < n):

- While (I < n and dI+1 ≤ PreviousSensor + M) I + +
- If (I < n) Append dI to list; PreviousSensor = dI ;I + +.

- if list is empty, append dn to list
- return(list)

In using the “greedy stays ahead” proof technique to show that this is optimal, we would compare the
greedy solution dg1 , ..dgk to another solution, dj1 , ..., djk′ . We will show that the greedy solution “stays
ahead” of the other solution at each step in the following sense:
Claim: For all t ≥ 1, gt ≥ jt.

(a) (5 points) Prove the above claim using induction on step t. Show base case and induction step.

(b) (3 points) Use the claim to argue that k′ ≥ k. (Note that this completes the proof of optimality of
the greedy algorithm since it shows that the greedy algorithm places at most as many sensors as
any other solution.)

(c) (2 points) In big-O notation, how much time does the algorithm, as written, take? Write a brief
explanation.

4. (Example for “modify the solution”) You have n cell phone customers who live along a straight highway,
at distances D[1] < D[2] < ... < D[n] from the starting point. You need to have a cell tower within ∆
distance of each customer, and want to minimise the number of cell towers.

(For example, consider ∆ = 3 and there are 3 customers (i.e., n = 3) with D[1] = 3, D[2] = 7, D[3] = 10.
In this case, you can set up two cell towers, one at 6 and one at 10.)

Here is a greedy strategy for this problem.

2 of 4



COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2022-23) Homework-3

Greedy strategy: Set up a tower at a distance d at the farthest edge of the connectivity
range for the customer closest to the starting point. That is, d = ∆ + D[1]. Note that all
customers within ∆ distance of this tower at d are covered by this tower. Then recursively set
up towers for the remaining customers (who are not covered by the first tower).

We will show that the above greedy strategy gives an optimal solution using modify-the-solution. For
this, we will first need to prove the following exchange lemma.

Exchange Lemma: Let G denote the greedy solution and let g1 be the location of the first cell phone tower
set up by the greedy algorithm. Let OS represent any solution that does not have a cell phone tower at
g1. Then there exists a solution OS′ that has a cell phone tower set up at g1 and OS′ has the same
number of towers as OS.

Proof. Let OS = {o1, ..., ok}. That is, the locations of the cell phone towers as per solution OS is
o1 < o2 < ... < ok. We ask you to complete the proof of the exchange lemma below.

(a) (1 point) Define OS′.

(b) (2 points) OS′ is a valid solution because ... (justify why OS′ provides coverage to all customers.)

(c) (2 points) The number of cell phone towers in OS′ is at most the number of cell phone towers in
OS because... (justify)

We will now use the above exchange lemma to argue that the greedy algorithm outputs an optimal
solution for any input instance. We will show this using mathematical induction on the input size (i.e.,
number of customers). The base case for the argument is trivial since, for n = 1, the greedy algorithm
opens a single tower which is indeed optimal.

(a) (3 points) Show the inductive step of the argument.

Having proved the correctness, we now need to give an efficient implementation of the greedy strategy
and give time analysis.

(a) (5 points) Give an efficient algorithm implementing the above strategy and give a time analysis for
your algorithm.

5. (20 points) You are a conference organiser and are asked to organise a conference for a company. The
conference room’s capacity is limited, so you would want to minimise the number of people invited to
the conference. To make the conference useful for the entire company, you need to make sure that if an
employee is not invited, then every employee who is an immediate subordinate of this employee gets the
invitation. (if an employee is invited, then you may or may not invite a subordinate). The company has
a typical hierarchical tree structure, where every employee except the CEO has exactly one immediate
boss.

Design an algorithm for this problem. You are given as input an integer array B[1...n], where B[i] is the
immediate boss of the ith employee of the company. The CEO is employee number 1 and B[1] = 1. The
output of your algorithm is a subset S ⊆ {1, ..., n} of invited employees. Give running time analysis and
proof of correctness.

6. (20 points) A town has n residents labelled 1, ..., n. Amid a virus outbreak, the town authorities realise
that hand sanitiser has become an essential commodity. They know that every resident in this town
requires at least T integer units of hand sanitiser. However, at least dn2 e residents do not have enough
sanitiser. On the other hand, there may be residents who may have at least T units. They want to
implement a sharing strategy with very few new supplies coming in for the next few weeks. At the same
time, they do not want too many people to get close to each other to implement sharing. So, they come
up with the following idea:

3 of 4



COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2022-23) Homework-3

Try to pair up residents (based on the amount of sanitiser they possess) such that:

1. A resident is either unpaired or paired with exactly one other resident.

2. Residents in a pair together should possess at least 2T units of sanitiser.

3. The number of unpaired residents with less than T units of sanitiser is minimised.

Once such a pairing is obtained, the unpaired residents with less than T units of sanitiser can be
managed separately. The town authorities have conducted a survey and know the amount of sanitiser
every resident possesses. You are asked to design an algorithm for this problem. You are given as
input integer n, integer T , and integer array P [1...n] where P [i] is the number of units of sanitiser that
resident i possesses. You may assume that 0 ≤ P [1] ≤ P [2] ≤ ... ≤ P [n]. Your algorithm should output
a pairing as a list of tuples (i1, j1), (i2, j2), ..., (ik, jk) of maximum size such that (i) For all t = 1, ..., k,
P [it] + P [jt] ≥ 2T and (ii) i1, ..., ik, j1, ..., jk are distinct. Give proof of correctness of your algorithm
and discuss running time.

4 of 4


