
COL702: Advanced Data Structures and Algorithms (CSE, IITD, Semester-I-2022-23) Minor-prep

• This is for preparatory material on Shortest Paths and Greedy algorithms for the minor
exam.

There are 4 questions for a total of 100 points.

1. (20 points) You are given a directed graph G = (V,E) where nodes represent cities, and directed edges
represent road connections. There is a positive weight w(e) > 0 associated with every directed edge
e ∈ E that denotes the cost of traveling along that road (this could be tolls, gas costs, etc.). There is
also a positive weight c(v) > 0 associated with every node v ∈ V that denotes the cost of visiting the
city v (this could be food, lodging, etc.). You are planning a trip from a city s ∈ V to a city t ∈ V , and
you want to find a route that will cost you the least amount of money. Note that this is a path that
starts with s and ends at t and the sum of the weight of edges plus the sum of the weight of intermediate
nodes (i.e., nodes except s and t) in the path is minimized.

Design an algorithm for this problem. Give running time analysis and proof of correctness.

2. You are staying in another city for n days. Unfortunately, not every hotel is available every day. You
are given a list of hotels, h1, ..hk and a k × n array of booleans Avail[i, j] that tells you whether hotel
i is available on the day j of your trip. You wish to pick which hotel to stay in each day of your trip,
in order to minimize the number of times you have to switch hotels. You can assume that at least one
hotel is available every day.

For example, say n = 7 and there are three hotels, A,B,C. Hotel A is available days 1-3 and days 6-7,
Hotel B is available days 1-5, and Hotel C is available days 3− 7. Then one solution is to stay at Hotel
B days 1-5, then switch to Hotel C for days 6-7. (We could equally well switch to Hotel A; either way is
the optimal 1 switch).

Here is a greedy strategy that finds the schedule with the fewest switches.

Greedy Strategy: Stay at the hotel available on the first day with the most consecutive days
of availability starting on that day. Stay there until it becomes unavailable, and then repeat
with the remaining days.

(a) Fill in the steps of the proof of the following modify-the-solution lemma:

Lemma: Suppose that the greedy algorithm stays at hotel g on the first day and stays there until day
I. Let OStays be any scheduling of available hotel rooms. Then there exists a schedule of available
hotel rooms assignment OStays′ that stays at hotel g until day I, and switches hotel rooms no more
than the number of switches for OStays.

proof : Let OStays be as above.

i. (1 point) Define OStays′.

ii. (2 points) OStays′ is a valid solution because... (Justify why in OStays′, we never try to stay
at an unavailable hotel.)

iii. (2 points) The number of switches in OStays′ is less than or equal to that in OStays because...
(justify).

We will now use the above exchange lemma to argue that the greedy algorithm outputs an optimal
solution for any input instance. We will show this using mathematical induction on the input size (i.e.,
number of days). The base case for the argument is trivial since, for n = 1, there is no switch in the
greedy algorithm which is optimal.

(a) (5 points) Show the inductive step of the argument.

Having proved the correctness, we now need to give an efficient implementation of the greedy strategy
and give time analysis.
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(a) (8 points) Give a pseudocode of an efficient algorithm implementing the above strategy and give a
time analysis for your algorithm.

GreedyHotels(Avail[1..k, 1..n])
- Day = 0.
- While Day < n do:

- MaxEnd = Day
- MaxHotel = 0
- FOR J = 1 TO k do:

- ThisEnd = Day
- While ThisEnd < n and Avail[J, ThisEnd + 1] do: ThisEnd + +
- IF ThisEnd > MaxEnd THEN do: MaxEnd = ThisEnd,MaxHotel = J .

- FOR d = Day + 1 to MaxEnd do: Stay[d] = MaxHotel
- Day = MaxEnd

- Return Stay[1..n]

3. You are going cross country, and want to visit different national parks on your way. The parks on your
trip are, in order, Park1, Park2, ..Parkk. You have 1 ≤ n ≤ k days for your trip, and you would like to
visit a different park each day. You don’t want to do unnecessary driving so you will only visit parks in
order from smallest number to largest.

Your input is a k × n array of booleans Avail[i, j] that tells you whether park i is available on day j of
your trip. You wish to pick which park to stay in each day of your trip. Your strategy should either find
a way to visit n different parks, or tell you that this is impossible.

For example, say n = 3 and there are four parks, 1, 2, 3, 4 (i.e., k = 4). Park 1 is available all three
days. Park 2 is available day 3 only. Park 3 is available days 2 and 3. Park 4 is available all three days.
Then we could visit Park 1 the first day, skip Park 2, visit Park 3 the second day, and visit Park 4 the
last day.

Here is a greedy strategy that finds a schedule visiting n parks if one exists:

Greedy Strategy: On the first day, visit the first park available on the first day. Each other
day, visit the first park available on that day which is after your current park.

We will show the optimality of the greedy strategy using the greedy-stays-ahead method. Suppose that
the greedy algorithm stays at parks number g1, ..gn, in order, and OStays is another solution staying at
parks number p1, ..pn. We claim that at all days i, gi ≤ pi. We prove this by induction on i.

(a) (10 points) Prove the above claim using induction on i. Show base case and induction step.

(b) (5 points) Use the claim to argue that the greedy algorithm outputs a valid travel plan in case such
a plan exists and outputs “impossible” otherwise.

(c) (7 points) Give an efficient algorithm implementing the above strategy and give a time analysis for
your algorithm.

GreedyParks(Avail[1..k, 1..n])
- Day = 1, Park = 1.
- While Day ≤ n and Park ≤ k do:

- While (Avail[Park,Day] == False and Park ≤ k) do: Park++;
- IF Park > k THEN return “Impossible” ELSE Stay[Day] = Park,Day + +, Park + +

- IF Days > n return Stays[1..n] ELSE return “Impossible”.
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4. (40 points) (Monotone Matchings) Let G be a bipartite graph, with L = {u1, ..ul} the set of nodes
on the left, R = {v1, ..vr} the set of nodes on the right, E the set of edges, each with one endpoint in L
and the other in R, and m = |E| the number of edges.

A matching in G is a set of edges M ⊆ E so that no two edges in M share an endpoint (neither the one
in L nor the one in R). A matching M is monotone if for every two edges (ui1 , vj1) and (ui2 , vj2) in M ,
if i1 < i2 then j1 < j2. One could draw all the edges in the matching without crossing if the nodes are
put in order on the two sides.

The problem is, given a bipartite graph G, find the largest monotone matching in G.

Assume l ≤ r. Then a monotone matching M is perfect if it has size l, i.e., |M | = l.

Below is a greedy strategy for the largest monotone matching problem.

Candidate Strategy A: For each i = 1 to l, if ui has at least one undeleted neighbor vj ,
match it to the unmatched neighbor with smallest value of j. Then delete ui and v1, ...vj , and
repeat.

(a) Give a counter-example where the greedy strategy fails to produce an optimal solution.
(Hint: Since you will show that the algorithm works when the maximum monotone matching is
perfect, your example shouldn’t have a perfect monotone matching.)

(b) Illustrate the above strategy on the following graph with a perfect matching: L = {u1, u2, u3} ,R =
{v1, v2, v3, v4, v5}, and E = {(u1, v2), (u1, v3), (u1, v4), (u2, v1), (u2, v2), (u2, v3), (u2, v5)(u3, v1), (u3, v5)}.

(c) Prove that, if G has a perfect matching, then Candidate Strategy A finds one.

Hint: Let strategy A match ui with vji (unless it can’t be matched). Let OPT be a perfect
matching that matches each ui with vki

. (Note: all left nodes will be matched by OPT ,
since it is perfect.) Use one of the following two methods.

• Exchange method: Prove by induction on T that there is a left-perfect matching OPTT

that matches each ui with vji for 1 ≤ i ≤ T .

• Greedy-stays ahead: Prove by induction on T that vjT exists and that jT ≤ kT .

(d) Describe an efficient algorithm that carries out the strategy. Your description should specify which
data structures you use, and any pre-processing steps. Assume the graph is given in adjacency list
format. Give a time analysis, in terms of l, r and m.
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