
COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-II-2021-22) Tutorial-11

1. All pairs shortest paths problem: Given a weighted, directed graph G = (V,E), you are supposed to
design an algorithm that outputs an |V | × |V | matrix A such that A[i, j] contains the length of the
shortest path in G from vertex i to vertex j.
(For example, the shortest path matrix for the graph given below is on the right.)

Figure 1: ∞ in a table entry A[i, j] means that there is no path in the graph from vertex i to vertex j.

You can solve this problem using Dijkstra’s algorithm (in case all edge weights are positive) repeatedly
on the same graph and different starting vertices.

Question 1: What is the running time of the above algorithm?

We will design an algorithm with better running time using Dynamic Programming idea. For any i, j, k,
let Dk(i, j) denote the length of the shortest path from vertex i to vertex j when all the intermediate
vertices in the path is from the set {1, ..., k}.
Given the above definition, we can say that that for all i, j, D0(i, j) = weight of edge (i, j) in case it
exists, otherwise ∞.

Question 2: Write D1(., .) in terms of D0(., .).

Question 3: Write Di(., .) in terms of Di−1(., .).

Note that for the output matrix A, A[i, j] = Dn(i, j) for all i, j. So, all we need to do is to figure
out a way to compute Dn(i, j) for all i, j. As evident from the recursive formulation in the previous
question, we should compute Di(., .) before computing Di−1(., .). So, the algorithm runs in n passes
and in the ith pass it computes Di(j, k) for all j, k.

Question 4: What is the running time of the above algorithm? Is this better than running Dijkstra’s
repeatedly?

Question 5: Does this algorithm also work for graphs that have negative weight edges but no negative
weight cycles?

1 of 2

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-II-2021-22) Tutorial-11

Question 6: Consider the graph given below and simulate this algorithm on this graph. That is, fill
the tables D0(., .), D1(., .), ..., D4(., .).

2. You are given a bipartite graph G = (L,R,E) such that |L| = |R| = n and |E| = m. You are also
given a matching M ⊆ E such that |M | = (n − 1). Your goal is to design an algorithm that takes
as input G and matching M and determines whether there exists a perfect matching in the graph G.
That is, it should output “yes” if there is a perfect matching in G, otherwise it should output “no”.

• There is a simple O(n · (n+m)) algorithm for this problem that ignores the matching M . Discuss
this algorithm and its running time.

• Design an O(n + m) algorithm and discuss correctness and running time.

2 of 2

