COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-11-2021-22) Tutorial-11

1. All pairs shortest paths problem: Given a weighted, directed graph G = (V, E), you are supposed to
design an algorithm that outputs an |V| x |V| matrix A such that A[i,j] contains the length of the
shortest path in G from vertex i to vertex j.

(For example, the shortest path matriz for the graph given below is on the right.)

1 2 3
1 0 1 2
2 o’e} 0 1
3 oo o 0
G

Figure 1: oo in a table entry A[i, j] means that there is no path in the graph from vertex ¢ to vertex j.

You can solve this problem using Dijkstra’s algorithm (in case all edge weights are positive) repeatedly
on the same graph and different starting vertices.

Question 1: What is the running time of the above algorithm?

We will design an algorithm with better running time using Dynamic Programming idea. For any ¢, j, k,
let Dy (7, 7) denote the length of the shortest path from vertex ¢ to vertex j when all the intermediate
vertices in the path is from the set {1, ..., k}.

Given the above definition, we can say that that for all 4, j, Dg(i,j) = weight of edge (4,7) in case it
exists, otherwise oo.

Question 2: Write Dy (.,.) in terms of Dg(.,.).
Question 3: Write D;(.,.) in terms of D;_1(.,.).

Note that for the output matrix A, A[i,j] = D,(i,j) for all 4,j. So, all we need to do is to figure
out a way to compute D, (4,5) for all 4,j. As evident from the recursive formulation in the previous
question, we should compute D;(.,.) before computing D;_1(.,.). So, the algorithm runs in n passes
and in the 7*" pass it computes D;(j,k) for all j, k.

Question 4: What is the running time of the above algorithm? Is this better than running Dijkstra’s
repeatedly?

Question 5: Does this algorithm also work for graphs that have negative weight edges but no negative
weight cycles?

1 of 2

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-11-2021-22) Tutorial-11

Question 6: Consider the graph given below and simulate this algorithm on this graph. That is, fill
the tables Dg(.,.), D1(.,.), e, Da(.,.).

2 3 4
1lo0|1|2]5
2|0 | 0] 3 |00
3|oo|oc| 0| 4
4|00 |00 (00| 0

DO

1 2 3 4 1 2 3 4
1 1
2 2
3 3
4 4
D, D,
1 2 3 4 1 2 3 4
1 1
2 2
3 3
4 D, 4 D,

2. You are given a bipartite graph G = (L, R, E) such that |L| = |R| = n and |E| = m. You are also
given a matching M C FE such that |[M| = (n — 1). Your goal is to design an algorithm that takes
as input G and matching M and determines whether there exists a perfect matching in the graph G.
That is, it should output “yes” if there is a perfect matching in G, otherwise it should output “no”.

e There is a simple O(n- (n+m)) algorithm for this problem that ignores the matching M. Discuss
this algorithm and its running time.

e Design an O(n + m) algorithm and discuss correctness and running time.

2 of 2

