
This is a toy version of a problem that comes up in computational 
economics.  We are continuing with our tradition of using the cookie 
monster as a totem for greedy algorithms, since Cookie personifies greed

You have 𝑁 identical cookies to be divided between 𝑀 cookie monsters
You know how much the 𝐽’th cookie each monster gets will make that 

monster happy.  Happy[𝐼, 𝐽] is a matrix saying how happy getting the 𝐽’th
cookie makes monster .  (Only the number of cookies matters, not which)

For this version, we assume “diminishing returns”: 𝐻𝑎𝑝𝑝𝑦 𝐼, 1 ≥
𝐻𝑎𝑝𝑝𝑦 𝐼, 2 ≥ ⋯𝐻𝑎𝑝𝑝𝑦[𝐼, 𝑘] (We can remove this using DP)

You want to distribute cookies to the monsters to maximize total 
monster happiness

COOKIE DISTRIBUTION



5 cookies, 3 monsters
Monster 1: 1st cookie 50, 2nd cookie 30, 3rd cookie 20, 4 th +5 th : 0 
Monster 2:  All cookies 20
Monster 3:  1st cookie 30, 2nd cookie 25, 3rd cookie 20 , 4 th cookie 15, 
5 th cookie 10

What should we do?  

EXAMPLE



5 cookies, 3 monsters
Monster 1: 1st cookie 50, 2nd cookie 30, 3rd cookie 20, 4 th +5 th : 0 
Monster 2:  All cookies 20
Monster 3:  1st cookie 30, 2nd cookie 25, 3rd cookie 20 , 4 th cookie 15, 

5 th cookie 10

What should we do?  Give 1st cookie to Monster 1.
Then monster 1 would get 30 from 2nd cookie, same as monster 3 

from 1st cookie it gets, and bigger than 1st cookie for monster 2

GREEDY FOR EXAMPLE



5 cookies, 3 monsters
Monster 1: 1st cookie 50, 2nd cookie 30, 3rd cookie 20, 4 th +5 th : 0 
Monster 2:  All cookies 20
Monster 3:  1st cookie 30, 2nd cookie 25, 3rd cookie 20 , 4 th cookie 15, 

5 th cookie 10
Give 1st cookie to Monster 1.
Give 1st cookie to Monster 3.  Benefits for next: 30, 20, 25
Give 2nd cookie to Monster 1.  Benefits for next: 20, 20, 25
Give 2nd cookie to Monster 3.  Benefits for next 20, 20, 20
Give 3rd cookie to Monster 1.  Total happiness: 100+ 0+55=155

GREEDY FOR EXAMPLE



Give the next cookie to the monster who would enjoy it most.
More precisely, if monster 𝐼 currently has 𝐽! 𝑐𝑜𝑜𝑘𝑖𝑒𝑠 , the amount it 

would benefit by getting one more is 𝐻𝑎𝑝𝑝𝑦[𝐼 , 𝐽! + 1]. Give the next 
cookie to the 𝐼 that has maximum value for this, breaking ties 
arbitrarily.

GENERAL GREEDY RULE



What does it mean that the greedy algorithm solves an optimization 
problem?
𝐼: problem instance.
𝐺𝑆: greedy solution to 𝐼
𝑂𝑆: other (optimal) solution to 𝐼
Would be incorrect if Value(𝑂𝑆) > Value (𝐺𝑆)
So we need to show:  For every instance 𝐼, let 𝐺𝑆 be the greedy 

algorithm’s solution to 𝐼.  Let 𝑂𝑆 be any other solution for 𝐼.  Then 
Value(𝑂𝑆) ≤ Value (𝐺𝑆) (or Cost(𝐺𝑆) ≤ Cost (𝑂𝑆) for minimization)

Tricky part: 𝑂𝑆 is arbitrary solution, not one that makes sense. We don’t 
know much about it

PROVING OPTIMALITY



We’ll see a number of general methods to prove optimality:
1. Modify the solution , aka Exchange, Transformation: most general
2. Greedy-stays-ahead: more intuitive
3. Greedy achieves the bound: also comes up in approximation, LP, 

network flow
4. Unique local optimum:  dangerously close to a common fallacy
Which one to use is up to you, but only Modify-the-solution applies 
universally, others can be easier but only work in special cases

TECHNIQUES TO PROVE OPTIMALITY



Final goal:  there is an optimal solution that contains all of the greedy 
algorithm’s decisions, in other words, the greedy solution is an optimal 
solution.

Format 1:  Show that there is an optimal solution that contains the first 
greedy decision.  Then use recursion/induction to handle the rest.

Format 2:  Show by induction on k that there is an optimal solution 
containing the first k decisions

MODIFY THE SOLUTION



MODIFY-THE-SOLUTION (FIRST FORMAT)



MTS, MORE DETAIL



Let 𝐺𝑆 be the sequence of 𝑁 monsters that get each cookie in the 
greedy solution.  Let 𝑂𝑆 be any way of assigning 𝑁 cookies to the 
monsters.  We want to show the total monster happiness for 𝐺𝑆 is at 
least as high as for 𝑂𝑆 .
1st greedy move:  Look at Happy[𝐼 , 1] for each 𝐼 .  Pick the 𝐼 with the 
maximum value to get cookie.  

Modify the solution lemma: Let 𝐼 be argmax Happy[𝐼 , 1]. Assume 𝑂𝑆 is 
an assignment that doesn’t start by giving 𝐼 a cookie.  Then there is 
an assignment 𝑂𝑆′ that does start by giving 𝐼 a cookie, with at least 
the total happiness of 𝑂𝑆 .  

FOR COOKIE DISTRIBUTION



Modify the solution lemma: Let 𝐼 be argmax Happy[𝐼 , 1]. Assume 𝑂𝑆 is 
an assignment that doesn’t start by giving 𝐼 a cookie.  Then there is 
an assignment 𝑂𝑆′ that does start by giving 𝐼 a cookie, with at least 
the total happiness of 𝑂𝑆 .  

Case 1: 𝐼 eventually gets a cookie in 𝑂𝑆

Case 2: 𝐼 never gets a cookie in 𝑂𝑆

FOR COOKIE DISTRIBUTION



Define 𝑂𝑆′:  OS:  1st move :  𝐼′ gets cookie
move 𝑡 later: 𝐼 gets a cookie

𝑂𝑆′:  Like 𝑂𝑆 but:
1st move:  𝐼 gets cookie
move 𝑡 :  Give 𝐼′ a cookie

𝑂𝑆′ is still solution:  Same number of cookies distributed to monsters
Compare total happiness:  All monsters except 𝐼 , 𝐼′ same happiness.
𝐼 ends up with same number of cookies, too.  So does 𝐼′.
So total happiness for 𝑂𝑆′ is same as for 𝑂𝑆 .  

MTS CASE 1: I GETS A COOKIE LATER



Define 𝑂𝑆′:  𝑂𝑆 :  1st move :  𝐼′ gets cookie
𝑂𝑆′:  Like 𝑂𝑆 but:

1st move:  𝐼 gets cookie                          
𝑂𝑆′ is still solution:  Same number of cookies distributed to monsters
Compare total happiness:  All monsters except 𝐼 , 𝐼′ same happiness.
𝐼 happiness increases by Happy[𝐼 , 1], since went from 0 cookies to 1.
𝐼′ happiness decreases by Happy[𝐼′, 𝐽] for some 𝐽
What do we know to relate these two?   

MTS CASE 2: I NEVER GETS A COOKIE



Define OS’:  𝑂𝑆 :  1st move : 𝐼′ gets cookie
𝑂𝑆′:  Like OS but:

1st move:  𝐼 gets cookie                          
𝑂𝑆′ is still solution:  Same number of cookies distributed to monsters
Compare total happiness:  All monsters except 𝐼 , 𝐼′ same happiness.
𝐼 happiness increases by Happy[𝐼 , 1], since went from 0 cookies to 1.
𝐼′ happiness decreases by Happy[𝐼′, 𝐽] for some 𝐽
𝐻𝑎𝑝𝑝𝑦 𝐼, 1 ≥ 𝐻𝑎𝑝𝑝𝑦 𝐼 " , 1 by definition of greedy algorithm
𝐻𝑎𝑝𝑝𝑦 𝐼 " , 1 ≥ 𝐻𝑎𝑝𝑝𝑦 𝐼 " , 𝐽 by diminishing returns condition

Therefore, increase for 𝐼 ≥ the decrease for 𝐼′, so 𝑇𝐻(𝑂𝑆′)≥ 𝑇𝐻(𝑂𝑆)

MTS CASE 2: I NEVER GETS A COOKIE



In each case:
Define OS’.  What do we have to work with?  OS, definition of 

greedy algorithm.  Very important to do FIRST.  Can’t prove things 
about OS’ without defining it FIRST.

Show OS’ meets any requirements for a solution (constraints).  What 
do we have to work with? We know OS meets all the requirements, 
definition of greedy
Compare objective functions for OS and OS’ 
What increased?  What decreased?  How do they balance out?

GENERAL REASONING



Lemma:  For every instance of  Cookie Distribution, there is an 
optimal solution that starts by giving a cookie to the same monster as 
the greedy algorithm does.

WHAT WE’VE SHOWN



Once we’ve given monster 𝐼 a cookie,  it’s the same type of problem,
Except that:

𝑁 − 1 cookies to distribute  
Ignore Happy[𝐽, 𝑁 ] for 𝐽 ≠ 𝐼
Shift Happy[𝐼 , 𝐾 ]. 𝐼 ’th row of Happy now becomes:  
𝐻𝑎𝑝𝑝𝑦 𝐼, 2 , 𝐻𝑎𝑝𝑝𝑦 𝐼, 3 … . 𝐻𝑎𝑝𝑝𝑦 𝐼, 𝑁

Call this instance NewHappy, 𝑁 − 1.  

INDUCTION: ``APPLY SAME RECURSIVELY’’



INDUCTION 



Unless you do it wrong.
We prove by induction on 𝑁 , number of cookies, that greedy solution 
is optimal, i.e., 𝑇𝐻(𝐺𝑆) ≥ 𝑇𝐻(𝑂𝑆) for any solution 𝑂𝑆
Base case: 𝑁 = 0.  No cookies, any solution is optimal
Induction step: assume 𝐺𝑆 is optimal for any instance with 𝑁 − 1
cookies
Let 𝑂𝑆 be any solution.
Lemma: There is an 𝑂𝑆′ with 𝑂𝑆′= give monster 𝐼 cookie +some 
solution to NewHappy with 𝑁 − 1 cookies
GS(Happy, N) = give monster 𝐼 cookie + GS(NewHappy, N-1)

INDUCTION STEP ALWAYS LOOKS STUPID 



Induction step: assume 𝐺𝑆 is optimal for any instance with 𝑁 − 1
cookies
Let 𝑂𝑆 be any solution.
Lemma: There is an 𝑂𝑆′ with 𝑂𝑆′= give monster 𝐼 cookie +some 
solution to NewHappy with 𝑁 − 1 cookies and TH(OS’) ≥ 𝑇𝐻(𝑂𝑆)
𝐺𝑆(𝐻𝑎𝑝𝑝𝑦, 𝑁) = give monster 𝐼 cookie + 𝐺𝑆(𝑁𝑒𝑤𝐻𝑎𝑝𝑝𝑦, 𝑁 − 1)
𝑂𝑆′ = give monster 𝐼 cookie + 𝑂𝑆(𝑁𝑒𝑤𝐻𝑎𝑝𝑝𝑦, 𝑁 − 1)
𝑇𝐻(𝐺𝑆) = 𝐻𝑎𝑝𝑝𝑦 𝐼, 1 + 𝑇𝐻 𝐺𝑆 𝑁𝑒𝑤𝐻𝑎𝑝𝑝𝑦, 𝑁 − 1 ≥ 𝐻𝑎𝑝𝑝𝑦 𝐼, 1 +
𝑇𝐻 𝑂𝑆 𝑁𝑒𝑤𝐻𝑎𝑝𝑝𝑦, 𝑁 − 1 = 𝑇𝐻 𝑂𝑆 " ≥ 𝑇𝐻 𝑂𝑆
We’ve shown GS is at least as good as any other solution.  

INDUCTION STEP  



We usually present the greedy algorithm as :  Apply first greedy 
move. 

Simplify recursively
Repeat.

The purpose of the induction step is to make sure we defined 
“simplify recursively” correctly.  The induction hypothesis means the 
“repeat” step works.  The modify-the-solution lemma means the “apply 
the first greedy move” step works.  

WHAT THE INDUCTION STEP IS FOR



We need to repeatedly find the 𝐼 that gives us the maximum value of 
𝐻𝑎𝑝𝑝𝑦 𝐼, 𝐽! + 1 , where we’ve currently given monster 𝐼 𝐽! 𝑐𝑜𝑜𝑘𝑖𝑒𝑠

When we do, we increment 𝐽!

Most obvious way:  Keep all 𝐽! 𝑖𝑛 array, look through all 𝐼 , take max
Total time : 𝑂(𝑁𝑀), because we look through all monsters each of 𝑁

iterations
Can we do better using say, data structures?

EFFICIENT VERSION



We need to repeatedly find the I that gives us the maximum value of 
𝐻𝑎𝑝𝑝𝑦 𝐼, 𝐽! + 1 , where we’ve currently given monster I 𝐽! 𝑐𝑜𝑜𝑘𝑖𝑒𝑠
When we do, we increment 𝐽!

What do we need to do in one step:  Set of values, one per monster.
Access:  need to find maximum
Update:  Replace maximum with new element.

EFFICIENT VERSION



What do we need to do in one step:  Set of values, one per monster.
Access:  need to find maximum ,  Replace maximum:  DeleteMax

Replace  with new element:  Insert.
Good match : binary heap.  

Need to know what values in heap mean, so also should have fields 
I: monster number, J: current position in row.  

EFFICIENT VERSION



Create max-heap H of triples (I,J, Value), ordered by Value
Insert (I,1, Happy[I,1]) into H for each I

FOR T=1 to N do:
(I,J,V) = deletemax.H;
Give cookie to monster I
Insert (I,J+1, Happy[I,J+1]) into H

EFFICIENT VERSION



Create max-heap H of triples (I,J, Value), ordered by Value
Insert (I,1, Happy[I,1]) into H for each I

FOR T=1 to N do:
(I,J,V) = deletemax.H;
Give cookie to monster I
Insert (I,J+1, Happy[I,J+1]) into H

M+ 2N heap operations.  Heap stays M size, so heap operations 
O(log M).  Total time: O((N+M) log M)  

EFFICIENT VERSION



This is a proof technique that does not work in all cases.
The way it works is to logically determine a bound (lower or upper.)
Then show that the greedy strategy achieves this bound and therefore is 
correct.

ACHIEVES-THE-BOUND



Total happiness (any solution). ≤
𝑠𝑢𝑚 𝑜𝑓 𝑁 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑎𝑟𝑟𝑎𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

Greedy achieves the bound:  
Claim:  The happiness per step for the greedy solution is exactly the 
N largest array entries. 

Therefore, total happiness in greedy solution ≥
𝑡𝑜𝑡𝑎𝑙 ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠 𝑖𝑛 𝑎𝑛𝑦 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

SIMPLE BOUND FOR COOKIE DISTRIBUTION



Modify-the-solution is most general to prove greedy algorithms are 
correct when they are

When the greedy algorithm isn’t correct, we still sometimes want to 
use it, because it is fast and comes somewhat close.  Achieves-the-
bound can be generalized to show greedy algorithms ``approximate’’ 
the optimal solution, even when they aren’t optimal.

WHY MULTIPLE METHODS?


