
Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

COL351: Slides for Lecture Component 23



Dynamic programming is an algorithmic paradigm in which a problem is 
solved by:

Identifying a collection of subproblems.

Tackling them one by one, smallest first, using the answers 
to small problems to help figure out larger ones, until they are 
all solved.

DYNAMIC PROGRAMMING



1.   Design simple backtracking algorithm
2.   Characterize subproblems that can arise in backtracking
3.   Simulate backtracking algorithm on subproblems
4.   Define array/matrix to hold different subproblems
5.   Translate recursion from step 3 in terms of matrix positions:  Recursive 
call becomes array position; return becomes write to array position
6.   Invert top-down recursion order to get bottom up order
7:   Assemble:  Fill in base cases

In bottom-up order do:
Use step 5 to fill in each array position

Return array position corresponding to whole input

DP STEPS (BEGINNER)



DYNAMIC PROGRAMMING STEPS (EXPERT)

Step1: Define the subproblems

Step 2: Define the base cases

Step 3: Express subproblems recursively

Step 4: Order the subproblems



1. You MUST explain what each cell of the table/matrix means AS a solution 
to a subproblem.

That is, clearly define the subproblems. 

2. You MUST explain what the recursion is in terms of a LOCAL, COMPLETE 
case analysis.

That is, explain how subproblems are solved using other, “smaller”, 
subproblems.

Undocumented dynamic programing is indistinguishable from nonsense.  
Assumptions about optimal solution almost always wrong.  

EITHER WAY



LONGEST INCREASING SUBSEQUENCE

Given a sequence of distinct positive integers a[1],…,a[n]
An increasing subsequence is  a sequence a[i1],…,a[ik] such that 
i1<…<ik and a[i1]<…<a[ik].

For example: 15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4

5, 16, 20 is an increasing subsequence.

How long is the longest increasing subsequence?



DYNAMIC PROGRAMMING: EXPERT MODE

What is a suitable notion of subproblem?

For example: 15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4



DYNAMIC PROGRAMMING: EXPERT MODE

Step1: Define the subproblems
L(k) = length of the longest increasing subsequence ending exactly at position k

Step 2: Base Case
L(1)=1

Step 3: Express subproblems recursively
L(k) = 1+max({L(i): i < k, a i < ak})

Step 4: Order the subproblems
Solve them in the order L(1), L(2), L(3), …

Try it out! a = [15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4].



LONGEST INCREASING SUBSEQUENCE

Subproblem: L[k] = length of LIS ending exactly at position k

L[1] = 1
For k = 2 to n:

Len = 1
For i = 1 to k-1:

If a[i] < a[k] and Len < 1+L[i]:
Len = 1+L[i]

L[k] = Len
return max(L[1], L[2], …, L[n])



LONGEST INCREASING SUBSEQUENCE

Given a sequence of distinct positive integers a[1],…,a[n]
An increasing subsequence is  a sequence a[i1],…,a[ik] such that 
i1<…<ik and a[i1]<…<a[ik].

For example: 15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4

5, 16, 20 is an increasing subsequence.

How long is the longest increasing subsequence?



1. Come up with simple backtracking algorithm
2. Characterize subproblems
3. Define matrix to store answers to the above
4. Simulate BT algorithm on subproblem
5. Replace recursive calls with matrix elements
6. Invert "top-down" order of BT to get "bottom-up" order
7. Assemble into DP algorithm:

Fill in base cases into matrix in bottom-up order
Use translated recurrence to fill in each matrix element
Return "main problem" answer
(Trace-back to get corresponding solution)

THE LONG WAY



What is a local decision?
More than one possible answer…

LONGEST INCREASING SUBSEQUENCE



What is a local decision? 

Version 1:  For each element, is it in the subsequence?
Possible answers:  Yes, No

Version 2:   What is the first element in the subsequence?  The second? 
Possible answers: 1…n.

Either way, we need to generalize the problem a bit to solve recursively.  

LONGEST INCREASING SUBSEQUENCE



Assume we’re only allowed to use entries bigger than V.
(Initially, set V=-1, and branch on whether or not to include A[1].)
We’ll just return the length of the LIS.  

BTLIS1(V, A[1…n])
If n=0 then return 0
If n=1 then if A[1] > V then return 1 else return 0
OUT:= BTLIS(V, A[2..n])  {if we do not include A[1]}
IF A[1] > V then IN:= 1+BTLIS(A[1],A[2..n]) else IN:= 0
Return max (IN, OUT)  

FIRST CHOICE, RECURSION



EXAMPLE 

A[1:12] = [15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4]



Arrays in subcalls are:

V in subcalls are:

Total number of distinct subcalls:  

WHAT DO SUBPROBLEMS LOOK LIKE?



SUBPROBLEMS

Array A[J..n], where J ranges from 1 to n
V is either -1 or of the form A[K]

To simplify things, define A[0] = -1

Define
L[K,J] = (length of) LIS of A[J..n], with elements > A[K]



BTLIS(A[K], A[J…n])
If J=n then if A[K] < A[n] return 1 else return 0
OUT:= BTLIS(A[K], A[J+1..n])
IF A[J] > A[K] then IN:= 1 + BTLIS(A[J], A[J+1..n]) else IN:= 0
Return max (IN, OUT)  

SIMULATING RECURRENCE 



If A[K] < A[n] then L[K,n] := 1 else L[K,n]:=0
OUT: = L[K,J+1]
IF A[J] > A[K] then IN:= 1 + L[J,J+1] else IN: = 0
L[K,J]:= max (IN, OUT)  

TRANSLATE RECURRENCE IN TERMS OF MATRIX

BTLIS(A[K], A[J…n])
If J=n then if A[K] < A[n] return 1 else return 0
OUT:= BTLIS(A[K], A[J+1..n])
IF A[J] > A[K] then IN:= 1 + BTLIS(A[J], A[J+1..n]) else IN:= 0
Return max (IN, OUT)  

Recall: L[K,J] = (length of) LIS of A[J..n], with elements > A[K]



As we recurse, J gets incremented, K sometimes increases

Bottom-up:  J gets decremented, K any order

INVERT TOP-DOWN ORDER TO GET BOTTOM-UP ORDER

Recall: L[K,J] = (length of) LIS of A[J..n], with elements > A[K]



A[0] := -1
For K=0 to n-1 do:

IF A[n] > A[K] then L[K,n] := 1 else L[K,n] := 0
For J=n-1 downto 1 do:

For K=0 to J-1 do:
OUT := L[K, J+1]
IF A[J] > A[K] then IN := 1 + L[J,J+1] else IN := 0
L[K,J] := max(IN, OUT)

Return L[0,1]

FILL IN MATRIX IN BOTTOM UP ORDER

Recall: L[K,J] = (length of) LIS of A[J..n], with elements > A[K]



EXAMPLE 

A[0:4] = [-1, 15, 8, 11, 2]

1 2 3 4

0

1

2

3

Recall: L[K,J] = (length of) LIS of A[J..n], with elements > A[K]



TIME ANALYSIS

A[0] := -1
For K=0 to n-1 do:

IF A[n] > A[K] then L[K,n] := 1 else L[K,n] := 0
For J=n-1 downto 1 do:

For K=0 to J-1 do:
OUT := L[K, J+1]
IF A[J] > A[K] then IN := 1 + L[J,J+1] else IN := 0
L[K,J] := max(IN, OUT)

Return L[0,1]



What is a local decision? 

Version 1:  For each element, is it in the subsequence?
Possible answers:  Yes, No

Version 2:   What is the first element in the subsequence?  The second? 
Possible answers: 1…n.

Either way, we need to generalize the problem a bit to solve recursively.  

LONGEST INCREASING SUBSEQUENCE



ANOTHER VIEW OF LONGEST INCREASING 
SUBSEQUENCE

Let’s make a DAG out of our example…

15 2018 8 11 5 12 16 2 9 10 4



Consider a graph whose vertices are the distinct recursive calls an 
algorithm makes, and where calls are edges from the subproblem to 
the main problem.

This graph had better be a DAG or we’re in deep trouble!

This graph should be small or DP won’t help much.  

Bottom-up order = topological sort

WHY DAGS ARE CANONICAL FOR DP



BT:  
Create a tree of possible subproblems, where branching is based on all 
consistent next choices for local searches

DP:  
Make this tree into a DAG by identifying paths that lead to same 
problems.  
Array indices = names for vertices in this DAG

Expert’s method: Skip directly to DAG.

BT TO DP: TREES TO DAGS



If the current position we’ve chosen is A[J], what is the next choice?
Possibilities: J+1,…n, none (need to check greater than A[J])
Again, set A[0]=-1 and start J=0
Only counting choices after A[J]

BTLIS2(A[J…n]) {LIS of A[J+1..n], assuming we’ve taken A[J]}
IF n=J return 0
Max := 0
FOR K=J+1 TO n do:

IF A[K] > A[J] THEN:
L:= BTLIS2(A[K..n])
IF Max < 1+L THEN Max := 1+L

Return Max

VERSION 2, BACKTRACKING



Again, set A[0]=-1 and start J=0
What are the distinct recursive calls we make throughout this algorithm?  

WHAT ARE THE SUB-PROBLEMS?

BTLIS2(A[J…n]) {LIS of A[J+1..n], assuming we’ve taken A[J]}
IF n=J return 0
Max := 0
FOR K=J+1 TO n do:

IF A[K] > A[J] THEN:
L:= BTLIS2(A[K..n])
IF Max < 1+L THEN Max := 1+L

Return Max



Let M[J] = BTLIS2(A[J..n]), J=0…n

DEFINE ARRAY AND TRANSLATE



REPLACE RECURSION WITH ARRAY

BTLIS2(A[J…n]) {LIS of A[J+1..n], assuming we’ve taken A[J]}
IF n=J return 0
Max := 0
FOR K=J+1 TO n do:

IF A[K] > A[J] THEN:
L:= BTLIS2(A[K..n])
IF Max < 1+L THEN Max := 1+L

Return Max
M[n] := 0
For J in 0 to n-1:

Max:=0
FOR K=J+1 TO n do:

IF A[K] > A[J] THEN:
L:= M[K]
IF Max < 1+L THEN Max:= 1+L

M[J]:= Max



When we make recursive calls, J is:  

So bottom up order means J is:

IDENTIFY TOP DOWN ORDER



DPLIS2(A[1..n])
A[0] :=-1
M[n] := 0
FOR J=n-1 downto 0 do:

Max := 0
FOR K=J+1 TO n do:

IF A[K] > A[J] THEN:
L:= M[K]
IF Max < 1+L THEN Max:= 1+L

M[J] := Max
Return M[0]

FILL IN ARRAY IN BOTTOM-UP ORDER

Recall: M[J] = (length of) LIS of A[J+1..n], assuming we’ve taken A[J]



A: -1, 15, 18, 8, 11, 5, 12, 16, 2, 20, 9, 10, 4

EXAMPLE

Recall: M[J] = (length of) LIS of A[J+1..n], assuming we’ve taken A[J]



TIME ANALYSIS

DPLIS2(A[1..n])
A[0] :=-1
M[n] := 0
FOR J=n-1 downto 0 do:

Max := 0
FOR K=J+1 TO n do:

IF A[K] > A[J] THEN:
L:= M[K]
IF Max < 1+L THEN Max:= 1+L

M[J] := Max
Return M[0]



Invariant:
M[J] is length of increasing sequence from A[J+1…n] with elements 
greater than A[J]

Strong induction on n-J

Base case: When J=n, no choices possible, M[n] = 0
Induction step:  We try all possible values for first element.

CORRECTNESS


