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Divide and Conquer Trees
• Let’s say we have a full and balanced binary tree (all 

parents have two children and all leaves are on the 
bottom level.) 



Divide and Conquer Trees
• Notice that each child’s subtree is half of the problem so 

we get a nice divide and conquer structure.



Divide and Conquer Trees
• If the tree is uneven, we can still use the same strategy 

but we need to take a bit of care when calculating 
runtime.



Least common ancestor
• Given a binary tree with 𝑛 vertices, we wish to compute 
𝐿𝐶𝐴(𝑥, 𝑦) for each pair of vertices 𝑥, 𝑦.

• 𝐿𝐶𝐴(𝑥, 𝑦) is the least common ancestor of 𝑥 and 𝑦. Or in 
other words, the “youngest” common ancestor of 𝑥 and 𝑦.

• For example, the LCA of me and my brother is our parent. 
The LCA of me and my uncle is my grandparent (his 
parent.) A vertex can be its own ancestor so the LCA of 
me and my father is my father.



Least common ancestor
• What pairs of vertices will have the root 𝑟 as their least 

common ancestor?



Least common ancestor
• What pairs of vertices will have the root 𝑟 as their least 

common ancestor?
• For each vertex 𝑣, set 𝑙𝑐𝑎 𝑣, 𝑟 = 𝑟.
• For each pair of vertices 𝑢, 𝑣 such that 𝑢 is in the left 

subtree and 𝑣 is in the right subtree, set 𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟.
• Now what? Are we done?
• Recurse on the left and right subtrees!!!!!



Pseudocode
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)



Pseudocode (runtime)
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)

If the binary tree is balanced, then 
each recursive call is of size !"#$
or roughly half.
How long does the non-recursive 
part take?



Pseudocode (runtime)
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)

If the binary tree is balanced, then 
each recursive call is of size !"#$
or roughly half.
How long does the non-recursive 
part take?

𝑇 𝑛 = 2𝑇
𝑛 − 1
2

+ O n$

Using the master theorem with 
a=2, b=2, d=2,

𝑇 𝑛 = 𝑂 𝑛$



Pseudocode (runtime uneven)
Def LCA(r):

Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices 𝑢 in Lsubtree:
𝑙𝑐𝑎 𝑢, 𝑟 = 𝑟

for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑟, 𝑣 = 𝑟

for all vertices 𝑢 in Lsubtree:
for all vertices 𝑣 in Rsubtree:
𝑙𝑐𝑎 𝑢, 𝑣 = 𝑟

LCA(r.lc)
LCA(r.rc)

If the binary tree is uneven then 
the runtime recurrence is

𝑇 𝑛 = 𝑇 𝐿 + 𝑇 𝑅 + 𝑂 𝐿𝑅
Where 𝐿 is the size of the left 
subrtree and 𝑅 is the size of the 
right subtree.

What do you think the total 
runtime will be? Take a guess and 
we can check it!!!



Uneven DC runtime
• 𝑇 𝑛 = 𝑇 𝐿 + 𝑇 R + O LR
• We guess that it would take 𝑂 𝑛! . So let’s try to prove 

this using induction.
• Claim: 𝑇 𝑛 ≤ 𝑐𝑛! for all 𝑛 ≥ 1 and for some constant 𝑐

that is bigger than 𝑇(1) and bigger than the coefficient in 
the 𝑂(𝐿𝑅) term.



Uneven DC runtime
• Base case. 𝑇 1 < 𝑐(1!). True by choice of 𝑐.
• Suppose that for some 𝑛 > 1, 𝑇 𝑘 < 𝑐𝑘! for all 𝑘 such 

that 1 ≤ 𝑘 < 𝑛.
• Then

𝑇 𝑛 < 𝑇 𝐿 + 𝑇 𝑅 + 𝑐𝐿𝑅 ≤ 𝑐𝐿! + 𝑐𝑅! + 𝑐𝐿𝑅
< 𝑐𝐿! + 𝑐𝑅! + 2𝑐𝐿𝑅 = 𝑐 𝐿 + 𝑅 ! = 𝑐 𝑛 − 1 ! < 𝑐𝑛!



Make Heap
• Problem: Given a list of n elements, form a heap 

containing all elements.



Divide and conquer strategy
• Assume 𝑛 = 2" − 1. (Add blank elements if needed)

• Divide the list into two lists of size #$%! and a left-over 
element

• Make heaps with both (in sub-trees of root) 
• Put left-over element at root.
• “Trickle down” top element to reinstate heap property



Time analysis
• To solve one problem, we solve two problems of half the 

size, and then spend constant time per depth of the tree.

• T(n) =     T(    )  + O(         )



Time analysis
• To solve one problem, we solve two problems of half the 

size, and then spend constant time per depth of the tree.

• T(n) =    2 T(  n/2  )  + O(log n  )  
• Doesn’t fit master theorem.



Time analysis: sandwiching
• To solve one problem, we solve two problems of half the 

size, and then spend constant time per depth of the tree.

• T(n) =    2 T(  n/2  )  + O(log n  )  

• Define L(n) =2 T(n/2) + O(1), H(n) = 2T(n/2) +𝑂 𝑛
!
"

• L(n) < T(n) < H(n)  
• Apply Master Theorem:  Both L(n) and H(n) are O(n),
• So T(n) is O(n)  



minimum distance
• Given a list of coordinates, [ 𝑥%, 𝑦% , … , 𝑥#, 𝑦# ], find the 

distance between the closest pair.

• Brute force solution?
• min = 0
• for i from 1 to n-1:
• for j from i+1 to n:

• if min > distance( 𝑥! , 𝑦! , (𝑥" , 𝑦"))

• return min



Example
𝑦

𝑥𝑥!



Example
𝑦

𝑥
𝑥!



Divide and conquer
• Partition the points by x, according to whether they are to 

the left or right of the median
• Recursively find the minimum distance points on the two 

sides.
• Need to compare to the smallest “cross distance”  

between a point on the left and a point on the right
• Only need to look at “close” points



Combine
• How will we use this information to find the distance of 

the closest pair in the whole set?
• We must consider if there is a closest pair where one 

point is in the left half and one is in the right half.
• How do we do this?
• Let 𝑑 = min(𝑑+, 𝑑,) and compare only the points (𝑥-, 𝑦-)

such that 𝑥. − 𝑑 ≤ 𝑥- and 𝑥- ≤ 𝑥. + 𝑑.



Example
𝑦

𝑥
𝑥!

𝑃#



Combine
• How will we use this information to find the distance of the 

closest pair in the whole set?
• We must consider if there is a closest pair where one point is 

in the left half and one is in the right half.
• How do we do this?
• Let 𝑑 = min(𝑑4, 𝑑5) and compare only the points (𝑥6 , 𝑦6) such 

that 𝑥7 − 𝑑 ≤ 𝑥6 and 𝑥6 ≤ 𝑥7 + 𝑑.

• Worst case, how many points could this be?



• Given a point 𝑥, 𝑦 ∈ 𝑃!, let’s look in a 2𝑑×𝑑 rectangle with that point 
at its upper boundary:

• There could not be more than 8 points total because if we divide the rectangle into 8 !
"
× !

"
squares then there 

can never be more than one point per square.
• Why???

Combine step



• So instead of comparing (𝑥, 𝑦) with every other point in 𝑃! we only have to compare it with at 
most a constant c points lower than it (smaller y)

• To gain quick access to these points, let’s sort the points in 𝑃! by 𝑦 values.
• The points above must be in the c points before our current point in this sorted list

• Now, if there are 𝑘 vertices in 𝑃! we have to sort the vertices in 𝑂(𝑘log 𝑘) time and make at 
most c𝑘 comparisons in 𝑂(𝑘) time for a total combine step of 𝑂 𝑘 log 𝑘 .

• But we said in the worst case, there are 𝑛 vertices in 𝑃! and so worst case, the combine step 
takes 𝑂(𝑛 log 𝑛) time.

Combine step



• But we said in the worst case, there are 𝑛 vertices in 𝑃! and so worst case, the combine step 
takes 𝑂(𝑛 log 𝑛) time.

• Runtime recursion:
𝑇 𝑛 = 2𝑇

𝑛
2
+ 𝑂(𝑛 log 𝑛)

This is T(n) = O(n (log n)^2) 

Pre-processing :  Sort by both x and y, keep pointers between sorted lists  Maintain sorting in 
recursive calls reduces to T(n) =2 T(n/2) +O(n), so T(n)  is O(n log n)

Time analysis


