COL351: Slides for Lecture Component 20

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

Divide and Conquer Trees

 Let's say we have a full and balanced binary tree (all parents have two children and all leaves are on the bottom level.)

Divide and Conquer Trees

 Notice that each child's subtree is half of the problem so we get a nice divide and conquer structure.

Divide and Conquer Trees

 If the tree is uneven, we can still use the same strategy but we need to take a bit of care when calculating runtime.

Least common ancestor

- Given a binary tree with *n* vertices, we wish to compute LCA(x, y) for each pair of vertices x, y.
- LCA(x, y) is the least common ancestor of x and y. Or in other words, the "youngest" common ancestor of x and y.
- For example, the LCA of me and my brother is our parent. The LCA of me and my uncle is my grandparent (his parent.) A vertex can be its own ancestor so the LCA of me and my father is my father.

Least common ancestor

 What pairs of vertices will have the root r as their least common ancestor?

Least common ancestor

- What pairs of vertices will have the root *r* as their least common ancestor?
- For each vertex v, set lca(v,r) = r.
- For each pair of vertices u, v such that u is in the left subtree and v is in the right subtree, set lca(u, v) = r.
- Now what? Are we done?
- Recurse on the left and right subtrees!!!!!

Pseudocode

Def **LCA**(r):

Lsubtree = **explore**(r.lc)

Rsubtree = **explore**(r.rc)

for all vertices u in Lsubtree:

lca(u,r) = r

for all vertices v in Rsubtree:

lca(r,v) = r

for all vertices u in Lsubtree:

for all vertices v in Rsubtree: lca(u, v) = rLCA(r.lc) LCA(r.rc)

Pseudocode (runtime)

Def **LCA**(r):

Lsubtree = **explore**(r.lc)

Rsubtree = **explore**(r.rc)

for all vertices u in Lsubtree:

lca(u,r) = r

for all vertices v in Rsubtree:

lca(r,v) = r

for all vertices u in Lsubtree:

for all vertices v in Rsubtree: lca(u, v) = rLCA(r.lc) LCA(r.rc) If the binary tree is balanced, then each recursive call is of size $\frac{n-1}{2}$ or roughly half. How long does the non-recursive part take?

Pseudocode (runtime)

Def **LCA**(r):

Lsubtree = **explore**(r.lc)

Rsubtree = **explore**(r.rc)

for all vertices u in Lsubtree:

lca(u,r) = r

for all vertices v in Rsubtree:

lca(r,v) = r

for all vertices *u* in Lsubtree:

for all vertices v in Rsubtree: lca(u, v) = rLCA(r.lc) LCA(r.rc) If the binary tree is balanced, then each recursive call is of size $\frac{n-1}{2}$ or roughly half. How long does the non-recursive part take?

$$T(n) = 2T\left(\frac{n-1}{2}\right) + O(n^2)$$

Using the master theorem with a=2, b=2, d=2,

 $T(n) = \mathcal{O}(n^2)$

Pseudocode (runtime uneven)

Def LCA(r):

Lsubtree = **explore**(r.lc)

Rsubtree = **explore**(r.rc)

for all vertices u in Lsubtree:

lca(u,r) = r

for all vertices v in Rsubtree:

lca(r,v) = r

for all vertices u in Lsubtree:

for all vertices v in Rsubtree: lca(u, v) = rLCA(r.lc) LCA(r.rc) If the binary tree is uneven then the runtime recurrence is T(n) = T(L) + T(R) + O(LR)

Where *L* is the size of the left subrtree and *R* is the size of the right subtree.

What do you think the total runtime will be? Take a guess and we can check it!!!

Uneven DC runtime

- T(n) = T(L) + T(R) + O(LR)
- We guess that it would take $O(n^2)$. So let's try to prove this using induction.
- <u>Claim</u>: $T(n) \le cn^2$ for all $n \ge 1$ and for some constant c that is bigger than T(1) and bigger than the coefficient in the O(LR) term.

Uneven DC runtime

- Base case. $T(1) < c(1^2)$. True by choice of c.
- Suppose that for some n > 1, $T(k) < ck^2$ for all k such that $1 \le k < n$.
- Then

 $T(n) < T(L) + T(R) + cLR \le cL^2 + cR^2 + cLR$ $< cL^2 + cR^2 + 2cLR = c(L+R)^2 = c(n-1)^2 < cn^2$

Make Heap

 Problem: Given a list of n elements, form a heap containing all elements.

Divide and conquer strategy

- Assume $n = 2^k 1$. (Add blank elements if needed)
- Divide the list into two lists of size $\frac{n-1}{2}$ and a left-over element
- Make heaps with both (in sub-trees of root)
- Put left-over element at root.
- "Trickle down" top element to reinstate heap property

Time analysis

• To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.

• T(n) = T() + O()

Time analysis

• To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.

- $T(n) = 2T(n/2) + O(\log n)$
- Doesn't fit master theorem.

Time analysis: sandwiching

• To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.

- $T(n) = 2T(n/2) + O(\log n)$
- Define L(n) =2 T(n/2) + O(1), H(n) = 2T(n/2) + $O(n^{\{\frac{1}{2}\}})$
- L(n) < T(n) < H(n)
- Apply Master Theorem: Both L(n) and H(n) are O(n),
- So T(n) is O(n)

minimum distance

- Given a list of coordinates, $[(x_1, y_1), ..., (x_n, y_n)]$, find the distance between the closest pair.
- Brute force solution?
- min = 0
- for i from 1 to n-1:
 - for j from i+1 to n:
 - if min > distance($(x_i, y_i), (x_j, y_j)$)
- return min

Divide and conquer

- Partition the points by x, according to whether they are to the left or right of the median
- Recursively find the minimum distance points on the two sides.
- Need to compare to the smallest "cross distance" between a point on the left and a point on the right
- Only need to look at "close" points

Combine

- How will we use this information to find the distance of the closest pair in the whole set?
- We must consider if there is a closest pair where one point is in the left half and one is in the right half.
- How do we do this?
- Let $d = \min(d_L, d_R)$ and compare only the points (x_i, y_i) such that $x_m d \le x_i$ and $x_i \le x_m + d$.

Combine

- How will we use this information to find the distance of the closest pair in the whole set?
- We must consider if there is a closest pair where one point is in the left half and one is in the right half.
- How do we do this?
- Let $d = \min(d_L, d_R)$ and compare only the points (x_i, y_i) such that $x_m d \le x_i$ and $x_i \le x_m + d$.
- Worst case, how many points could this be?

Combine step

• Given a point $(x, y) \in P_m$, let's look in a $2d \times d$ rectangle with that point at its upper boundary:

- There could not be more than 8 points total because if we divide the rectangle into $8\frac{d}{2} \times \frac{d}{2}$ squares then there can never be more than one point per square.
- Why???

Combine step

- So instead of comparing (x, y) with every other point in P_m we only have to compare it with at most a constant c points lower than it (smaller y)
- To gain quick access to these points, let's sort the points in P_m by y values.
- The points above must be in the c points before our current point in this sorted list
- Now, if there are k vertices in P_m we have to sort the vertices in $O(k \log k)$ time and make at most ck comparisons in O(k) time for a total combine step of $O(k \log k)$.
- But we said in the worst case, there are *n* vertices in *P_m* and so worst case, the combine step takes *O*(*n* log *n*) time.

Time analysis

• But we said in the worst case, there are *n* vertices in *P_m* and so worst case, the combine step takes *O*(*n* log *n*) time.

• Runtime recursion:

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n\log n)$$

This is $T(n) = O(n (\log n)^2)$

Pre-processing : Sort by both x and y, keep pointers between sorted lists Maintain sorting in recursive calls reduces to T(n) = 2 T(n/2) + O(n), so T(n) is $O(n \log n)$