## COL351: Slides for Lecture Component 20

Thanks to Miles Jones, Russell Impagliazzo, and Sanjoy Dasgupta at UCSD for these slides.

## Divide and Conquer Trees

- Let's say we have a full and balanced binary tree (all parents have two children and all leaves are on the bottom level.)



## Divide and Conquer Trees

- Notice that each child's subtree is half of the problem so we get a nice divide and conquer structure.



## Divide and Conquer Trees

- If the tree is uneven, we can still use the same strategy but we need to take a bit of care when calculating runtime.



## Least common ancestor

- Given a binary tree with $n$ vertices, we wish to compute $\operatorname{LCA}(x, y)$ for each pair of vertices $x, y$.
- $\operatorname{LCA}(x, y)$ is the least common ancestor of $x$ and $y$. Or in other words, the "youngest" common ancestor of $x$ and $y$.
- For example, the LCA of me and my brother is our parent. The LCA of me and my uncle is my grandparent (his parent.) A vertex can be its own ancestor so the LCA of me and my father is my father.


## Least common ancestor

- What pairs of vertices will have the root $r$ as their least common ancestor?



## Least common ancestor

- What pairs of vertices will have the root $r$ as their least common ancestor?
- For each vertex $v$, set $l c a(v, r)=r$.
- For each pair of vertices $u, v$ such that $u$ is in the left subtree and $v$ is in the right subtree, set $l c a(u, v)=r$.
- Now what? Are we done?
- Recurse on the left and right subtrees!!!!!


## Pseudocode

Def LCA(r):
Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices $u$ in Lsubtree:
lca $(u, r)=r$
for all vertices $v$ in Rsubtree:

$$
\operatorname{lca}(r, v)=r
$$

for all vertices $u$ in Lsubtree:
for all vertices $v$ in Rsubtree:
lca $(u, v)=r$
LCA(r.lc)
LCA(r.rc)

## Pseudocode (runtime)

Def LCA(r):
Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices $u$ in Lsubtree:
lca $(u, r)=r$
for all vertices $v$ in Rsubtree:

$$
\operatorname{lca}(r, v)=r
$$

for all vertices $u$ in Lsubtree:
for all vertices $v$ in Rsubtree:
lca $(u, v)=r$
LCA(r.lc)
LCA(r.rc)

If the binary tree is balanced, then each recursive call is of size $\frac{n-1}{2}$ or roughly half.
How long does the non-recursive part take?

## Pseudocode (runtime)

Def LCA(r):
Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices $u$ in Lsubtree:

$$
l c a(u, r)=r
$$

for all vertices $v$ in Rsubtree:

$$
\operatorname{lca}(r, v)=r
$$

for all vertices $u$ in Lsubtree:
for all vertices $v$ in Rsubtree:

$$
\operatorname{lca}(u, v)=r
$$

LCA(r.lc)
LCA(r.rc)

If the binary tree is balanced, then each recursive call is of size $\frac{n-1}{2}$ or roughly half.
How long does the non-recursive part take?

$$
T(n)=2 T\left(\frac{n-1}{2}\right)+0\left(\mathrm{n}^{2}\right)
$$

Using the master theorem with $a=2, b=2, d=2$,

$$
T(n)=O\left(n^{2}\right)
$$

## Pseudocode (runtime uneven)

Def LCA(r):
Lsubtree = explore(r.lc)
Rsubtree = explore(r.rc)
for all vertices $u$ in Lsubtree:
lca $(u, r)=r$
for all vertices $v$ in Rsubtree:

$$
\operatorname{lca}(r, v)=r
$$

for all vertices $u$ in Lsubtree:
for all vertices $v$ in Rsubtree:

$$
\operatorname{lca}(u, v)=r
$$

LCA(r.lc)
LCA(r.rc)

If the binary tree is uneven then the runtime recurrence is

$$
T(n)=T(L)+T(R)+O(L R)
$$

Where $L$ is the size of the left subrtree and $R$ is the size of the right subtree.

What do you think the total runtime will be? Take a guess and we can check it!!!

## Uneven DC runtime

- $T(n)=T(L)+T(\mathrm{R})+\mathrm{O}(\mathrm{LR})$
- We guess that it would take $O\left(n^{2}\right)$. So let's try to prove this using induction.
- Claim: $T(n) \leq c n^{2}$ for all $n \geq 1$ and for some constant $c$ that is bigger than $T(1)$ and bigger than the coefficient in the $O(L R)$ term.


## Uneven DC runtime

- Base case. $T(1)<c\left(1^{2}\right)$. True by choice of $c$.
- Suppose that for some $n>1, T(k)<c k^{2}$ for all $k$ such that $1 \leq k<n$.
- Then

$$
\begin{gathered}
T(n)<T(L)+T(R)+c L R \leq c L^{2}+c R^{2}+c L R \\
<c L^{2}+c R^{2}+2 c L R=c(L+R)^{2}=c(n-1)^{2}<c n^{2}
\end{gathered}
$$

## Make Heap

- Problem: Given a list of $n$ elements, form a heap containing all elements.


## Divide and conquer strategy

- Assume $n=2^{k}-1$. (Add blank elements if needed)
- Divide the list into two lists of size $\frac{n-1}{2}$ and a left-over element
- Make heaps with both (in sub-trees of root)
- Put left-over element at root.
- "Trickle down" top element to reinstate heap property


## Time analysis

- To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.
- $T(n)=T(\quad)+O(\quad)$


## Time analysis

- To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.
- $T(n)=2 T(n / 2)+O(\log n)$
- Doesn't fit master theorem.


## Time analysis: sandwiching

- To solve one problem, we solve two problems of half the size, and then spend constant time per depth of the tree.
- $T(n)=2 T(n / 2)+O(\log n)$
- Define $L(n)=2 T(n / 2)+O(1), H(n)=2 T(n / 2)+O\left(n^{\left\{\frac{1}{2}\right\}}\right)$
- $\mathrm{L}(\mathrm{n})<\mathrm{T}(\mathrm{n})<\mathrm{H}(\mathrm{n})$
- Apply Master Theorem: Both $\mathrm{L}(\mathrm{n})$ and $\mathrm{H}(\mathrm{n})$ are $\mathrm{O}(\mathrm{n})$,
- So $T(n)$ is $O(n)$


## minimum distance

- Given a list of coordinates, $\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right]$, find the distance between the closest pair.
- Brute force solution?
- min = 0
- for i from 1 to $\mathrm{n}-1$ :
- for j from $\mathrm{i}+1$ to n :
- if min $>$ distance $\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right)$
- return min


## Example



## Example



## Divide and conquer

- Partition the points by x , according to whether they are to the left or right of the median
- Recursively find the minimum distance points on the two sides.
- Need to compare to the smallest "cross distance" between a point on the left and a point on the right
- Only need to look at "close" points


## Combine

- How will we use this information to find the distance of the closest pair in the whole set?
- We must consider if there is a closest pair where one point is in the left half and one is in the right half.
- How do we do this?
- Let $d=\min \left(d_{L}, d_{R}\right)$ and compare only the points $\left(x_{i}, y_{i}\right)$ such that $x_{m}-d \leq x_{i}$ and $x_{i} \leq x_{m}+d$.


## Example <br> 

## Combine

- How will we use this information to find the distance of the closest pair in the whole set?
- We must consider if there is a closest pair where one point is in the left half and one is in the right half.
- How do we do this?
- Let $d=\min \left(d_{L}, d_{R}\right)$ and compare only the points $\left(x_{i}, y_{i}\right)$ such that $x_{m}-d \leq x_{i}$ and $x_{i} \leq x_{m}+d$.
- Worst case, how many points could this be?


## Combine step

- Given a point $(x, y) \in P_{m}$, let's look in a $2 d \times d$ rectangle with that point at its upper boundary:

- There could not be more than 8 points total because if we divide the rectangle into $8 \frac{d}{2} \times \frac{d}{2}$ squares then there can never be more than one point per square.
- Why???


## Combine step

- So instead of comparing $(x, y)$ with every other point in $P_{m}$ we only have to compare it with at most a constant $\mathbf{c}$ points lower than it (smaller y)
- To gain quick access to these points, let's sort the points in $P_{m}$ by $y$ values.
- The points above must be in the $\mathbf{c}$ points before our current point in this sorted list
- Now, if there are $k$ vertices in $P_{m}$ we have to sort the vertices in $O(k \log k)$ time and make at most ck comparisons in $O(k)$ time for a total combine step of $O(k \log k)$.
- But we said in the worst case, there are $n$ vertices in $P_{m}$ and so worst case, the combine step takes $O(n \log n)$ time.


## Time analysis

- But we said in the worst case, there are $n$ vertices in $P_{m}$ and so worst case, the combine step takes $O(n \log n)$ time.
- Runtime recursion:

$$
T(n)=2 T\left(\frac{n}{2}\right)+O(n \log n)
$$

This is $T(n)=O\left(n(\log n)^{\wedge} 2\right)$
Pre-processing : Sort by both x and y , keep pointers between sorted lists Maintain sorting in recursive calls reduces to $T(n)=2 T(n / 2)+O(n)$, so $T(n)$ is $O(n \log n)$

