There are 2 questions for a total of 10 points.

1. Apply the Master theorem and give the solution for the following recurrence relations in big-O notation. Explanation is not required.
(a) (1 point) $T(n)=2 \cdot T(n / 2)+O(1) ; T(1)=O(1)$

Solution: $T(n)=O(n)$.
(b) (1 point) $T(n)=2 \cdot T(n / 2)+O(n) ; T(1)=O(1)$

Solution: $T(n)=O(n \log n)$.
(c) (1 point) $T(n)=2 \cdot T(n / 2)+O\left(n^{3}\right) ; T(1)=O(1)$

Solution: $T(n)=O\left(n^{3}\right)$.
2. (7 points) You are given a bit-array $A[1 \ldots n]$ (i.e., $A[i] \in\{0,1\}$ for each i) and told that this is a " 0 -to- 1 " bit-array. This means that for some (unknown) index $1 \leq j<n, A[1], \ldots, A[j]$ are all 0 's and $A[j+1], \ldots, A[n]$ are all 1 's. The index j for such an array is called the transition index.
Design an algorithm for finding the transition index for a given 0-to-1 bit-array. The input to your algorithm is an array A and the size n of the array A. Give a running time analysis for your algorithm.

Solution: Here is a divide and conquer based algorithm for the problem that follows the binary search idea.

```
FindTransition( }A,n\mathrm{ )
    - return(RecFind (A,1,n))
RecFind(A,i,j)
    - If (j=i+1) return(i)
    - mid }\leftarrow\lfloor\frac{(i+j)}{2}
    - If (A[mid] = 0) return(FindTransition(A, mid, j))
    - else return(FindTransition(A,i,mid))
```

Running time: The recurrence relation for the recursive program is $T(n)=T(n / 2)+O(1)$. Applying the Master theorem with $a=1 ; b=2 ; d=0($ steady state $)$, we obtain $T(n)=O(\log n)$.

