CSL202: Discrete Mathematical Structures

Ragesh Jaiswal, CSE, IIT Delhi

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

Number Theory and Cryptography

Theorem

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

 $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Theorem

Let m be a positive integer and let a and b be integers. Then

$$(a + b) \pmod{m} = ((a \pmod{m}) + (b \pmod{m})) \pmod{m}$$

and

$$ab \ (mod \ m) = ((a \ (mod \ m))(b \ (mod \ m))) \ (mod \ m).$$

- Let $Z_m = \{0, 1, 2, ..., m-1\}.$
- We can define the following arithmetic operations on Z_m :
 - $+_m$: This is defined as $a +_m b = (a + b) \pmod{m}$.
 - \cdot_m : This is defined as $a \cdot_m b = (a \cdot b) \pmod{m}$.
- Show that $+_m$ and \cdot_m satisfies the following properties:
 - Closure
 - Associativity
 - Commutativity
 - Identity
 - Additive inverse
 - Distributivity

Theorem

Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0,$$

where k is a nonnegative integer, $a_0, a_1, ..., a_k$ are nonnegative integers less than b, and $a_k \neq 0$.

- What is the running time of each of the following operations:
 - Adding an *m* bit number with an *n* bit number.
 - Multiplying an *m* bit number with an *n* bit number.

Multiplying two *n*-bit numbers: Given two *n*-bit numbers, A and \overline{B} , Design an algorithm to output $A \cdot B$.

< ∃ ► < ∃ ►

- <u>Solution 1</u>: Use long multiplication.
- What is the running time of the algorithm that uses long multiplication?

- <u>Solution 1</u>: Use long multiplication.
- What is the running time of the algorithm that uses long multiplication? O(n²)
- Is there a faster algorithm?

- <u>Solution 1</u>: Algorithm using long multiplication with running time $O(n^2)$.
- <u>Solution 2</u>: (Assume *n* is a power of 2)
 - Write $A = A_L \cdot 2^{n/2} + A_R$ and $B = B_L \cdot 2^{n/2} + B_R$.
 - So, $A \cdot B = (A_L \cdot B_L) \cdot 2^n + (A_L \cdot B_R + A_R \cdot B_L) \cdot 2^{n/2} + (A_R \cdot B_R)$
 - <u>Main Idea</u>: Compute $(A_L \cdot B_L)$, $(A_R \cdot B_R)$, and $(A_R \cdot B_L)$, and $(A_L \cdot B_R)$ and combine these values.

Problem

Multiplying two *n*-bit numbers: Given two *n*-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

- Solution 1: Algorithm using long multiplication with running time $O(n^2)$.
- Solution 2: (Assume n is a power of 2)
 - Write $A = A_L \cdot 2^{n/2} + A_R$ and $B = B_L \cdot 2^{n/2} + B_R$.
 - So, $A \cdot B = (A_L \cdot B_L) \cdot 2^n + (A_L \cdot B_R + A_R \cdot B_L) \cdot 2^{n/2} + (A_R \cdot B_R)$
 - <u>Main Idea</u>: Compute $(A_L \cdot B_L)$, $(A_R \cdot B_R)$, and $(A_R \cdot B_L)$, and $(A_L \cdot B_R)$ and combine these values.

Algorithm

- DivideAndConquer(A, B)
 - If (|A| = |B| = 1) return $(A \cdot B)$
 - Split A into A_L and A_R
 - Split B into B_L and B_R
 - $P \leftarrow \texttt{DivideAndConquer}(A_L, B_L)$
 - $Q \leftarrow \texttt{DivideAndConquer}(A_R, B_R)$
 - $R \leftarrow \texttt{DivideAndConquer}(A_L, B_R)$
 - $S \leftarrow \texttt{DivideAndConquer}(A_R, B_L)$
 - return(Combine(P, Q, R, S))
 - What is the recurrence relation for the running time of the above algorithm?

伺下 イヨト イヨト

Problem

Multiplying two *n*-bit numbers: Given two *n*-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

DivideAndConquer(A, B)

- If (|A| = |B| = 1) return $(A \cdot B)$
- Split A into A_L and A_R
- Split B into B_L and B_R
- $P \leftarrow \texttt{DivideAndConquer}(A_L, B_L)$
- $Q \leftarrow \texttt{DivideAndConquer}(A_R, B_R)$
- $R \leftarrow \texttt{DivideAndConquer}(A_L, B_R)$
- $S \leftarrow \texttt{DivideAndConquer}(A_R, B_L)$
- return(Combine(P,Q,R,S))
- What is the recurrence relation for the running time of the above algorithm? T(n) = 4 · T(n/2) + O(n) for n > 1 and T(1) = O(1).
- What is the solution to the above recurrence relation?

Problem

Multiplying two *n*-bit numbers: Given two *n*-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

DivideAndConquer(A, B)

- If (|A| = |B| = 1) return $(A \cdot B)$
- Split A into A_L and A_R
- Split B into B_L and B_R
- $P \leftarrow \texttt{DivideAndConquer}(A_L, B_L)$
- $Q \leftarrow \texttt{DivideAndConquer}(A_R, B_R)$
- $R \leftarrow \texttt{DivideAndConquer}(A_L, B_R)$
- $S \leftarrow \texttt{DivideAndConquer}(A_R, B_L)$
- return(Combine(P, Q, R, S))
- What is the recurrence relation for the running time of the above algorithm? $T(n) = 4 \cdot T(n/2) + O(n)$ for n > 1 and T(1) = O(1).
- What is the solution to the above recurrence relation? $T(n) = O(n^2).$

ヨト イヨト イヨト

- <u>Solution 1</u>: Algorithm using long multiplication with running time $O(n^2)$.
- <u>Solution 2</u>: Naïve Divide and Conquer with running time O(n²).
- Solution 3:
 - Write $A = A_L \cdot 2^{n/2} + A_R$ and $B = B_L \cdot 2^{n/2} + B_R$.
 - So, $A \cdot B = (A_L \cdot B_L) \cdot 2^n + (A_L \cdot B_R + A_R \cdot B_L) \cdot 2^{n/2} + (A_R \cdot B_R)$
 - <u>Main Idea</u>: Compute $(A_L \cdot B_L)$, $(A_R \cdot B_R)$, and $(A_L + B_L) \cdot (A_R + B_R) - (A_L \cdot B_L) - (A_R \cdot B_R)$.

Problem

Multiplying two *n*-bit numbers: Given two *n*-bit numbers, A and \overline{B} , Design an algorithm to output $A \cdot B$.

Algorithm

Karatsuba(A, B)

- If (|A| = |B| = 1) return $(A \cdot B)$
- Split A into A_L and A_R
- Split B into B_L and B_R
- $P \leftarrow \texttt{Karatsuba}(A_L, B_L)$
- $Q \leftarrow \texttt{Karatsuba}(A_R, B_R)$
- $R \leftarrow \texttt{Karatsuba}(A_L + A_R, B_L + B_R)$
- return(Combine(P, Q, R))
- What is the recurrence relation for the running time of the above algorithm?

Problem

Multiplying two *n*-bit numbers: Given two *n*-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

Karatsuba(A, B)

- If (|A| = |B| = 1) return $(A \cdot B)$
- Split A into A_L and A_R
- Split B into B_L and B_R
- $P \leftarrow \texttt{Karatsuba}(A_L, B_L)$
- $Q \leftarrow \texttt{Karatsuba}(A_R, B_R)$
- $R \leftarrow \texttt{Karatsuba}(A_L + A_R, B_L + B_R)$
- return(Combine(P, Q, R))
- Recurrence relation: $T(n) \leq 3 \cdot T(n/2) + cn$; $T(1) \leq c$.
- What is the solution of this recurrence relation?

Problem

Multiplying two *n*-bit numbers: Given two *n*-bit numbers, A and B, Design an algorithm to output $A \cdot B$.

Algorithm

Karatsuba(A, B)

- If (|A| = |B| = 1) return $(A \cdot B)$
- Split A into A_L and A_R
- Split B into B_L and B_R
- $P \leftarrow \texttt{Karatsuba}(A_L, B_L)$
- $Q \leftarrow \texttt{Karatsuba}(A_R, B_R)$
- $R \leftarrow \texttt{Karatsuba}(A_L + A_R, B_L + B_R)$
- return(Combine(P,Q,R))
- Recurrence relation: $T(n) \leq 3 \cdot T(n/2) + cn$; $T(1) \leq c$.
- What is the solution of this recurrence relation? $T(n) \le O(n^{\log_2 3})$

End

Ragesh Jaiswal, CSE, IIT Delhi CSL202: Discrete Mathematical Structures

・ロト ・部 ト ・ヨト ・ヨト

3