# CSL202: Discrete Mathematical Structures 

Ragesh Jaiswal, CSE, IIT Delhi

## Number Theory and Cryptography

## Number Theory and Cryptography

Divisibility and Modular Arithmetic

## Theorem

Let $m$ be a positive integer. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then

$$
a+c \equiv b+d(\bmod m) \quad \text { and } \quad a c \equiv b d(\bmod m) .
$$

## Theorem

Let $m$ be a positive integer and let $a$ and $b$ be integers. Then

$$
(a+b)(\bmod m)=((a(\bmod m))+(b(\bmod m)))(\bmod m)
$$

and

$$
a b(\bmod m)=((a(\bmod m))(b(\bmod m)))(\bmod m)
$$

## Number Theory and Cryptography

Divisibility and Modular Arithmetic

- Let $Z_{m}=\{0,1,2, \ldots, m-1\}$.
- We can define the following arithmetic operations on $Z_{m}$ :
- $+_{m}$ : This is defined as $a+_{m} b=(a+b)(\bmod m)$.
- $\cdot m$ : This is defined as $a \cdot m b=(a \cdot b)(\bmod m)$.
- Show that $+_{m}$ and $\cdot_{m}$ satisfies the following properties:
- Closure
- Associativity
- Commutativity
- Identity
- Additive inverse
- Distributivity


# Number Theory and Cryptography 

Divisibility and Modular Arithmetic

## Theorem

Let $b$ be an integer greater than 1. Then if $n$ is a positive integer, it can be expressed uniquely in the form

$$
n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{1} b+a_{0}
$$

where $k$ is a nonnegative integer, $a_{0}, a_{1}, \ldots, a_{k}$ are nonnegative integers less than $b$, and $a_{k} \neq 0$.

- What is the running time of each of the following operations:
- Adding an $m$ bit number with an $n$ bit number.
- Multiplying an $m$ bit number with an $n$ bit number.


# Number Theory and Cryptography 

Binary Multiplication

## Problem

Multiplying two $n$-bit numbers: Given two $n$-bit numbers, $A$ and $B$, Design an algorithm to output $A \cdot B$.

# Number Theory and Cryptography 

Binary Multiplication

## Problem

Multiplying two $n$-bit numbers: Given two $n$-bit numbers, $A$ and $B$, Design an algorithm to output $A \cdot B$.

- Solution 1: Use long multiplication.
- What is the running time of the algorithm that uses long multiplication?


# Number Theory and Cryptography 

Binary Multiplication

## Problem

Multiplying two $n$-bit numbers: Given two $n$-bit numbers, $A$ and $B$, Design an algorithm to output $A \cdot B$.

- Solution 1: Use long multiplication.
- What is the running time of the algorithm that uses long multiplication? $O\left(n^{2}\right)$
- Is there a faster algorithm?


## Number Theory and Cryptography

Binary Multiplication

## Problem

Multiplying two $n$-bit numbers: Given two $n$-bit numbers, $A$ and $B$, Design an algorithm to output $A \cdot B$.

- Solution 1: Algorithm using long multiplication with running time $O\left(n^{2}\right)$.
- Solution 2: (Assume $n$ is a power of 2)
- Write $A=A_{L} \cdot 2^{n / 2}+A_{R}$ and $B=B_{L} \cdot 2^{n / 2}+B_{R}$.
- So, $A \cdot B=\left(A_{L} \cdot B_{L}\right) \cdot 2^{n}+\left(A_{L} \cdot B_{R}+A_{R} \cdot B_{L}\right) \cdot 2^{n / 2}+\left(A_{R} \cdot B_{R}\right)$
- Main Idea: Compute $\left(A_{L} \cdot B_{L}\right),\left(A_{R} \cdot B_{R}\right)$, and $\left(A_{R} \cdot B_{L}\right)$, and ( $A_{L} \cdot B_{R}$ ) and combine these values.


## Number Theory and Cryptography

Binary Multiplication

## Problem

Multiplying two $n$-bit numbers: Given two $n$-bit numbers, $A$ and $B$, $\overline{\text { Design an algorithm to output }} A \cdot B$.

- Solution 1: Algorithm using long multiplication with running time $O\left(n^{2}\right)$.
- Solution 2: (Assume $n$ is a power of 2)
- Write $A=A_{L} \cdot 2^{n / 2}+A_{R}$ and $B=B_{L} \cdot 2^{n / 2}+B_{R}$.
- So, $A \cdot B=\left(A_{L} \cdot B_{L}\right) \cdot 2^{n}+\left(A_{L} \cdot B_{R}+A_{R} \cdot B_{L}\right) \cdot 2^{n / 2}+\left(A_{R} \cdot B_{R}\right)$
- Main Idea: Compute $\left(A_{L} \cdot B_{L}\right),\left(A_{R} \cdot B_{R}\right)$, and $\left(A_{R} \cdot B_{L}\right)$, and $\left(A_{L} \cdot B_{R}\right)$ and combine these values.


## Algorithm

DivideAndConquer ( $A, B$ )

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split $A$ into $A_{L}$ and $A_{R}$
- Split $B$ into $B_{L}$ and $B_{R}$
- $P \leftarrow$ DivideAndConquer $\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ DivideAndConquer $\left(A_{R}, B_{R}\right)$
- $R \leftarrow$ DivideAndConquer $\left(A_{L}, B_{R}\right)$
$-S \leftarrow$ DivideAndConquer $\left(A_{R}, B_{L}\right)$
- return(Combine $(P, Q, R, S)$ )
- What is the recurrence relation for the running time of the above algorithm?


## Number Theory and Cryptography

Binary Multiplication

## Problem

Multiplying two $n$-bit numbers: Given two $n$-bit numbers, $A$ and $B$, Design an algorithm to output $A \cdot B$.

## Algorithm

DivideAndConquer $(A, B)$

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split $A$ into $A_{L}$ and $A_{R}$
- Split $B$ into $B_{L}$ and $B_{R}$
- $P \leftarrow$ DivideAndConquer $\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ DivideAndConquer $\left(A_{R}, B_{R}\right)$
$-R \leftarrow$ DivideAndConquer $\left(A_{L}, B_{R}\right)$
- $S \leftarrow$ DivideAndConquer $\left(A_{R}, B_{L}\right)$
- return(Combine $(P, Q, R, S)$ )
- What is the recurrence relation for the running time of the above algorithm? $T(n)=4 \cdot T(n / 2)+O(n)$ for $n>1$ and $T(1)=O(1)$.
- What is the solution to the above recurrence relation?


## Number Theory and Cryptography

Binary Multiplication

## Problem

Multiplying two $n$-bit numbers: Given two $n$-bit numbers, $A$ and $B$, Design an algorithm to output $A \cdot B$.

## Algorithm

DivideAndConquer ( $A, B$ )

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split $A$ into $A_{L}$ and $A_{R}$
- Split $B$ into $B_{L}$ and $B_{R}$
- $P \leftarrow$ DivideAndConquer $\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ DivideAndConquer $\left(A_{R}, B_{R}\right)$
- $R \leftarrow$ DivideAndConquer $\left(A_{L}, B_{R}\right)$
$-S \leftarrow$ DivideAndConquer $\left(A_{R}, B_{L}\right)$
- return(Combine $(P, Q, R, S)$ )
- What is the recurrence relation for the running time of the above algorithm? $T(n)=4 \cdot T(n / 2)+O(n)$ for $n>1$ and $T(1)=O(1)$.
- What is the solution to the above recurrence relation?

$$
T(n)=O\left(n^{2}\right)
$$

## Number Theory and Cryptography

Binary Multiplication

## Problem

Multiplying two $n$-bit numbers: Given two $n$-bit numbers, $A$ and $B$, Design an algorithm to output $A \cdot B$.

- Solution 1: Algorithm using long multiplication with running time $O\left(n^{2}\right)$.
- Solution 2: Naïve Divide and Conquer with running time $O\left(n^{2}\right)$.
- Solution 3:
- Write $A=A_{L} \cdot 2^{n / 2}+A_{R}$ and $B=B_{L} \cdot 2^{n / 2}+B_{R}$.
- So, $A \cdot B=\left(A_{L} \cdot B_{L}\right) \cdot 2^{n}+\left(A_{L} \cdot B_{R}+A_{R} \cdot B_{L}\right) \cdot 2^{n / 2}+\left(A_{R} \cdot B_{R}\right)$
- Main Idea: Compute $\left(A_{L} \cdot B_{L}\right),\left(A_{R} \cdot B_{R}\right)$, and

$$
\overline{\left(A_{L}+B_{L}\right)} \cdot\left(A_{R}+B_{R}\right)-\left(A_{L} \cdot B_{L}\right)-\left(A_{R} \cdot B_{R}\right) .
$$

## Number Theory and Cryptography

Binary Multiplication

## Problem

Multiplying two $n$-bit numbers: Given two $n$-bit numbers, $A$ and $B$, Design an algorithm to output $A \cdot B$.

## Algorithm

Karatsuba $(A, B)$

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split $A$ into $A_{L}$ and $A_{R}$
- Split $B$ into $B_{L}$ and $B_{R}$
- $P \leftarrow \operatorname{Karatsuba}\left(A_{L}, B_{L}\right)$
- $Q \leftarrow \operatorname{Karatsuba}\left(A_{R}, B_{R}\right)$
$-R \leftarrow \operatorname{Karatsuba}\left(A_{L}+A_{R}, B_{L}+B_{R}\right)$
- return(Combine $(P, Q, R)$ )
- What is the recurrence relation for the running time of the above algorithm?


## Number Theory and Cryptography

Binary Multiplication

## Problem

Multiplying two $n$-bit numbers: Given two $n$-bit numbers, $A$ and $B$, Design an algorithm to output $A \cdot B$.

## Algorithm

Karatsuba $(A, B)$

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split $A$ into $A_{L}$ and $A_{R}$
- Split $B$ into $B_{L}$ and $B_{R}$
- $P \leftarrow \operatorname{Karatsuba}\left(A_{L}, B_{L}\right)$
- $Q \leftarrow$ Karatsuba $\left(A_{R}, B_{R}\right)$
$-R \leftarrow \operatorname{Karatsuba}\left(A_{L}+A_{R}, B_{L}+B_{R}\right)$
- return(Combine $(P, Q, R)$ )
- Recurrence relation: $T(n) \leq 3 \cdot T(n / 2)+c n ; T(1) \leq c$.
- What is the solution of this recurrence relation?


## Number Theory and Cryptography

Binary Multiplication

## Problem

Multiplying two $n$-bit numbers: Given two $n$-bit numbers, $A$ and $B$, $\overline{\text { Design an algorithm to output }} A \cdot B$.

## Algorithm

Karatsuba $(A, B)$

- If $(|A|=|B|=1)$ return $(A \cdot B)$
- Split $A$ into $A_{L}$ and $A_{R}$
- Split $B$ into $B_{L}$ and $B_{R}$
- $P \leftarrow \operatorname{Karatsuba}\left(A_{L}, B_{L}\right)$
- $Q \leftarrow \operatorname{Karatsuba}\left(A_{R}, B_{R}\right)$
- $R \leftarrow \operatorname{Karatsuba}\left(A_{L}+A_{R}, B_{L}+B_{R}\right)$
- return(Combine $(P, Q, R))$
- Recurrence relation: $T(n) \leq 3 \cdot T(n / 2)+c n ; T(1) \leq c$.
- What is the solution of this recurrence relation?

$$
T(n) \leq O\left(n^{\log _{2} 3}\right)
$$

## End

