COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

< ≣ ▶

Matrix Algorithm using Sampling

문 🛌 문

- The data can be stored in the memory but we would like to avoid working directly with the data (it may be in a slower memory) and create a sketch of the data so that:
 - The sketch retains the important properties of the data with respect to the computational task we want to perform on the data.
 - The sketch takes much smaller (faster) memory.
- Example: Matrix multiplication where the task is to multiply two matrices A and B. We would like to create sketches of the matrices that take much smaller space so that AB can be approximated using just the sketches.

医子宫下子 医下

Problem

Given an $m \times n$ matrix A and an $n \times p$ matrix B, design an algorithm to compute AB.

- Let A(:, k) denote the k^{th} column of A and A(k, :) denote the k^{th} row.
- We can write the product AB as $AB = \sum_{k=1}^{n} A(:, k)B(k, :)$. Note that A(:, k)B(k, :) is an $m \times p$ matrix for any k.
- Consider a random variable z that takes value in the set $\{1, ..., n\}$ and let $p_k = \Pr[z = k]$.
- Let $X = \frac{A(:,z)B(z,:)}{p_z}$.
- Question: What is $\mathbf{E}[X]$?

Problem

Given an $m \times n$ matrix A and an $n \times p$ matrix B, design an algorithm to compute AB.

- Let A(:, k) denote the k^{th} column of A and A(k, :) denote the k^{th} row.
- We can write the product AB as $AB = \sum_{k=1}^{n} A(:,k)B(k,:)$. Note that A(:, k)B(k, :) is an $m \times p$ matrix for any k.
- Consider a random variable z that takes value in the set $\{1, ..., n\}$ and let $p_k = \Pr[z = k]$.
- Let $X = \frac{A(:,z)B(z,:)}{p_z}$. <u>Claim</u>: $\mathbf{E}[X] \stackrel{p_z}{=} AB$.
- We are interested in the quantity $\mathbf{E}[||AB X||_{F}^{2}]$ which may be interpreted as the sum of variances of entries of X. Let us call this Var[X].

ゆ く き と く ほ と

Problem

Given an $m \times n$ matrix A and an $n \times p$ matrix B, design an algorithm to compute AB.

- Let A(:, k) denote the kth column of A and A(k, :) denote the kth row.
- We can write the product AB as $AB = \sum_{k=1}^{n} A(:, k)B(k, :)$. Note that A(:, k)B(k, :) is an $m \times p$ matrix for any k.
- Consider a random variable z that takes value in the set {1,...,n} and let $p_k = \Pr[z = k]$.
- Let $X = \frac{A(:,z)B(z,:)}{p_z}$. <u>Claim</u>: $\mathbf{E}[X] = AB$.
- We are interested in the quantity $\mathbf{E}[||AB X||_F^2]$ which may be interpreted as the sum of variances of entries of X. Let us call this Var[X].

Calculations

$$\begin{aligned} \forall ar[X] &= \sum_{i=1}^{m} \sum_{j=1}^{p} Var[X_{ij}] = \sum_{i,j} (\mathbf{E}[X_{ij}^2] - \mathbf{E}[X_{ij}]^2) \\ &= \sum_{i,j} \sum_{k} p_k \frac{A_{ik}^2 B_{kj}^2}{p_k^2} - ||AB||_F^2 \\ &= \sum_{k} \frac{1}{p_k} \left(\sum_{i} A_{ik}^2 \right) \left(\sum_{i} B_{kj}^2 \right) - ||AB||_F^2 \\ &= \sum_{k} \frac{1}{p_k} ||A(:,k)||^2 ||B(k,:)||^2 - ||AB||_F^2 \end{aligned}$$

イロト イポト イヨト イヨト

Problem

Given an $m \times n$ matrix A and an $n \times p$ matrix B, design an algorithm to compute AB.

- Let A(:, k) denote the k^{th} column of A and A(k, :) denote the k^{th} row.
- We can write the product AB as $AB = \sum_{k=1}^{n} A(:, k)B(k, :)$. Note that A(:, k)B(k, :) is an $m \times p$ matrix for any k.
- Consider a random variable z that takes value in the set $\{1, ..., n\}$ and let $p_k = \Pr[z = k]$.
- Let $X = \frac{A(:,z)B(z,:)}{p_z}$.
- <u>Claim</u>: $\mathbf{E}[X] \stackrel{p_z}{=} AB$.
- We are interested in the quantity E[||AB X||²_F] which may be interpreted as the sum of variances of entries of X. Let us call this Var[X].

Calculations

$$Var[X] = \sum_{k} \frac{1}{p_{k}} ||A(:,k)||^{2} ||B(k,:)||^{2} - ||AB||_{F}^{2}$$

- The RHS is minimized when p_k 's are proportional to $||A(:,k)|| \cdot ||B(k,:)||$.
- For ease of calculations let us use $p_k = ||A(:, k)||^2$. This gives $Var[X] \leq ||A||_F^2 \sum_k ||B(k, :)||^2 = ||A||_F^2 \cdot ||B||_F^2$.

同下 イヨト イヨト

Problem

Given an $m \times n$ matrix A and an $n \times p$ matrix B, design an algorithm to compute AB.

- Let A(:, k) denote the k^{th} column of A and A(k, :) denote the k^{th} row.
- We can write the product AB as AB = ∑_{k=1}ⁿ A(:, k)B(k, :). Note that A(:, k)B(k, :) is an m × p matrix for any k.
- Consider a random variable z that takes value in the set $\{1, ..., n\}$ and let $p_{k} = \Pr[z = k]$.
- Let $X = \frac{A(:,z)B(z,:)}{p_z}$.
- <u>Claim</u>: $\mathbf{E}[X] \stackrel{r_2}{=} AB$.
- We are interested in the quantity E[||AB X||²_F] which may be interpreted as the sum of variances of entries of X. Let us call this Var[X].
- For ease of calculations let us use $p_k = ||A(:,k)||^2$. This gives $Var[X] \le ||A||_F^2 \sum_k ||B(k,:)||^2 = ||A||_F^2 \cdot ||B||_F^2$.
- In order to obtain an X with smaller variance, we can do s independent trials to obtain matrices X₁, ..., X_s and take an average. That is X = X₁₊₊₊X_s.

• Claim: For such an X,
$$Var[X] \leq \frac{||A||_F^2 \cdot ||B||_F^2}{s}$$

(4 同) (4 日) (4 日)

Problem

Given an $m \times n$ matrix A and an $n \times p$ matrix B, design an algorithm to compute AB.

- Let A(:, k) denote the k^{th} column of A and A(k, :) denote the k^{th} row.
- We can write the product AB as $AB = \sum_{k=1}^{n} A(:, k)B(k, :)$. Note that A(:, k)B(k, :) is an $m \times p$ matrix for any k.
- Consider a random variable z that takes value in the set {1,..., n} and let p_k = Pr[z = k].
- Let $X = \frac{A(:,z)B(z,:)}{p_z}$.
- <u>Claim</u>: $\mathbf{E}[X] \stackrel{p_z}{=} AB$.
- We are interested in the quantity E[||AB X||²_F] which may be interpreted as the sum of variances of entries of X. Let us call this Var[X].
- For ease of calculations let us use $p_k = ||A(:, k)||^2$. This gives $Var[X] \leq ||A||_F^2 \sum_k ||B(k, :)||^2 = ||A||_F^2 \cdot ||B||_F^2$.
- In order to obtain an X with smaller variance, we can do s independent trials to obtain matrices $X_1, ..., X_s$ and take an average. That is $X = \frac{X_1+\ldots+X_s}{s}$.
- <u>Claim</u>: For such an X, $Var[X] \leq \frac{||A||_F^2 \cdot ||B||_F^2}{s}$.
- Let $k_1, ..., k_s$ denote the k's chosen in each trial. Then $X = \frac{1}{s} \left(\frac{A(:,k_1)B(k_1,:)}{p_{k_1}} + ... + \frac{A(:,k_1)B(k_1,:)}{p_{k_1}} \right)$

直 ト イヨト イヨト

Problem

Given an $m \times n$ matrix A and an $n \times p$ matrix B, design an algorithm to compute AB.

- Let A(:, k) denote the k^{th} column of A and A(k, :) denote the k^{th} row.
- We can write the product AB as AB = ∑ⁿ_{k=1} A(:, k)B(k,:). Note that A(:, k)B(k,:) is an m × p matrix for any k.
- Consider a random variable z that takes value in the set {1,..., n} and let p_k = Pr[z = k].
- Let $X = \frac{A(:,z)B(z,:)}{p_z}$.
- <u>Claim</u>: $\mathbf{E}[X] \stackrel{r_2}{=} AB$.
- We are interested in the quantity E[||AB X||²_F] which may be interpreted as the sum of variances of entries of X. Let us call this Var[X].
- For ease of calculations let us use $p_k = ||A(:, k)||^2$. This gives $Var[X] \leq ||A||_F^2 \sum_k ||B(k,:)||^2 = ||A||_F^2 \cdot ||B||_F^2$.
- In order to obtain an X with smaller variance, we can do s independent trials to obtain matrices $X_1, ..., X_s$ and take an average. That is $X = \frac{X_1 + ... + X_s}{s}$.
- <u>Claim</u>: For such an X, $Var[X] \leq \frac{||A||_F^2 \cdot ||B||_F^2}{s}$.
- Let $k_1, ..., k_s$ denote the k's chosen in each trial. Then $X = \frac{1}{s} \left(\frac{A(:,k_1)B(k_1,:)}{\rho_{k_1}} + ... + \frac{A(:,k_1)B(k_1,:)}{\rho_{k_1}} \right).$

• Let C be the matrix with columns
$$\frac{A(:,k_1)}{\sqrt{sp_{k_1}}}, ..., \frac{A(:,k_s)}{\sqrt{sp_{k_s}}}$$
 and R be matrix with rows $\frac{B(k_1,:)}{\sqrt{sp_{k_s}}}, ..., \frac{B(k_s,:)}{\sqrt{sp_{k_s}}}$. Then $X = CR$.

伺 ト く ヨ ト く ヨ ト

Problem

Given an $m \times n$ matrix A and an $n \times p$ matrix B, design an algorithm to compute AB.

- Let A(:, k) denote the kth column of A and A(k, :) denote the kth row.
- We can write the product AB as $AB = \sum_{k=1}^{n} A(:, k)B(k, :)$. Note that A(:, k)B(k, :) is an $m \times p$ matrix for any k.
- Consider a random variable z that takes value in the set {1,..., n} and let p_k = Pr[z = k].
- Let $X = \frac{A(:,z)B(z,:)}{p_z}$.
- <u>Claim</u>: $\mathbf{E}[X] \stackrel{\mu z}{=} AB$.
- We are interested in the quantity E[||AB − X||²_F] which may be interpreted as the sum of variances of entries of X. Let us call this Var[X].
- For ease of calculations let us use $p_k = ||A(:, k)||^2$. This gives $Var[X] \leq ||A||_F^2 \sum_k ||B(k, :)||^2 = ||A||_F^2 \cdot ||B||_F^2$.
- In order to obtain an X with smaller variance, we can do s independent trials to obtain matrices X₁,..., X_s and take an average. That is X = X_{1+u+X_s}.
- <u>Claim</u>: For such an X, $Var[X] \leq \frac{||A||_F^2 \cdot ||B||_F^2}{s}$.
- Let $k_1, ..., k_s$ denote the k's chosen in each trial. Then $X = \frac{1}{s} \left(\frac{A(::k_1)B(k_1::)}{p_{k_1}} + ... + \frac{A(::k_1)B(k_1::)}{p_{k_1}} \right).$
- Let C be the matrix with columns $\frac{A(:,k_1)}{\sqrt{sp_{k_1}}}, ..., \frac{A(:,k_s)}{\sqrt{sp_{k_s}}}$ and R be matrix with rows $\frac{B(k_1,:)}{\sqrt{sp_{k_1}}}, ..., \frac{B(k_s,:)}{\sqrt{sp_{k_s}}}$. Then X = CR.
- <u>Claim</u>: $\mathbf{E}[CC^T] = AA^T$ and $\mathbf{E}[R^T R] = B^T B$.

伺 ト く ヨ ト く ヨ ト

Problem

Given an $m \times n$ matrix A and an $n \times p$ matrix B, design an algorithm to compute AB.

• Here is a nice summary of the entire discussion in terms of a usable theorem.

Theorem

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. The product AB can be estimated by CR, where C is an $m \times s$ matrix consisting of s columns of A picked according to length-squared distribution and scaled to satisfy $\mathbf{E}[CC^T] = AA^T$ and R is the $s \times p$ matrix consisting of the corresponding rows of B scaled to satisfy $\mathbf{E}[R^TR] = B^TB$. The error is bounded by:

$$\mathbf{E}[||AB - CR||_F^2] \le \frac{||A||_F^2 \cdot ||B||_F^2}{s}$$

Thus to ensure $\mathbf{E}[||AB - CR||_F^2] \le \varepsilon^2 ||A||_F^2 \cdot ||B||_F^2$, it suffices to make $s \ge \frac{1}{\varepsilon^2}$.

 Note that if ε = Ω(1), so s ∈ O(1), then the multiplication CR can be performed in time O(mp).

向下 イヨト イヨト

Problem

Given an $m \times n$ matrix A and an $n \times p$ matrix B, design an algorithm to compute AB.

Theorem

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. The product AB can be estimated by CR, where C is an $m \times s$ matrix consisting of s columns of A picked according to length-squared distribution and scaled to satisfy $\mathbf{E}[CC^T] = AA^T$ and R is the $s \times p$ matrix consisting of the corresponding rows of B scaled to satisfy $\mathbf{E}[R^TR] = B^TB$. The error is bounded by:

$$\mathbf{E}[||AB - CR||_F^2] \le \frac{||A||_F^2 \cdot ||B||_F^2}{s}$$

Thus to ensure $\mathbf{E}[||AB - CR||_F^2] \le \varepsilon^2 ||A||_F^2 \cdot ||B||_F^2$, it suffices to make $s \ge \frac{1}{\varepsilon^2}$.

- Note that if ε = Ω(1), so s ∈ O(1), then the multiplication CR can be performed in time O(mp).
- Let us analyse the circumstances under which the above theorem may be useful (not useful).

(4) E > (4) E >

Theorem

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. The product AB can be estimated by CR, where C is an $m \times s$ matrix consisting of s columns of A picked according to length-squared distribution and scaled to satisfy $\mathbf{E}[CC^T] = AA^T$ and R is the $s \times p$ matrix consisting of the corresponding rows of B scaled to satisfy $\mathbf{E}[R^TR] = B^TB$. The error is bounded by:

$$\mathbf{E}[||AB - CR||_F^2] \le \frac{||A||_F^2 \cdot ||B||_F^2}{s}$$

Thus to ensure $\mathbf{E}[||AB - CR||_F^2] \le c^2 ||A||_F^2 \cdot ||B||_F^2$, it suffices to make $s \ge \frac{1}{c^2}$.

- Note that if ε = Ω(1), so s ∈ O(1), then the multiplication CR can be performed in time O(mp).
- Let us analyse the circumstances under which the above theorem may be useful (not useful).
- Let A = I and $B = A^T$. So, $||AA^T||_F^2 = n$ and $\frac{||A||_F^2 \cdot ||B||_F^2}{s} = \frac{n^2}{s}$.
- What this means is that *s* needs to be greater than *n* in order to give better approximation than the trivial zero matrix.
- In general, it will be useful exercise to examine the situations under which the sampling algorithm provides better approximation than the trivial zero matrix whose error is $||AA^{T}||_{F}^{2}$.

直 ト イヨ ト イヨ ト

• Let us analyse the circumstances under which the above theorem may be useful (not useful).

• Let
$$A = I$$
 and $B = A^T$. So, $||AA^T||_F^2 = n$ and $\frac{||A||_F^2 \cdot ||B||_F^2}{s} = \frac{n^2}{s}$.

- What this means is that *s* needs to be greater than *n* in order to give better approximation than the trivial zero matrix.
- In general, it will be useful exercise to examine the situations under which the sampling algorithm provides better approximation than the trivial zero matrix whose error is $||AA^{T}||_{F}^{2}$.

• Claim 1:
$$||AA^{T}||_{F}^{2} = \sum_{t} \sigma_{t}^{4}$$
.
• Claim 2: $||A||_{F}^{2} = \sum_{t} \sigma_{t}^{2}$.

• So,
$$\mathbf{E}[||AA^T - CR||_F^2] \le ||AA^T||_F^2$$
 provided $s \ge \frac{(\sum_t \sigma_t^2)^2}{\sum_t \sigma_t^4}$.

• Let us analyse the circumstances under which the above theorem may be useful (not useful).

• Let
$$A = I$$
 and $B = A^T$. So, $||AA^T||_F^2 = n$ and $\frac{||A||_F^2 \cdot ||B||_F^2}{s} = \frac{n^2}{s}$.

- What this means is that *s* needs to be greater than *n* in order to give better approximation than the trivial zero matrix.
- In general, it will be useful exercise to examine the situations under which the sampling algorithm provides better approximation than the trivial zero matrix whose error is $||AA^{T}||_{F}^{2}$.
 - Claim 1: $||AA^T||_F^2 = \sum_t \sigma_t^4$. • Claim 2: $||A||_F^2 = \sum_t \sigma_t^2$.
 - So, $\mathbf{E}[||AA^T CR||_F^2] \le ||AA^T||_F^2$ provided $s \ge \frac{(\sum_t \sigma_t^2)^2}{\sum_t \sigma_t^4}$.
 - Claim 3: If rank(A) = r, then $\frac{(\sum_t \sigma_t^2)^2}{\sum_t \sigma_t^4} \leq r$ and s needs to be at least r.
 - This means that if A is full rank, then sampling will not gain us anything.

高 ト イヨ ト イヨ ト

• Let us analyse the circumstances under which the above theorem may be useful (not useful).

• Let
$$A = I$$
 and $B = A^T$. So, $||AA^T||_F^2 = n$ and $\frac{||A||_F^2 \cdot ||B||_F^2}{s} = \frac{n^2}{s}$.

- What this means is that *s* needs to be greater than *n* in order to give better approximation than the trivial zero matrix.
- In general, it will be useful exercise to examine the situations under which the sampling algorithm provides better approximation than the trivial zero matrix whose error is $||AA^{T}||_{F}^{2}$.
 - <u>Claim 1</u>: $||AA^T||_F^2 = \sum_t \sigma_t^4$.

• Claim 2:
$$||A||_F^2 = \sum_t \overline{\sigma_t^2}$$
.

• So,
$$\mathbf{E}[||AA^T - CR||_F^2] \le ||AA^T||_F^2$$
 provided $s \ge \frac{(\sum_t \sigma_t^2)^2}{\sum_t \sigma_t^4}$.

- <u>Claim 3</u>: If rank(A) = r, then $\frac{(\sum_t \sigma_t^2)^2}{\sum_t \sigma_t^4} \leq r$ and s needs to be at least r.
 - $\bullet\,$ This means that if A is full rank, then sampling will not gain us anything.
- <u>Claim 4</u>: If there are small constants c and p such that $\sum_{t=1}^{p} \sigma_{t}^{2} \geq \frac{\sum_{t} \sigma_{t}^{2}}{c}$, then $\frac{(\sum_{t} \sigma_{t}^{2})^{2}}{\sum_{t} \sigma_{t}^{4}} \leq c^{2}p$.

Sketching: CUR decomposition

3

- <u>Goal</u>: Create a sketch of a given large $m \times n$ matrix A with respect to the 2-norm.
- We already talked about this while discussing SVD. So, why are we addressing this question again?

< ∃ > < ∃ >

- <u>Goal</u>: Create a sketch of a given large $m \times n$ matrix A with respect to the 2-norm.
- We already talked about this while discussing SVD. So, why are we addressing this question again?
 - The SVD computation was in the batch setting. In the current low-space context, we want algorithms that are space efficient.
 - Interpolative approximation: The sketch involves a subset of (scaled) rows and columns of the original matrix *A*. This is useful in many contexts where the rows and columns have specific interpretation and preserving them is important.

• • = • • = •

- <u>Goal</u>: Create a sketch of a given large $m \times n$ matrix A with respect to the 2-norm.
- We already talked about this while discussing SVD. So, why are we addressing this question again?
 - The SVD computation was in the batch setting. In the current low-space context, we want algorithms that are space efficient.
 - Interpolative approximation: The sketch involves a subset of (scaled) rows and columns of the original matrix *A*. This is useful in many contexts where the rows and columns have specific interpretation and preserving them is important.
- Here is what we plan to do:
 - Sample s columns of A as per length squared distribution and each column is scaled so that if a column k is picked, then it is scaled by $\frac{1}{\sqrt{sp_k}}$. Let C be the $m \times s$ matrix of such (scaled) columns.
 - Similarly, sample r rows of A as per length squared distribution and each row is scaled so that if a row k is picked, then it is scaled by $\frac{1}{\sqrt{rp_k}}$. Let R be the $r \times n$ matrix of such (scaled) rows.
 - From C and R find an $s \times r$ matrix U such that $A \approx CUR$.

Sketching CUR Decomposition

- <u>Goal</u>: Create a sketch of a given large $m \times n$ matrix A with respect to the 2-norm.
- We already talked about this while discussing SVD. So, why are we addressing this question again?
 - The SVD computation was in the batch setting. In the current low-space context, we want algorithms that are space efficient.
 - Interpolative approximation: The sketch involves a subset of (scaled) rows and columns of the original matrix A. This is useful in many contexts where the rows and columns have specific interpretation and preserving them is important.
- Here is what we plan to do:

 - Similarly, sample r rows of A as per length squared distribution and each row is scaled so that if a row k is picked, then it is scaled by 1/(7Pk). Let R be the r × n matrix of such (scaled) rows.
 - From C and R find an $s \times r$ matrix U such that $A \approx CUR$.
- The notion of similarity (≈) that we are interested in is the 2-norm since in many cases we would want to create a sketch for multiplying A with unit vectors. In case A ≈ CUR, then the vector multiplication costs O(ms + sr + rn) which is small is r and s are small.

- Here is what we plan to do:
 - Sample s columns of A as per length squared distribution and each column is scaled so that if a column k is picked, then it is scaled by $\frac{1}{\sqrt{sp_k}}$. Let C be the $m \times s$ matrix of such (scaled) columns.
 - Similarly, sample r rows of A as per length squared distribution and each row is scaled so that if a row k is picked, then it is scaled by $\frac{1}{\sqrt{rp_k}}$. Let R be the $r \times n$ matrix of such (scaled) rows.
 - From C and R find an $s \times r$ matrix U such that $A \approx CUR$.
- We will define a matrix *P* (that depends on matrix *R*) using which we will define *U*.

Defining matrix P

$$P = \begin{cases} R^T (RR^T)^{-1}R, & \text{if } RR^T \text{ is invertible} \\ R^T \left(\sum_{t=1}^{\ell} \frac{1}{\sigma_t^2} \mathbf{u}_t \mathbf{u}_t^T \right) R, & \text{rank}(RR^T) = \ell \& R = \sum_{t=1}^{\ell} \sigma_t \mathbf{u}_t \mathbf{v}_t^T \end{cases}$$

Here $R = \sum_{t=1}^{\ell} \sigma_t \mathbf{u}_t \mathbf{v}_t^T$ is the SVD of R.

Defining matrix P

$$P = \begin{cases} R^T (RR^T)^{-1}R, & \text{if } RR^T \text{ is invertible} \\ R^T \left(\sum_{t=1}^{\ell} \frac{1}{\sigma_t^2} \mathbf{u}_t \mathbf{u}_t^T \right) R, & \text{rank}(RR^T) = \ell \& R = \sum_{t=1}^{\ell} \sigma_t \mathbf{u}_t \mathbf{v}_t^T \end{cases}$$

Here
$$R = \sum_{t=1}^{\ell} \sigma_t \mathbf{u_t} \mathbf{v}_t^T$$
 is the SVD of R .

Lemma

The matrix P defined above satisfies the following properties:

- For every vector \mathbf{x} of the form $\mathbf{x} = R^T \mathbf{y}$, $P\mathbf{x} = \mathbf{x}$. That is, it acts like an identity matrix on the row space of R.
- 2 For every **x** that is orthogonal to the row space of R, P**x** = 0.

ヨト イヨト イヨト

Defining matrix P

$$P = \begin{cases} R^T (RR^T)^{-1}R, & \text{if } RR^T \text{ is invertible} \\ R^T \left(\sum_{t=1}^{\ell} \frac{1}{\sigma_t^2} \mathbf{u}_t \mathbf{u}_t^T \right) R, & \text{rank}(RR^T) = \ell \& R = \sum_{t=1}^{\ell} \sigma_t \mathbf{u}_t \mathbf{v}_t^T \end{cases}$$

Here $R = \sum_{t=1}^{\ell} \sigma_t \mathbf{u}_t \mathbf{v}_t^T$ is the SVD of R.

_emma

The matrix P defined above satisfies the following properties:

- For every vector x of the form x = R^Ty, Px = x. That is, it acts like an identity matrix on the row space of R.
- 2 For every **x** that is orthogonal to the row space of R, P**x** = 0.

Proof sketch

- <u>Case 1</u>: RR^T is invertible:
 - For any $\mathbf{x} = R^T \mathbf{y}$, $P\mathbf{x} = R^T (RR^T)^{-1} R\mathbf{x} = R^T (RR^T)^{-1} RR^T \mathbf{y} = R^T \mathbf{y} = \mathbf{x}$.

• For **x** orthogonal to every row of *R*, we have $R\mathbf{x} = 0$ and hence $P\mathbf{x} = 0$.

• Case 2:
$$rank(RR^{T}) = \ell < r$$

• $R^{T} \left(\sum_{t=1}^{\ell} \frac{1}{\sigma_{t}^{2}} \mathbf{u}_{t} \mathbf{u}_{t}^{T} \right) R = \sum_{t=1}^{\ell} \mathbf{v}_{t} \mathbf{v}_{t}^{T}$

A B + A B +
A

1

Defining matrix P

$$P = \begin{cases} R^{T} (RR^{T})^{-1}R, & \text{if } RR^{T} \text{ is invertible} \\ R^{T} \left(\sum_{t=1}^{\ell} \frac{1}{\sigma_{t}^{2}} \mathbf{u}_{t} \mathbf{u}_{t}^{T} \right) R, & \text{rank} (RR^{T}) = \ell \& R = \sum_{t=1}^{\ell} \sigma_{t} \mathbf{u}_{t} \mathbf{v}_{t}^{T} \end{cases}$$

Here $R = \sum_{t=1}^{\ell} \sigma_{t} \mathbf{u}_{t} \mathbf{v}_{t}^{T}$ is the SVD of R .

Lemma

The matrix P defined above satisfies the following properties:

- **()** For every vector \mathbf{x} of the form $\mathbf{x} = R^T \mathbf{y}$, $P\mathbf{x} = \mathbf{x}$. That is, it acts like an identity matrix on the row space of R.
- 2 For every **x** that is orthogonal to the row space of R, P**x** = 0.

• Claim 1:
$$\mathbf{E}[||A - AP||_2^2] \leq \frac{||A_F||^2}{\sqrt{r}}$$
.

伺 ト く ヨ ト く ヨ ト

Defining matrix P

$$P = \begin{cases} R^T (RR^T)^{-1}R, & \text{if } RR^T \text{ is invertible} \\ R^T \left(\sum_{t=1}^{\ell} \frac{1}{\sigma_t^2} \mathbf{u}_t \mathbf{u}_t^T \right) R, & \text{rank}(RR^T) = \ell \& R = \sum_{t=1}^{\ell} \sigma_t \mathbf{u}_t \mathbf{v}_t^T \end{cases}$$

Here $R = \sum_{t=1}^{\ell} \sigma_t \mathbf{u}_t \mathbf{v}_t^T$ is the SVD of R.

Lemma

The matrix P defined above satisfies the following properties:

- For every vector x of the form x = R^Ty, Px = x. That is, it acts like an identity matrix on the row space of R.
- **(2)** For every **x** that is orthogonal to the row space of R, P**x** = 0.
- <u>Claim 1</u>: $\mathbf{E}[||A AP||_2^2] \le \frac{||A_F||^2}{\sqrt{r}}$.
- Sampling s columns from A and taking the same rows from P, leads to an expression of the form CUR. Using our multiplication result, we get:

$$\mathbf{E}[||AP - CUR||_2^2] \le \mathbf{E}[||AP - CUR||_F^2] \le \frac{||A||_F^2 \cdot ||P||_F^2}{s} \le \frac{r}{s}||A||_F^2.$$

. Finally, using the triangle inequality we get that:

$$\mathbf{E}[||A - CUR||_2^2] \le ||A||_F^2 \left(\frac{2}{\sqrt{r}} + \frac{2r}{s}\right)$$

・ロト ・回ト ・ヨト ・ヨト

• The entire discussion is summarized in the following theorem.

Theorem

Let A be an $n \times m$ matrix and r and s be positive integers. Let C be an $m \times s$ matrix of s columns of A picked according to length squared sampling and let R be a matrix of r rows of A picked according to length squared sampling. Then, we can find from C and R an $s \times r$ matrix U so that

$$\mathbb{E}[||A - CUR||_2^2] \le ||A||_F^2 \left(\frac{2}{\sqrt{r}} + \frac{2r}{s}\right).$$

• Using $r = \Theta(1/\varepsilon^2)$ and $s = \Theta(1/\varepsilon^3)$, we get that the LHS is at most $O(\varepsilon)||A||_F^2$.

End

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

・ロト ・回ト ・ヨト ・ヨト

Ξ