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Sketching

The data can be stored in the memory but we would like to
avoid working directly with the data (it may be in a slower
memory) and create a sketch of the data so that:

The sketch retains the important properties of the data with
respect to the computational task we want to perform on the
data.
The sketch takes much smaller (faster) memory.

Example: Matrix multiplication where the task is to multiply
two matrices A and B. We would like to create sketches of
the matrices that take much smaller space so that AB can be
approximated using just the sketches.
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Sketching
Matrix multiplication

Problem

Given an m × n matrix A and an n × p matrix B, design an algorithm
to compute AB.

Let A(:, k) denote the kth column of A and A(k, :) denote the kth

row.
We can write the product AB as AB =

∑n
k=1 A(:, k)B(k , :).

Note that A(:, k)B(k, :) is an m × p matrix for any k .
Consider a random variable z that takes value in the set {1, ..., n}
and let pk = Pr[z = k].

Let X = A(:,z)B(z,:)
pz

.
Question: What is E[X ]?
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Sketching
Matrix multiplication

Problem

Given an m × n matrix A and an n × p matrix B, design an algorithm
to compute AB.

Let A(:, k) denote the kth column of A and A(k, :) denote the kth

row.
We can write the product AB as AB =

∑n
k=1 A(:, k)B(k , :).

Note that A(:, k)B(k, :) is an m × p matrix for any k .
Consider a random variable z that takes value in the set {1, ..., n}
and let pk = Pr[z = k].

Let X = A(:,z)B(z,:)
pz

.
Claim: E[X ] = AB.
We are interested in the quantity E[||AB − X ||2F ] which may be
interpreted as the sum of variances of entries of X . Let us call
this Var [X ].
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Matrix multiplication

Problem

Given an m × n matrix A and an n × p matrix B, design an algorithm
to compute AB.

Let A(:, k) denote the kth column of A and A(k, :) denote the kth

row.
We can write the product AB as AB =

∑n
k=1 A(:, k)B(k , :).

Note that A(:, k)B(k, :) is an m × p matrix for any k .
Consider a random variable z that takes value in the set {1, ..., n}
and let pk = Pr[z = k].

Let X = A(:,z)B(z,:)
pz

.
Claim: E[X ] = AB.
We are interested in the quantity E[||AB − X ||2F ] which may be
interpreted as the sum of variances of entries of X . Let us call
this Var [X ].

Calculations

Var [X ] =
m∑
i=1

p∑
j=1

Var [Xij ] =
∑
i ,j

(E[X 2
ij ]− E[Xij ]

2)

=
∑
i ,j

∑
k

pk
A2
ikB

2
kj

p2k
− ||AB||2F

=
∑
k

1

pk

(∑
i

A2
ik

)(∑
i

B2
kj

)
− ||AB||2F

=
∑
k

1

pk
||A(:, k)||2||B(k , :)||2 − ||AB||2F
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Matrix multiplication

Problem

Given an m × n matrix A and an n × p matrix B, design an algorithm
to compute AB.

Let A(:, k) denote the kth column of A and A(k, :) denote the kth

row.
We can write the product AB as AB =

∑n
k=1 A(:, k)B(k , :).

Note that A(:, k)B(k, :) is an m × p matrix for any k .
Consider a random variable z that takes value in the set {1, ..., n}
and let pk = Pr[z = k].

Let X = A(:,z)B(z,:)
pz

.
Claim: E[X ] = AB.
We are interested in the quantity E[||AB − X ||2F ] which may be
interpreted as the sum of variances of entries of X . Let us call
this Var [X ].

Calculations

Var [X ] =
∑
k

1

pk
||A(:, k)||2||B(k , :)||2 − ||AB||2F

The RHS is minimized when pk ’s are proportional to
||A(:, k)|| · ||B(k , :)||.
For ease of calculations let us use pk = ||A(:, k)||2. This gives
Var [X ] ≤ ||A||2F

∑
k ||B(k , :)||2 = ||A||2F · ||B||2F .
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Sketching
Matrix multiplication

Problem

Given an m × n matrix A and an n × p matrix B, design an algorithm
to compute AB.

Let A(:, k) denote the kth column of A and A(k, :) denote the kth

row.
We can write the product AB as AB =
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k=1 A(:, k)B(k , :).

Note that A(:, k)B(k, :) is an m × p matrix for any k .
Consider a random variable z that takes value in the set {1, ..., n}
and let pk = Pr[z = k].

Let X = A(:,z)B(z,:)
pz

.
Claim: E[X ] = AB.
We are interested in the quantity E[||AB − X ||2F ] which may be
interpreted as the sum of variances of entries of X . Let us call
this Var [X ].
For ease of calculations let us use pk = ||A(:, k)||2. This gives
Var [X ] ≤ ||A||2F

∑
k ||B(k , :)||2 = ||A||2F · ||B||2F .

In order to obtain an X with smaller variance, we can do s
independent trials to obtain matrices X1, ...,Xs and take an
average. That is X = X1+...+Xs

s .

Claim: For such an X , Var [X ] ≤ ||A||
2
F ·||B||

2
F

s .
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Claim: E[X ] = AB.
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interpreted as the sum of variances of entries of X . Let us call
this Var [X ].
For ease of calculations let us use pk = ||A(:, k)||2. This gives
Var [X ] ≤ ||A||2F

∑
k ||B(k , :)||2 = ||A||2F · ||B||2F .

In order to obtain an X with smaller variance, we can do s
independent trials to obtain matrices X1, ...,Xs and take an
average. That is X = X1+...+Xs

s .

Claim: For such an X , Var [X ] ≤ ||A||
2
F ·||B||

2
F

s .
Let k1, ..., ks denote the k ’s chosen in each trial. Then

X = 1
s

(
A(:,k1)B(k1,:)

pk1
+ ...+ A(:,k1)B(k1,:)

pk1

)
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s .

Claim: For such an X , Var [X ] ≤ ||A||
2
F ·||B||

2
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s .
Let k1, ..., ks denote the k ’s chosen in each trial. Then

X = 1
s

(
A(:,k1)B(k1,:)

pk1
+ ...+ A(:,k1)B(k1,:)

pk1

)
.

Let C be the matrix with columns A(:,k1)√
spk1

, ..., A(:,ks)√
spks

and R be

matrix with rows B(k1,:)√
spk1

, ..., B(ks ,:)√
spks

. Then X = CR.
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Given an m × n matrix A and an n × p matrix B, design an algorithm
to compute AB.

Let A(:, k) denote the kth column of A and A(k, :) denote the kth

row.
We can write the product AB as AB =

∑n
k=1 A(:, k)B(k , :).

Note that A(:, k)B(k, :) is an m × p matrix for any k .
Consider a random variable z that takes value in the set {1, ..., n}
and let pk = Pr[z = k].

Let X = A(:,z)B(z,:)
pz

.
Claim: E[X ] = AB.
We are interested in the quantity E[||AB − X ||2F ] which may be
interpreted as the sum of variances of entries of X . Let us call
this Var [X ].
For ease of calculations let us use pk = ||A(:, k)||2. This gives
Var [X ] ≤ ||A||2F

∑
k ||B(k , :)||2 = ||A||2F · ||B||2F .

In order to obtain an X with smaller variance, we can do s
independent trials to obtain matrices X1, ...,Xs and take an
average. That is X = X1+...+Xs

s .

Claim: For such an X , Var [X ] ≤ ||A||
2
F ·||B||

2
F

s .
Let k1, ..., ks denote the k ’s chosen in each trial. Then

X = 1
s

(
A(:,k1)B(k1,:)

pk1
+ ...+ A(:,k1)B(k1,:)

pk1

)
.

Let C be the matrix with columns A(:,k1)√
spk1

, ..., A(:,ks)√
spks

and R be

matrix with rows B(k1,:)√
spk1

, ..., B(ks ,:)√
spks

. Then X = CR.

Claim: E[CCT ] = AAT and E[RTR] = BTB.
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Sketching
Matrix multiplication

Problem

Given an m × n matrix A and an n × p matrix B, design an algorithm
to compute AB.

Here is a nice summary of the entire discussion in terms of a
usable theorem.

Theorem

Suppose A is an m × n matrix and B is an n × p matrix. The product
AB can be estimated by CR, where C is an m× s matrix consisting of
s columns of A picked according to length-squared distribution and
scaled to satisfy E[CCT ] = AAT and R is the s × p matrix consisting
of the corresponding rows of B scaled to satisfy E[RTR] = BTB. The
error is bounded by:

E[||AB − CR||2F ] ≤
||A||2F · ||B||2F

s
.

Thus to ensure E[||AB − CR||2F ] ≤ ε2||A||2F · ||B||2F , it suffices to make
s ≥ 1

ε2
.

Note that if ε = Ω(1), so s ∈ O(1), then the multiplication CR
can be performed in time O(mp).
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Problem

Given an m × n matrix A and an n × p matrix B, design an algorithm
to compute AB.

Theorem

Suppose A is an m × n matrix and B is an n × p matrix. The product
AB can be estimated by CR, where C is an m× s matrix consisting of
s columns of A picked according to length-squared distribution and
scaled to satisfy E[CCT ] = AAT and R is the s × p matrix consisting
of the corresponding rows of B scaled to satisfy E[RTR] = BTB. The
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.

Thus to ensure E[||AB − CR||2F ] ≤ ε2||A||2F · ||B||2F , it suffices to make
s ≥ 1

ε2
.

Note that if ε = Ω(1), so s ∈ O(1), then the multiplication CR
can be performed in time O(mp).
Let us analyse the circumstances under which the above theorem
may be useful (not useful).
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Sketching
Matrix multiplication

Theorem

Suppose A is an m × n matrix and B is an n × p matrix. The product
AB can be estimated by CR, where C is an m× s matrix consisting of
s columns of A picked according to length-squared distribution and
scaled to satisfy E[CCT ] = AAT and R is the s × p matrix consisting
of the corresponding rows of B scaled to satisfy E[RTR] = BTB. The
error is bounded by:

E[||AB − CR||2F ] ≤
||A||2F · ||B||2F

s
.

Thus to ensure E[||AB − CR||2F ] ≤ ε2||A||2F · ||B||2F , it suffices to make
s ≥ 1

ε2
.

Note that if ε = Ω(1), so s ∈ O(1), then the multiplication CR
can be performed in time O(mp).
Let us analyse the circumstances under which the above theorem
may be useful (not useful).

Let A = I and B = AT . So, ||AAT ||2F = n and
||A||2F ·||B||

2
F

s = n2

s .
What this means is that s needs to be greater than n in order to
give better approximation than the trivial zero matrix.
In general, it will be useful exercise to examine the situations
under which the sampling algorithm provides better approximation
than the trivial zero matrix whose error is ||AAT ||2F .
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Sketching
Matrix multiplication

Let us analyse the circumstances under which the above theorem
may be useful (not useful).

Let A = I and B = AT . So, ||AAT ||2F = n and
||A||2F ·||B||

2
F

s = n2

s .
What this means is that s needs to be greater than n in order to
give better approximation than the trivial zero matrix.
In general, it will be useful exercise to examine the situations
under which the sampling algorithm provides better approximation
than the trivial zero matrix whose error is ||AAT ||2F .

Claim 1: ||AAT ||2F =
∑

t σ
4
t .

Claim 2: ||A||2F =
∑

t σ
2
t .

So, E[||AAT − CR||2F ] ≤ ||AAT ||2F provided s ≥ (
∑

t σ
2
t )

2∑
t σ

4
t

.
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Let us analyse the circumstances under which the above theorem
may be useful (not useful).

Let A = I and B = AT . So, ||AAT ||2F = n and
||A||2F ·||B||

2
F

s = n2

s .
What this means is that s needs to be greater than n in order to
give better approximation than the trivial zero matrix.
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than the trivial zero matrix whose error is ||AAT ||2F .

Claim 1: ||AAT ||2F =
∑

t σ
4
t .

Claim 2: ||A||2F =
∑

t σ
2
t .

So, E[||AAT − CR||2F ] ≤ ||AAT ||2F provided s ≥ (
∑

t σ
2
t )

2∑
t σ

4
t

.

Claim 3: If rank(A) = r , then
(
∑

t σ
2
t )

2∑
t σ

4
t
≤ r and s needs to be at

least r .

This means that if A is full rank, then sampling will not gain us
anything.
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Let us analyse the circumstances under which the above theorem
may be useful (not useful).

Let A = I and B = AT . So, ||AAT ||2F = n and
||A||2F ·||B||

2
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s .
What this means is that s needs to be greater than n in order to
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2
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4
t

.

Claim 3: If rank(A) = r , then
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∑
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2
t )
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4
t
≤ r and s needs to be at

least r .

This means that if A is full rank, then sampling will not gain us
anything.

Claim 4: If there are small constants c and p such that∑p
t=1 σ

2
t ≥

∑
t σ

2
t

c , then
(
∑

t σ
2
t )

2∑
t σ

4
t
≤ c2p.
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Sketching: CUR decomposition
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Sketching
CUR Decomposition

Goal: Create a sketch of a given large m × n matrix A with
respect to the 2-norm.
We already talked about this while discussing SVD. So, why are
we addressing this question again?
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Sketching
CUR Decomposition

Goal: Create a sketch of a given large m × n matrix A with
respect to the 2-norm.
We already talked about this while discussing SVD. So, why are
we addressing this question again?

The SVD computation was in the batch setting. In the current
low-space context, we want algorithms that are space efficient.
Interpolative approximation: The sketch involves a subset of
(scaled) rows and columns of the original matrix A. This is useful
in many contexts where the rows and columns have specific
interpretation and preserving them is important.
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Sketching
CUR Decomposition

Goal: Create a sketch of a given large m × n matrix A with
respect to the 2-norm.
We already talked about this while discussing SVD. So, why are
we addressing this question again?

The SVD computation was in the batch setting. In the current
low-space context, we want algorithms that are space efficient.
Interpolative approximation: The sketch involves a subset of
(scaled) rows and columns of the original matrix A. This is useful
in many contexts where the rows and columns have specific
interpretation and preserving them is important.

Here is what we plan to do:

Sample s columns of A as per length squared distribution and each
column is scaled so that if a column k is picked, then it is scaled
by 1√

spk
. Let C be the m × s matrix of such (scaled) columns.

Similarly, sample r rows of A as per length squared distribution
and each row is scaled so that if a row k is picked, then it is scaled
by 1√

rpk
. Let R be the r × n matrix of such (scaled) rows.

From C and R find an s × r matrix U such that A≈CUR.
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Sketching
CUR Decomposition

Goal: Create a sketch of a given large m × n matrix A with
respect to the 2-norm.
We already talked about this while discussing SVD. So, why are
we addressing this question again?

The SVD computation was in the batch setting. In the current
low-space context, we want algorithms that are space efficient.
Interpolative approximation: The sketch involves a subset of
(scaled) rows and columns of the original matrix A. This is useful
in many contexts where the rows and columns have specific
interpretation and preserving them is important.

Here is what we plan to do:

Sample s columns of A as per length squared distribution and each
column is scaled so that if a column k is picked, then it is scaled
by 1√

spk
. Let C be the m × s matrix of such (scaled) columns.

Similarly, sample r rows of A as per length squared distribution
and each row is scaled so that if a row k is picked, then it is scaled
by 1√

rpk
. Let R be the r × n matrix of such (scaled) rows.

From C and R find an s × r matrix U such that A≈CUR.

The notion of similarity (≈) that we are interested in is the
2-norm since in many cases we would want to create a sketch for
multiplying A with unit vectors. In case A ≈ CUR, then the
vector multiplication costs O(ms + sr + rn) which is small is r
and s are small.
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Sketching
CUR Decomposition

Here is what we plan to do:

Sample s columns of A as per length squared distribution and each
column is scaled so that if a column k is picked, then it is scaled
by 1√

spk
. Let C be the m × s matrix of such (scaled) columns.

Similarly, sample r rows of A as per length squared distribution
and each row is scaled so that if a row k is picked, then it is scaled
by 1√

rpk
. Let R be the r × n matrix of such (scaled) rows.

From C and R find an s × r matrix U such that A≈CUR.

We will define a matrix P (that depends on matrix R) using
which we will define U.

Defining matrix P

P =

{
RT (RRT )−1R, if RRT is invertible

RT
(∑`

t=1
1
σ2
t
utuTt

)
R, rank(RRT ) = ` & R =

∑`
t=1 σtutv

T
t

Here R =
∑`

t=1 σtutv
T
t is the SVD of R.
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Sketching
CUR Decomposition

We will define a matrix P (that depends on matrix R) using
which we will define U.

Defining matrix P

P =

{
RT (RRT )−1R, if RRT is invertible

RT
(∑`

t=1
1
σ2
t
utuTt

)
R, rank(RRT ) = ` & R =

∑`
t=1 σtutv

T
t

Here R =
∑`

t=1 σtutv
T
t is the SVD of R.

Lemma

The matrix P defined above satisfies the following properties:

1 For every vector x of the form x = RTy, Px = x. That is, it acts
like an identity matrix on the row space of R.

2 For every x that is orthogonal to the row space of R, Px = 0.
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Sketching
CUR Decomposition

We will define a matrix P (that depends on matrix R) using
which we will define U.

Defining matrix P

P =

{
RT (RRT )−1R, if RRT is invertible

RT
(∑`

t=1
1
σ2
t
utuTt

)
R, rank(RRT ) = ` & R =

∑`
t=1 σtutv

T
t

Here R =
∑`

t=1 σtutv
T
t is the SVD of R.

Lemma

The matrix P defined above satisfies the following properties:

1 For every vector x of the form x = RTy, Px = x. That is, it acts
like an identity matrix on the row space of R.

2 For every x that is orthogonal to the row space of R, Px = 0.

Proof sketch

Case 1: RRT is invertible:

For any x = RTy,
Px = RT (RRT )−1Rx = RT (RRT )−1RRTy = RTy = x.
For x orthogonal to every row of R, we have Rx = 0 and hence
Px = 0.

Case 2: rank(RRT ) = ` < r

RT
(∑`

t=1
1
σ2
t
utuTt

)
R =

∑`
t=1 vtv

T
t .
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Sketching
CUR Decomposition

We will define a matrix P (that depends on matrix R) using
which we will define U.

Defining matrix P

P =

{
RT (RRT )−1R, if RRT is invertible

RT
(∑`

t=1
1
σ2
t
utuTt

)
R, rank(RRT ) = ` & R =

∑`
t=1 σtutv

T
t

Here R =
∑`

t=1 σtutv
T
t is the SVD of R.

Lemma

The matrix P defined above satisfies the following properties:

1 For every vector x of the form x = RTy, Px = x. That is, it acts
like an identity matrix on the row space of R.

2 For every x that is orthogonal to the row space of R, Px = 0.

Claim 1: E[||A− AP||22] ≤ ||AF ||2√
r

.
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Sketching
CUR Decomposition

We will define a matrix P (that depends on matrix R) using
which we will define U.

Defining matrix P

P =

{
RT (RRT )−1R, if RRT is invertible

RT
(∑`

t=1
1
σ2
t
utuTt

)
R, rank(RRT ) = ` & R =

∑`
t=1 σtutv

T
t

Here R =
∑`

t=1 σtutv
T
t is the SVD of R.

Lemma

The matrix P defined above satisfies the following properties:

1 For every vector x of the form x = RTy, Px = x. That is, it acts
like an identity matrix on the row space of R.

2 For every x that is orthogonal to the row space of R, Px = 0.

Claim 1: E[||A− AP||22] ≤ ||AF ||2√
r

.

Sampling s columns from A and taking the same rows from P,
leads to an expression of the form CUR. Using our multiplication
result, we get:

E[||AP−CUR||22] ≤ E[||AP−CUR||2F ] ≤
||A||2F · ||P||2F

s
≤ r

s
||A||2F .

Finally, using the triangle inequality we get that:

E[||A− CUR||22] ≤ ||A||2F
(

2√
r

+
2r

s

)
.
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Sketching
CUR Decomposition

The entire discussion is summarized in the following theorem.

Theorem

Let A be an n ×m matrix and r and s be positive integers. Let C be
an m × s matrix of s columns of A picked according to length squared
sampling and let R be a matrix of r rows of A picked according to
length squared sampling. Then, we can find from C and R an s × r
matrix U so that

E[||A− CUR||22] ≤ ||A||2F
(

2√
r

+
2r

s

)
.

Using r = Θ(1/ε2) and s = Θ(1/ε3), we get that the LHS is at
most O(ε)||A||2F .
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