
COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Algorithms for Massive Data Problems: Streaming algorithm

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Majority and frequent elements

Problem

Design an algorithm for finding the majority element (in case there
exists one).

We want a time the element that appears in the stream more
than n/2 times.
Claim Any deterministic algorithm requires Ω(min(n,m)) space.
We can do better if we relax our requirement in the following
manner:

In case there is a majority element, then the algorithm should
output this element.
In case there is no majority element, the algorithm is allowed to
output any element.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Majority and frequent elements

Problem

Design an algorithm for finding the majority element (in case there
exists one).

Claim Any deterministic algorithm requires Ω(min(n,m)) space.
We can do better if we relax our requirement in the following
manner:

In case there is a majority element, then the algorithm should
output this element.
In case there is no majority element, the algorithm is allowed to
output any element.

Algorithm

Majority(a1, ..., an)
- s ← a1 and ctr ← 1
- For i = 2 to n

- if (ai = s)ctr ← ctr + 1
- elseif (ctr 6= 0) ctr ← ctr − 1
- else {s ← ai ; ctr ← 1}

- return(s)

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Majority and frequent elements

Problem

Design an algorithm for finding all the elements of the steam that
have frequency more than n

k+1 .

As in the case for majority, we will produce a list of elements
(along with an approximate value of its frequency) such that:

If the frequency of an element is more than n
k+1 , then this element

appears in the list.

Algorithm

Frequency(a1, ..., an)
- L← {}
- For i = 1 to n

- If (ai ∈ L) ctrai ++
- elseif (|L| < k) {L← L ∪ {ai}; ctrai ← 1}
- else

- decrement all the counters by 1
- if some counter becomes 0, delete the element from the list.

- return the list L and the counters.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Majority and frequent elements

Problem

Design an algorithm for finding all the elements of the steam that
have frequency more than n

k+1 .

Algorithm

Frequency(a1, ..., an)
- L← {}
- For i = 1 to n

- If (ai ∈ L) ctrai ++
- elseif (|L| < k) {L← L ∪ {ai}; ctrai ← 1}
- else

- decrement all the counters by 1
- if some counter becomes 0, delete the element from the list.

- return the list L and the counters.

Theorem

At the end of the algorithm Frequency, for each s ∈ {1, ...,m}, its
counter on the list f̃s satisfies f̃s ∈ [fs − n

k+1 , fs]. If some s does not
occur on the list, its counter is 0 and the theorem asserts that
fs ≤ n

k+1 . Here fs denotes true frequency of elements s in the stream.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Simple techniques use space that is linear either in m or n.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Simple techniques use space that is linear either in m or n.
Here is a simple randomness based idea:

Before examining the stream, randomly pick xs ∈ {+1,−1} for
every s ∈ {1, ...,m}
Maintain a single sum S . When ai arrives, ddd xs to S if ai = s.
After the end of the stream, output S2.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Simple techniques use space that is linear either in m or n.
Here is a simple randomness based idea:

Before examining the stream, randomly pick xs ∈ {+1,−1} for
every s ∈ {1, ...,m}
Maintain a single sum S . When ai arrives, ddd xs to S if ai = s.
After the end of the stream, output S2.

Note that S is a random variable where the randomness is over
the choice of xs .
Claim: S =

∑m
i=1 xs fs .

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Simple techniques use space that is linear either in m or n.
Here is a simple randomness based idea:

Before examining the stream, randomly pick xs ∈ {+1,−1} for
every s ∈ {1, ...,m}
Maintain a single sum S . When ai arrives, ddd xs to S if ai = s.
After the end of the stream, output S2.

Note that S is a random variable where the randomness is over
the choice of xs .
Claim: S =

∑m
i=1 xs fs .

Question: What is the expected value of S?

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Simple techniques use space that is linear either in m or n.
Here is a simple randomness based idea:

Before examining the stream, randomly pick xs ∈ {+1,−1} for
every s ∈ {1, ...,m}
Maintain a single sum S . When ai arrives, ddd xs to S if ai = s.
After the end of the stream, output S2.

Note that S is a random variable where the randomness is over
the choice of xs .
Claim: S =

∑m
i=1 xs fs .

Question: What is the expected value of S? E[S] = 0

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Simple techniques use space that is linear either in m or n.
Here is a simple randomness based idea:

Before examining the stream, randomly pick xs ∈ {+1,−1} for
every s ∈ {1, ...,m}
Maintain a single sum S . When ai arrives, ddd xs to S if ai = s.
After the end of the stream, output S2.

Note that S is a random variable where the randomness is over
the choice of xs .
Claim: S =

∑m
i=1 xs fs .

Question: What is the expected value of S? E[S] = 0
Claim: E[S2] =

∑m
i=1 f

2
s .

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Simple techniques use space that is linear either in m or n.
Here is a simple randomness based idea:

Before examining the stream, randomly pick xs ∈ {+1,−1} for
every s ∈ {1, ...,m}
Maintain a single sum S . When ai arrives, ddd xs to S if ai = s.
After the end of the stream, output S2.

Note that S is a random variable where the randomness is over
the choice of xs .
Claim: S =

∑m
i=1 xs fs .

Question: What is the expected value of S? E[S] = 0
Claim: E[S2] =

∑m
i=1 f

2
s .

Proof sketch

E
[
(
∑m

s=1 xs fs)2
]

= E[
∑m

s=1 x
2
s f

2
s] + 2E[

∑
s<t xsxt fs ft] =

∑m
s=1 f

2
s

(using pairwise independence).

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Simple techniques use space that is linear either in m or n.
Here is a simple randomness based idea:

Before examining the stream, randomly pick xs ∈ {+1,−1} for
every s ∈ {1, ...,m}
Maintain a single sum S . When ai arrives, ddd xs to S if ai = s.
After the end of the stream, output S2.

Note that S is a random variable where the randomness is over
the choice of xs .
Claim: S =

∑m
i=1 xs fs .

Question: What is the expected value of S? E[S] = 0
Claim: E[S2] =

∑m
i=1 f

2
s .

So, S2 is an unbiased estimate of the second moment. That is, it
has the right expectation.
In order to get a high probability statement, we would want to
apply Chebychev and to be able to apply Chebychev, we would
need E[S4].

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Here is a simple randomness based idea:

Before examining the stream, randomly pick xs ∈ {+1,−1} for
every s ∈ {1, ...,m}
Maintain a single sum S . When ai arrives, ddd xs to S if ai = s.
After the end of the stream, output S2.

Claim: E[S2] =
∑m

i=1 f
2
s .

So, S2 is an unbiased estimate of the second moment. That is, it
has the right expectation.
In order to get a high probability statement, we would want to
apply Chebychev and to be able to apply Chebychev, we would
need E[S4].

Calculations

E[S4] = E

(m∑
s=1

xs fs

)4
 = E

 ∑
1≤s,t,u,v≤m

xsxtxuxv fs ft fufv

=

(
4

2

)
E

[
m∑
s=1

m∑
t=s+1

x2s x
2
t f

2
s f

2
t

]
+ E

[
m∑
s=1

x4s f
4
s

]

= 6
m∑
s=1

m∑
t=s+1

f 2s f
2
t +

m∑
s=1

f 4s ≤ 3

(
m∑
s=1

f 2s

)2

= 3(E[S2])2

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Here is a simple randomness based idea:

Before examining the stream, randomly pick xs ∈ {+1,−1} for
every s ∈ {1, ...,m}
Maintain a single sum S . When ai arrives, ddd xs to S if ai = s.
After the end of the stream, output S2.

Claim: E[S2] =
∑m

i=1 f
2
s .

So, S2 is an unbiased estimate of the second moment. That is, it
has the right expectation.
In order to get a high probability statement, we would want to
apply Chebychev and to be able to apply Chebychev, we would
need E[S4].
So, we have Var[S2] = E[S4]− (E[S2])2 ≤ 2(E[S2])2.

Calculations

E[S4] = E

(m∑
s=1

xs fs

)4
 = E

 ∑
1≤s,t,u,v≤m

xsxtxuxv fs ft fufv

=

(
4

2

)
E

[
m∑
s=1

m∑
t=s+1

x2s x
2
t f

2
s f

2
t

]
+ E

[
m∑
s=1

x4s f
4
s

]

= 6
m∑
s=1

m∑
t=s+1

f 2s f
2
t +

m∑
s=1

f 4s ≤ 3

(
m∑
s=1

f 2s

)2

= 3(E[S2])2

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Here is a simple randomness based idea:

Before examining the stream, randomly pick xs ∈ {+1,−1} for
every s ∈ {1, ...,m}
Maintain a single sum S . When ai arrives, ddd xs to S if ai = s.
After the end of the stream, output S2.

Claim: E[S2] =
∑m

i=1 f
2
s .

So, S2 is an unbiased estimate of the second moment. That is, it
has the right expectation.
In order to get a high probability statement, we would want to
apply Chebychev and to be able to apply Chebychev, we would
need E[S4].
So, we have Var[S2] = E[S4]− (E[S2])2 ≤ 2(E[S2])2.
Question: How do we utilise the above inequality to get a good
estimate on the second moment?

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Here is a simple randomness based idea:

Before examining the stream, randomly pick xs ∈ {+1,−1} for
every s ∈ {1, ...,m}
Maintain a single sum S . When ai arrives, ddd xs to S if ai = s.
After the end of the stream, output S2.

Claim: E[S2] =
∑m

i=1 f
2
s .

So, S2 is an unbiased estimate of the second moment. That is, it
has the right expectation.
In order to get a high probability statement, we would want to
apply Chebychev and to be able to apply Chebychev, we would
need E[S4].
So, we have Var[S2] = E[S4]− (E[S2])2 ≤ 2(E[S2])2.
Question: How do we utilise the above inequality to get a good
estimate on the second moment?

Instead of maintaining one S , maintain r = 2
ε2δ independent

S1, ...,Sr and then output A =
S2
1+...+S2

r

r at the end.
Claim: Pr[|A−

∑m
s=1 f

2
s | > ε

∑m
s=1 f

2
s] ≤ δ.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Here is a simple randomness based idea:

Before examining the stream, randomly pick x ts ∈ {+1,−1} for
every s ∈ {1, ...,m} and every t ∈ {1, ..., r}, where r = 2

ε2δ .
Maintain sums S1, ...,Sr . When ai arrives, ddd x ts to St if ai = s.

After the end of the stream, output
S2
1+...+S2

r

r .

Claim: E[S2] =
∑m

i=1 f
2
s .

So, S2 is an unbiased estimate of the second moment. That is, it
has the right expectation.
In order to get a high probability statement, we would want to
apply Chebychev and to be able to apply Chebychev, we would
need E[S4].
So, we have Var[S2] = E[S4]− (E[S2])2 ≤ 2(E[S2])2.
Question: How do we utilise the above inequality to get a good
estimate on the second moment?

Instead of maintaining one S , maintain r = 2
ε2δ independent

S1, ...,Sr and then output A =
S2
1+...+S2

r

r at the end.
Claim: Pr[|A−

∑m
s=1 f

2
s | > ε

∑m
s=1 f

2
s] ≤ δ.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Here is a simple randomness based idea:

Before examining the stream, randomly pick x ts ∈ {+1,−1} for
every s ∈ {1, ...,m} and every t ∈ {1, ..., r}, where r = 2

ε2δ .
Maintain sums S1, ...,Sr . When ai arrives, ddd x ts to St if ai = s.

After the end of the stream, output
S2
1+...+S2

r

r .

Question How much space does the above algorithm require?

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Here is a simple randomness based idea:

Before examining the stream, randomly pick x ts ∈ {+1,−1} for
every s ∈ {1, ...,m} and every t ∈ {1, ..., r}, where r = 2

ε2δ .
Maintain sums S1, ...,Sr . When ai arrives, ddd x ts to St if ai = s.

After the end of the stream, output
S2
1+...+S2

r

r .

Question: How much space does the above algorithm require?
O(rm)
Idea to save space: Use hash function h : {1, ...,m} → {+1,−1}.
Question: Suppose we use the random hash function family.
Then how much space do we require? O(rm) since describing a
hash function uses O(m) space and we need r of them
Question: So, how do we get a reduction on the space?

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Here is a simple randomness based idea:

Before examining the stream, randomly pick x ts ∈ {+1,−1} for
every s ∈ {1, ...,m} and every t ∈ {1, ..., r}, where r = 2

ε2δ .
Maintain sums S1, ...,Sr . When ai arrives, ddd x ts to St if ai = s.

After the end of the stream, output
S2
1+...+S2

r

r .

Question: How much space does the above algorithm require?
O(rm)
Idea to save space: Use hash function h : {1, ...,m} → {+1,−1}.
Question: Suppose we use the random hash function family.
Then how much space do we require? O(rm) since describing a
hash function uses O(m) space and we need r of them
Question: So, how do we get a reduction on the space?

An important thing to notice in the analysis is that we did not
require full independence property of variables xs but only 4-wise
independence.
Main idea: Use a 4-wise independent hash function family.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Here is a simple randomness based idea:

Before examining the stream, randomly pick x ts ∈ {+1,−1} for
every s ∈ {1, ...,m} and every t ∈ {1, ..., r}, where r = 2

ε2δ .
Maintain sums S1, ...,Sr . When ai arrives, ddd x ts to St if ai = s.

After the end of the stream, output
S2
1+...+S2

r

r .

Question: How much space does the above algorithm require?
O(rm)
Idea to save space: Use hash function h : {1, ...,m} → {+1,−1}.
Question: Suppose we use the random hash function family.
Then how much space do we require? O(rm) since describing a
hash function uses O(m) space and we need r of them
Question: So, how do we get a reduction on the space?

An important thing to notice in the analysis is that we did not
require full independence property of variables xs but only 4-wise
independence.
Main idea: Use a 4-wise independent hash function family.
There exists a 4-wise independent hash function family such that
describing a hash function from this family takes O(logm) bits.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Here is a streaming algorithm that uses O(logm) space:

Before examining the stream, pick hash functions h1, ..., hr
independently and at random from a 4-wise independent hash
function family H, where r = 2

ε2δ .
Maintain sums S1, ...,Sr . When ai arrives, add ht(ai) to St .

After the end of the stream, output
S2
1+...+S2

r

r .

Question: How much space does the above algorithm require?
O(r logm)
Main idea:

An important thing to notice in the analysis is that we did not
require full independence property of variables xs but only 4-wise
independence.
Main idea: Use a 4-wise independent hash function family.
There exists a 4-wise independent hash function family such that
describing a hash function from this family takes O(logm) bits.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
The second moment

Problem

Let fs denote the frequency of a data item s ∈ {1, ...,m} in the stream
of data a1, ..., an. Design an algorithm to give an estimate of

∑m
i=1 f

2
s .

This is known as the second moment of the stream.

Here is a streaming algorithm that uses O(logm) space:

Before examining the stream, pick hash functions h1, ..., hr
independently and at random from a 4-wise independent hash
function family H, where r = 2

ε2δ .
Maintain sums S1, ...,Sr . When ai arrives, add ht(ai) to St .

After the end of the stream, output
S2
1+...+S2

r

r .

Question: How much space does the above algorithm require?
O(r logm)
Main idea:

An important thing to notice in the analysis is that we did not
require full independence property of variables xs but only 4-wise
independence.
Main idea: Use a 4-wise independent hash function family.
There exists a 4-wise independent hash function family such that
describing a hash function from this family takes O(logm) bits.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Digression: The second moment → 4-wise independence

Problem

There exists a 4-wise independent hash function family consisting of
functions mapping {1, ...,m} to {+1,−1} such that describing a hash
function from this family takes O(logm) bits.

Lert m = 2k . (The arguments can be made to work even if m is
not a power of 2).
Fact: There is a finite field F with 2k = m elements. The
elements of the field may be represented using k bits.
Polynomial interpolation: For any four distinct points
a1, a2, a3, a4 ∈ F and any four points (not necessarily unique)
b1, b2, b3, b4 ∈ F , there is a unique polynomial
f (x) = f0 + f1x + f2x

2 + f3x
3 of degree at most 3 such that

f (a1) = b1; f (a2) = b2; f (a3) = b3; f (a4) = b4.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Digression: The second moment → 4-wise independence

Problem

There exists a 4-wise independent hash function family consisting of
functions mapping {1, ...,m} to {+1,−1} such that describing a hash
function from this family takes O(logm) bits.

Lert m = 2k . (The arguments can be made to work even if m is
not a power of 2).
Fact: There is a finite field F with 2k = m elements. The
elements of the field may be represented using k bits.
Polynomial interpolation: For any four distinct points
a1, a2, a3, a4 ∈ F and any four points (not necessarily unique)
b1, b2, b3, b4 ∈ F , there is a unique polynomial
f (x) = f0 + f1x + f2x

2 + f3x
3 of degree at most 3 such that

f (a1) = b1; f (a2) = b2; f (a3) = b3; f (a4) = b4.
For f0, f1, f2, f3 ∈ F define function
hf0,f1,f2,f3(s) = Lead(f0 + f1s + f2s

2 + f3s
3), where Lead(.) denotes

the leading bit of input.
H = {hf0,f1,f2,f3 |f0, f1, f2, f3 ∈ F}.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Digression: The second moment → 4-wise independence

Problem

There exists a 4-wise independent hash function family consisting of
functions mapping {1, ...,m} to {+1,−1} such that describing a hash
function from this family takes O(logm) bits.

Lert m = 2k . (The arguments can be made to work even if m is
not a power of 2).
Fact: There is a finite field F with 2k = m elements. The
elements of the field may be represented using k bits.
Polynomial interpolation: For any four distinct points
a1, a2, a3, a4 ∈ F and any four points (not necessarily unique)
b1, b2, b3, b4 ∈ F , there is a unique polynomial
f (x) = f0 + f1x + f2x

2 + f3x
3 of degree at most 3 such that

f (a1) = b1; f (a2) = b2; f (a3) = b3; f (a4) = b4.
For f0, f1, f2, f3 ∈ F define function
hf0,f1,f2,f3(s) = Lead(f0 + f1s + f2s

2 + f3s
3), where Lead(.) denotes

the leading bit of input.
H = {hf0,f1,f2,f3 |f0, f1, f2, f3 ∈ F}.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Digression: The second moment → 4-wise independence

Fact: There is a finite field F with 2k = m elements. The
elements of the field may be represented using k bits.
Polynomial interpolation: For any four distinct points
a1, a2, a3, a4 ∈ F and any four points (not necessarily unique)
b1, b2, b3, b4 ∈ F , there is a unique polynomial
f (x) = f0 + f1x + f2x

2 + f3x
3 of degree at most 3 such that

f (a1) = b1; f (a2) = b2; f (a3) = b3; f (a4) = b4.
For f0, f1, f2, f3 ∈ F define function
hf0,f1,f2,f3(s) = Lead(f0 + f1s + f2s

2 + f3s
3), where Lead(.) denotes

the leading bit of input.
H = {hf0,f1,f2,f3 |f0, f1, f2, f3 ∈ F}.
Claim: H is a 4-wise independent hash function family.

Proof sketch

For the proof, assume that the elements of F are represented as
±1 strings.
Claim For any fixed s, t, u, v ∈ F and α, β, γ, δ ∈ {+1,−1},

Prh←H[h(s) = α, h(t) = β, h(u) = γ, h(v) = δ] =
1

16
.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

End

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

