COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Algorithms for Massive Data Problems: Streaming algorithm

Streaming Algorithms

Distinct elements in a stream

Problem

Design a streaming algorithm for computing the number of distinct a_{i} 's in the sequence a_{1}, \ldots, a_{n}.

Algorithm

- Let $M>m$ be a prime number
- Let $H=\left\{h_{a, b} \mid a, b \in\{0,1, \ldots, M-1\}\right\}$

Distinct $\left(a_{1}, \ldots, a_{n}\right)$

- Pick a random h from H
- Initialise $\min =h\left(a_{1}\right)$
- For $i>1$: update \min to $h\left(a_{i}\right)$ iff $h\left(a_{i}\right)<\min$
- return $\left(\frac{M}{\min }\right)$

Theorem

Let d be the number of distinct elements. With probability at least $(2 / 3-d / M)$, we have $\frac{d}{6} \leq \frac{M}{\min } \leq 6 d$ where M and min are as defined in the algorithm.

Streaming Algorithms

Distinct elements in a stream

Algorithm

- Let $M>m$ be a prime number
- Let $H=\left\{h_{a, b} \mid a, b \in\{0,1, \ldots, M-1\}\right\}$

Distinct $\left(a_{1}, \ldots, a_{n}\right)$

- Pick a random h from H
- Initialise $\min =h\left(a_{1}\right)$
- For $i>1$: update \min to $h\left(a_{i}\right)$ iff $h\left(a_{i}\right)<\min$
- return $\left(\frac{M}{\min }\right)$

Theorem

Let d be the number of distinct elements. With probability at least $(2 / 3-d / M)$, we have $\frac{d}{6} \leq \frac{M}{\min } \leq 6 d$ where M and min are as defined in the algorithm.

Proof sketch

- Let b_{1}, \ldots, b_{d} be the distinct values that appear in the input.
- Let $S=\left\{h\left(b_{1}\right), \ldots ., h\left(b_{d}\right)\right\}$ and $\min =\min (S)$.
- Claim 1: $\operatorname{Pr}\left[\frac{M}{\min }>6 d\right]<\frac{1}{6}+\frac{d}{M}$.

Streaming Algorithms
 Distinct elements in a stream

Algorithm

- Let $M>m$ be a prime number
- Let $H=\left\{h_{a, b} \mid a, b \in\{0,1, \ldots, M-1\}\right\}$

Distinct $\left(a_{1}, \ldots, a_{n}\right)$

- Pick a random h from H
- Initialise $\min =h\left(a_{1}\right)$
- For $i>1$: update \min to $h\left(a_{i}\right)$ iff $h\left(a_{i}\right)<\min$
- return $\left(\frac{M}{\min }\right)$

Theorem

Let d be the number of distinct elements. With probability at least $(2 / 3-d / M)$, we have $\frac{d}{6} \leq \frac{M}{\min } \leq 6 d$ where M and min are as defined in the algorithm.

Proof sketch

- Let b_{1}, \ldots, b_{d} be the distinct values that appear in the input.
- Let $S=\left\{h\left(b_{1}\right), \ldots, h\left(b_{d}\right)\right\}$ and $\min =\min (S)$.
- Claim 1: $\operatorname{Pr}\left[\frac{M}{m i n}>6 d\right]<\frac{1}{6}+\frac{d}{M}$.
- Claim 2: $\operatorname{Pr}\left[\left[\frac{M}{\min }<\frac{d}{6}\right]<\frac{1}{6}\right.$.
- The theorem follows from the above two claims.

Streaming Algorithms

Counting number of occurences

Problem

Design an algorithm for counting the number of occurrences of a given element in the stream.

- This can clearly be done using a deterministic algorithm that uses $O(\log n)$ space.
- Question: Can a deterministic algorithm do any better?

Streaming Algorithms

Counting number of occurences

Problem

Design an algorithm for counting the number of occurrences of a given element in the stream.

- This can clearly be done using a deterministic algorithm that uses $O(\log n)$ space.
- Question: Can a deterministic algorithm do any better?
- Question: Suppose you are allowed some slack with respect to the answer (say constant factor) and allowed randomness. Can you do better?
- Here is a streaming algorithm:
- Start with $k=0$.
- On every occurrence of the given element increment the counter with probability $1 / 2^{k}$.
(This is to keep the value of k so that 2^{k} is approximately the count.)
- At the end of the stream, output $2^{k}-1$.

Streaming Algorithms

Counting number of occurences

Problem

Design an algorithm for counting the number of occurrences of a given element in the stream.

- This can clearly be done using a deterministic algorithm that uses $O(\log n)$ space.
- Question: Can a deterministic algorithm do any better?
- Question: Suppose you are allowed some slack with respect to the answer (say constant factor) and allowed randomness. Can you do better?
- Here is a streaming algorithm:
- Start with $k=0$.
- On every occurrence of the given element increment the counter with probability $1 / 2^{k}$.
(This is to keep the value of k so that 2^{k} is approximately the count.)
- At the end of the stream, output $2^{k}-1$.
- Claim: The above streaming algorithm uses $O(\log \log n)$ space and in expectation outputs an answer within a factor 2 of the correct count.

Streaming Algorithms
 Majority and frequent elements

Problem

Design an algorithm for finding the majority element (in case there exists one).

- We want a time the element that appears in the stream more than $n / 2$ times.
- Claim Any deterministic algorithm requires $\Omega(\min (n, m))$ space.
- We can do better if we relax our requirement in the following manner:
- In case there is a majority element, then the algorithm should output this element.
- In case there is no majority element, the algorithm is allowed to output any element.

Streaming Algorithms
 Majority and frequent elements

Problem

Design an algorithm for finding the majority element (in case there exists one).

- Claim Any deterministic algorithm requires $\Omega(\min (n, m))$ space.
- We can do better if we relax our requirement in the following manner:
- In case there is a majority element, then the algorithm should output this element.
- In case there is no majority element, the algorithm is allowed to output any element.

Algorithm

```
Majority \(\left(a_{1}, \ldots, a_{n}\right)\)
    \(-s \leftarrow a_{1}\) and \(c t r \leftarrow 1\)
    - For \(i=2\) to \(n\)
    - if \(\left(a_{i}=s\right) c t r \leftarrow c t r+1\)
    - elseif \((c t r \neq 0)\) ctr \(\leftarrow c t r-1\)
    - else \(\left\{s \leftarrow a_{i} ; c t r \leftarrow 1\right\}\)
    - return(s)
```

End

