
COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Algorithms for Massive Data Problems: Streaming algorithm

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Distinct elements in a stream

Problem

Design a streaming algorithm for computing the number of distinct
ai ’s in the sequence a1, ..., an.

Algorithm

- Let M > m be a prime number
- Let H = {ha,b|a, b ∈ {0, 1, ...,M − 1}}
Distinct(a1, ..., an)

- Pick a random h from H
- Initialise min = h(a1)
- For i > 1: update min to h(ai) iff h(ai) < min
- return(M

min)

Theorem

Let d be the number of distinct elements. With probability at least
(2/3− d/M), we have d

6 ≤
M
min ≤ 6d where M and min are as defined

in the algorithm.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Distinct elements in a stream

Algorithm

- Let M > m be a prime number
- Let H = {ha,b|a, b ∈ {0, 1, ...,M − 1}}
Distinct(a1, ..., an)

- Pick a random h from H
- Initialise min = h(a1)
- For i > 1: update min to h(ai) iff h(ai) < min
- return(M

min)

Theorem

Let d be the number of distinct elements. With probability at least
(2/3− d/M), we have d

6 ≤
M
min ≤ 6d where M and min are as defined

in the algorithm.

Proof sketch

Let b1, ..., bd be the distinct values that appear in the input.
Let S = {h(b1),, h(bd)} and min = min(S).
Claim 1: Pr[M

min > 6d] < 1
6 + d

M .

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Distinct elements in a stream

Algorithm

- Let M > m be a prime number
- Let H = {ha,b|a, b ∈ {0, 1, ...,M − 1}}
Distinct(a1, ..., an)

- Pick a random h from H
- Initialise min = h(a1)
- For i > 1: update min to h(ai) iff h(ai) < min
- return(M

min)

Theorem

Let d be the number of distinct elements. With probability at least
(2/3− d/M), we have d

6 ≤
M
min ≤ 6d where M and min are as defined

in the algorithm.

Proof sketch

Let b1, ..., bd be the distinct values that appear in the input.
Let S = {h(b1),, h(bd)} and min = min(S).
Claim 1: Pr[M

min > 6d] < 1
6 + d

M .

Claim 2: Pr[[M
min < d

6] < 1
6 .

The theorem follows from the above two claims.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Counting number of occurences

Problem

Design an algorithm for counting the number of occurrences of a given
element in the stream.

This can clearly be done using a deterministic algorithm that uses
O(log n) space.
Question: Can a deterministic algorithm do any better?

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Counting number of occurences

Problem

Design an algorithm for counting the number of occurrences of a given
element in the stream.

This can clearly be done using a deterministic algorithm that uses
O(log n) space.
Question: Can a deterministic algorithm do any better?
Question: Suppose you are allowed some slack with respect to the
answer (say constant factor) and allowed randomness. Can you
do better?
Here is a streaming algorithm:

Start with k = 0.
On every occurrence of the given element increment the counter
with probability 1/2k .
(This is to keep the value of k so that 2k is approximately the
count.)
At the end of the stream, output 2k − 1.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Counting number of occurences

Problem

Design an algorithm for counting the number of occurrences of a given
element in the stream.

This can clearly be done using a deterministic algorithm that uses
O(log n) space.
Question: Can a deterministic algorithm do any better?
Question: Suppose you are allowed some slack with respect to the
answer (say constant factor) and allowed randomness. Can you
do better?
Here is a streaming algorithm:

Start with k = 0.
On every occurrence of the given element increment the counter
with probability 1/2k .
(This is to keep the value of k so that 2k is approximately the
count.)
At the end of the stream, output 2k − 1.

Claim: The above streaming algorithm uses O(log log n) space
and in expectation outputs an answer within a factor 2 of the
correct count.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Majority and frequent elements

Problem

Design an algorithm for finding the majority element (in case there
exists one).

We want a time the element that appears in the stream more
than n/2 times.
Claim Any deterministic algorithm requires Ω(min(n,m)) space.
We can do better if we relax our requirement in the following
manner:

In case there is a majority element, then the algorithm should
output this element.
In case there is no majority element, the algorithm is allowed to
output any element.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Majority and frequent elements

Problem

Design an algorithm for finding the majority element (in case there
exists one).

Claim Any deterministic algorithm requires Ω(min(n,m)) space.
We can do better if we relax our requirement in the following
manner:

In case there is a majority element, then the algorithm should
output this element.
In case there is no majority element, the algorithm is allowed to
output any element.

Algorithm

Majority(a1, ..., an)
- s ← a1 and ctr ← 1
- For i = 2 to n

- if (ai = s)ctr ← ctr + 1
- elseif (ctr 6= 0) ctr ← ctr − 1
- else {s ← ai ; ctr ← 1}

- return(s)

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

End

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

