COL866: Foundations of Data Science

Ragesh Jaiswal, [ITD

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Algorithms for Massive Data Problems: Streaming algorithm

J

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Distinct elements in a stream

Design a streaming algorithm for computing the number of distinct
a;'s in the sequence a, ..., ap.
Algorithm
- Let M > m be a prime number
- Let H={h,pla,be {0,1,.... M —1}}
Distinct(ay, ..., an)
- Pick a random h from H
- Initialise min = h(ay)
- For i > 1: update min to h(a;) iff h(a;) < min

- return(-M-

v

Theorem

Let d be the number of distinct elements. With probability at least
(2/3 — d/M), we have % < % < 6d where M and min are as defined
in the algorithm.

v

Ragesh Jaiswal, ITD COL866: Foundations of Data Science

Streaming Algorithms
Distinct elements in a stream

Algorithm

- Let M > m be a prime number
- Let H={h,p|la,b€{0,1,....M —1}}
Distinct(ay,...,an)
- Pick a random h from H
- Initialise min = h(ay)
- For i > 1: update min to h(a;) iff h(a;) < min
- return(-M.)

min

Theorem

Let d be the number of distinct elements. With probability at least
(2/3—d/M), we have % < % < 6d where M and min are as defined
in the algorithm.

Proof sketch

o Let by, ..., by be the distinct values that appear in the input.
o Let S = {h(b1),...., h(bg)} and min = min(S).
o Claim 1: Pr[-M > 6d] < 1 + 2.

Ragesh Jaiswal, ITD COL866: Foundations of Data Science

Streaming Algorithms

Distinct elements in a stream

- Let M > m be a prime number
- Let H={h,pla,be {0,1,...M —1}}
Distinct(ay, ..., an)
- Pick a random h from H
- Initialise min = h(a1)
- For i > 1: update min to h(a;) iff h(a;) < min
- return(-M.)

min

D

Theorem

Let d be the number of distinct elements. With probability at least
(2/3 —d/M), we have % < % < 6d where M and min are as defined
in the algorithm.

4

Proof sketch
Let by, ..., by be the distinct values that appear in the input.

o Let S = {h(b1),...., h(bg)} and min = min(S).

o Claim 1: Pr[;™ > 6d] < L + 2.

o Claim 2: Pr[[M < d] < L.

@ The theorem follows from the above two claims. my

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Counting number of occurences

Problem

Design an algorithm for counting the number of occurrences of a given
element in the stream.

@ This can clearly be done using a deterministic algorithm that uses
O(log n) space.
@ Question: Can a deterministic algorithm do any better?

Ragesh Jaiswal, ITD COL866: Foundations of Data Science

Streaming Algorithms
Counting number of occurences

Problem

Design an algorithm for counting the number of occurrences of a given
element in the stream.

@ This can clearly be done using a deterministic algorithm that uses
O(log n) space.

@ Question: Can a deterministic algorithm do any better?

@ Question: Suppose you are allowed some slack with respect to the
answer (say constant factor) and allowed randomness. Can you
do better?

@ Here is a streaming algorithm:

o Start with k = 0.

o On every occurrence of the given element increment the counter
with probability 1/2k.
(This is to keep the value of k so that 2k is approximately the
count.)

o At the end of the stream, output 2% — 1.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms

Counting number of occurences

Design an algorithm for counting the number of occurrences of a given
element in the stream.

@ This can clearly be done using a deterministic algorithm that uses
O(log n) space.

o Question: Can a deterministic algorithm do any better?

@ Question: Suppose you are allowed some slack with respect to the
answer (say constant factor) and allowed randomness. Can you
do better?

o Here is a streaming algorithm:

o Start with kK = 0.

o On every occurrence of the given element increment the counter
with probability 1/2%.
(This is to keep the value of k so that 2% is approximately the
count.)

o At the end of the stream, output 2% — 1.

o Claim: The above streaming algorithm uses O(log log n) space
and in expectation outputs an answer within a factor 2 of the
correct count.

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

Streaming Algorithms
Majority and frequent elements

Problem

Design an algorithm for finding the majority element (in case there
exists one).

@ We want a time the element that appears in the stream more
than n/2 times.

o Claim Any deterministic algorithm requires Q(min(n, m)) space.

@ We can do better if we relax our requirement in the following
manner:

o In case there is a majority element, then the algorithm should
output this element.

o In case there is no majority element, the algorithm is allowed to
output any element.

Ragesh Jaiswal, ITD COL866: Foundations of Data Science

Streaming Algorithms

Majority and frequent elements

Problem

Design an algorithm for finding the majority element (in case there
exists one).

o Claim Any deterministic algorithm requires Q(min(n, m)) space.
@ We can do better if we relax our requirement in the following
manner:
o In case there is a majority element, then the algorithm should
output this element.
o In case there is no majority element, the algorithm is allowed to
output any element.

Algorithm

Majority(ay,...,an)
-s<+ajand ctr+ 1
-Fori=2ton
- if (aj = s)ctr + ctr+1
- elseif (ctr #0) ctr < ctr — 1
- else {s < aj; ctr + 1}
- return(s)

4

Ragesh Jaiswal, ITD COL866: Foundations of Data Science

End

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

