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Machine Learning: Generalization
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Machine Learning

Generalization bounds

Theorem

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size n > 2 [log, (24[2n]) + log, (1/8)] . then with
probability at least (1 — 6), every h € H with error errp(h) > & has
errs(h) > 0. Equivalently, every h € H with errs(h) = 0 has

errp(h) < e.

Theorem

| A,

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size n > & [log, (2H[2n]) + log, (2/6)] . then with
probability at least (1 — 6), every h € H will have

lerrp(h) — errs(h)| < e.

Theorem (Sauer's Lemma)

If VCdim(H) = d, then H[n] < 0 (1) < (<)

For any hypothesis class H and distribution D, a training sample S of
size

(0] (é [VCdim(H) log (1/€) + log 1/5])

is sufficient to ensure that with probability at least (1 — §), every
h € H with errp(h) > € has errs(h) > 0.
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Machine Learning
Generalization bounds: VC dimension

@ The VC-dimension of intervals on a real lineis 7

e For intervals on the real line, H[n] = ___ 7

@ The VC-dimension of convex polygons in d dimensional space
is 7

@ For convex polygons in d dimensional space, H[n] = ___ 7

@ The VC-dimension of halfspaces in d dimensional space is

?
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Machine Learning
Generalization bounds: VC dimension

The VC-dimension of intervals on a real line is 27

For intervals on the real line, H[n] = O(n?)?

(]

(]

The VC-dimension of convex polygons in d dimensional space
is 00?

For convex polygons in d dimensional space, H[n] = 2"7?

The VC-dimension of halfspaces in d dimensional space is
?
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Machine Learning
Generalization bounds: VC dimension

@ The VC-dimension of intervals on a real line is 27

o For intervals on the real line, H[n] = O(n?)?

@ The VC-dimension of convex polygonm dimensional space
is 007

e For convex polygons in d dimensional space, H[n] = 2"?

@ The VC-dimension of halfspaces in d dimensional space is

d+17
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Machine Learning
Generalization bounds: VC dimension

@ The VC-dimension of halfspaces in d dimensional space is
d+17
o Claim 1: There exists a set of d + 1 points in R that is
shattered by halfspaces.
o Claim 2: No set of d + 2 points in R can be shattered by
halfspaces.
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Machine Learning
Generalization bounds: VC dimension

@ The VC-dimension of halfspaces in d dimensional space is
d+17?
o Claim 1: There exists a set of d + 1 points in R that is
shattered by halfspaces.

o Claim 2: No set of d 4 2 points in R can be shattered by
halfspaces.

Theorem (Radon)

Any set S C RY with |S| > d + 2, can be partitioned into disjoint
subsets A and B such that CV(A) N CV(B) # (. Here CV/(.)
denotes the convex hull of the points.
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Machine Learning
Online learning and Perceptron
@ The learning scenario that we have seen until now is called the
batch learning scenario.
@ We now discuss the online learning scenario where we remove the
assumption that data is sampled from a fixed probability
distribution (or from any probabilistic process at all).

@ Here are some main ideas of online learning:
o At each time t = 1,2, 3..., the algorithm is presented with an
arbitrary example x; € X.
o The algorithm is told the true label ¢*(x;) and is charged for a
mistake, i.e., when ¢*(x;) # £¢.
o The goal of the algorithm is to make as few mistakes as possible.
@ Online learning model is harder than the batch learning model.
(In fact, we will show that an online algorithm can be converted
to a batch learning algorithm)
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Machine Learning

Online learning and Perceptron

@ Here are some main ideas of online learning:
o At each time t = 1,2, 3..., the algorithm is presented with an
arbitrary example x; € X.
o The algorithm is told the true label ¢*(x;) and is charged for a
mistake, i.e., when ¢*(x;) # £¢.
o The goal of the algorithm is to make as few mistakes as possible.
o Case study:

o Let X = {0,1}7 and let the target hypothesis be a disjunction.

o Question: Can you give an online algorithm that makes bounded
number of mistakes?

o Question: Argue that for any deterministic algorithm A there
exists a sequence of examples ¢ and disjunction ¢* such that A
makes at least d mistakes on sequence o labeled by c*.
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Machine Learning

Online learning and Perceptron

@ Here are some main ideas of online learning:
o At each time t = 1,2, 3..., the algorithm is presented with an
arbitrary example x; € X.
o The algorithm is told the true label ¢*(x;) and is charged for a
mistake, i.e., when ¢*(x;) # £¢.
o The goal of the algorithm is to make as few mistakes as possible.
o Case study:

o Let X = {0,1}7 and let the target hypothesis be a disjunction.

o Question: Can you give an online algorithm that makes bounded
number of mistakes?

o Question: Argue that for any deterministic algorithm A there
exists a sequence of examples ¢ and disjunction ¢* such that A
makes at least d mistakes on sequence o labeled by c*.

o Question: Show that there always exists an online algorithm that
makes at most log, |H| mistakes.
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