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Machine Learning
Generalization bounds

Theorem

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size n ≥ 2

ε [log2 (2H[2n]) + log2 (1/δ)] . then with
probability at least (1− δ), every h ∈ H with error errD(h) ≥ ε has
errS(h) > 0. Equivalently, every h ∈ H with errS(h) = 0 has
errD(h) < ε.

Theorem

For any hypothesis class H and distribution D, if a training sample S
is drawn from D of size n ≥ 8

ε2
[log2 (2H[2n]) + log2 (2/δ)] . then with

probability at least (1− δ), every h ∈ H will have
|errD(h)− errS(h)| ≤ ε.

Theorem (Sauer’s Lemma)

If VCdim(H) = d , then H[n] ≤
∑d

i=0

(n
i

)
≤
(
en
d

)d
.

Theorem

For any hypothesis class H and distribution D, a training sample S of
size

O

(
1

ε
[VCdim(H) log (1/ε) + log 1/δ]

)
is sufficient to ensure that with probability at least (1− δ), every
h ∈ H with errD(h) ≥ ε has errS(h) > 0.
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Machine Learning
Generalization bounds: VC dimension

The VC-dimension of intervals on a real line is ?

For intervals on the real line, H[n] = ?

The VC-dimension of convex polygons in d dimensional space
is ?

For convex polygons in d dimensional space, H[n] = ?

The VC-dimension of halfspaces in d dimensional space is
?
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Machine Learning
Generalization bounds: VC dimension

The VC-dimension of intervals on a real line is 2?

For intervals on the real line, H[n] = O(n2)?

The VC-dimension of convex polygons in d dimensional space
is ∞?

For convex polygons in d dimensional space, H[n] = 2n?

The VC-dimension of halfspaces in d dimensional space is
?
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Machine Learning
Generalization bounds: VC dimension

The VC-dimension of intervals on a real line is 2?

For intervals on the real line, H[n] = O(n2)?

The VC-dimension of convex polygons in d dimensional space
is ∞?

For convex polygons in d dimensional space, H[n] = 2n?

The VC-dimension of halfspaces in d dimensional space is
d + 1?
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Machine Learning
Generalization bounds: VC dimension

The VC-dimension of halfspaces in d dimensional space is
d + 1?

Claim 1: There exists a set of d + 1 points in Rd that is
shattered by halfspaces.
Claim 2: No set of d + 2 points in Rd can be shattered by
halfspaces.
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Machine Learning
Generalization bounds: VC dimension

The VC-dimension of halfspaces in d dimensional space is
d + 1?

Claim 1: There exists a set of d + 1 points in Rd that is
shattered by halfspaces.
Claim 2: No set of d + 2 points in Rd can be shattered by
halfspaces.

Theorem (Radon)

Any set S ⊆ Rd with |S | ≥ d + 2, can be partitioned into disjoint
subsets A and B such that CV (A) ∩ CV (B) 6= ∅. Here CV (.)
denotes the convex hull of the points.
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Machine Learning: Online learning and Perceptron
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Machine Learning
Online learning and Perceptron

The learning scenario that we have seen until now is called the
batch learning scenario.
We now discuss the online learning scenario where we remove the
assumption that data is sampled from a fixed probability
distribution (or from any probabilistic process at all).
Here are some main ideas of online learning:

At each time t = 1, 2, 3..., the algorithm is presented with an
arbitrary example xt ∈ X .
The algorithm is told the true label c?(xt) and is charged for a
mistake, i.e., when c?(xt) 6= `t .
The goal of the algorithm is to make as few mistakes as possible.

Online learning model is harder than the batch learning model.
(In fact, we will show that an online algorithm can be converted
to a batch learning algorithm)
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Machine Learning
Online learning and Perceptron

Here are some main ideas of online learning:

At each time t = 1, 2, 3..., the algorithm is presented with an
arbitrary example xt ∈ X .
The algorithm is told the true label c?(xt) and is charged for a
mistake, i.e., when c?(xt) 6= `t .
The goal of the algorithm is to make as few mistakes as possible.

Case study:

Let X = {0, 1}d and let the target hypothesis be a disjunction.
Question: Can you give an online algorithm that makes bounded
number of mistakes?
Question: Argue that for any deterministic algorithm A there
exists a sequence of examples σ and disjunction c∗ such that A
makes at least d mistakes on sequence σ labeled by c∗.
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Machine Learning
Online learning and Perceptron

Here are some main ideas of online learning:

At each time t = 1, 2, 3..., the algorithm is presented with an
arbitrary example xt ∈ X .
The algorithm is told the true label c?(xt) and is charged for a
mistake, i.e., when c?(xt) 6= `t .
The goal of the algorithm is to make as few mistakes as possible.

Case study:

Let X = {0, 1}d and let the target hypothesis be a disjunction.
Question: Can you give an online algorithm that makes bounded
number of mistakes?
Question: Argue that for any deterministic algorithm A there
exists a sequence of examples σ and disjunction c∗ such that A
makes at least d mistakes on sequence σ labeled by c∗.
Question: Show that there always exists an online algorithm that
makes at most log2 |H| mistakes.
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End
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