COL866: Foundations of Data Science

Ragesh Jaiswal, IITD

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

< ≣ ▶

Machine Learning: Generalization

문 🕨 🗉 문

Machine Learning Generalization bounds

Theorem

For any hypothesis class \mathcal{H} and distribution D, if a training sample S is drawn from D of size $n \geq \frac{2}{\varepsilon} [\log_2(2\mathcal{H}[2n]) + \log_2(1/\delta)]$. then with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with error $err_D(h) \geq \varepsilon$ has $err_S(h) > 0$. Equivalently, every $h \in \mathcal{H}$ with $err_S(h) = 0$ has $err_D(h) < \varepsilon$.

Theorem

For any hypothesis class \mathcal{H} and distribution D, if a training sample S is drawn from D of size $n \geq \frac{8}{\varepsilon^2} [\log_2 (2\mathcal{H}[2n]) + \log_2 (2/\delta)]$. then with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ will have $|err_D(h) - err_S(h)| \leq \varepsilon$.

Theorem (Sauer's Lemma)

If
$$VCdim(\mathcal{H}) = d$$
, then $\mathcal{H}[n] \leq \sum_{i=0}^{d} {n \choose i} \leq \left(\frac{en}{d}\right)^{d}$.

Theorem

For any hypothesis class ${\mathcal H}$ and distribution D, a training sample S of size

$$O\left(rac{1}{arepsilon}\left[\textit{VCdim}(\mathcal{H})\log\left(1/arepsilon
ight)+\log{1/\delta}
ight]
ight)$$

is sufficient to ensure that with probability at least $(1 - \delta)$, every $h \in \mathcal{H}$ with $\operatorname{err}_{D}(h) \geq \varepsilon$ has $\operatorname{err}_{S}(h) > 0$.

- The VC-dimension of intervals on a real line is ____?
- For intervals on the real line, H[n] =?
- The VC-dimension of convex polygons in *d* dimensional space is _____?
- For convex polygons in *d* dimensional space, H[n] =?
- The VC-dimension of halfspaces in *d* dimensional space is ____?

- The VC-dimension of intervals on a real line is 2?
- For intervals on the real line, $H[n] = O(n^2)$?
- The VC-dimension of convex polygons in d dimensional space is $\underline{\infty}$?
- For convex polygons in *d* dimensional space, $H[n] = \underline{2^n}$?
- The VC-dimension of halfspaces in *d* dimensional space is _____?

- The VC-dimension of intervals on a real line is 2?
- For intervals on the real line, $H[n] = O(n^2)$?
- The VC-dimension of convex polygons in *d* dimensional space is <u>∞</u>?
- For convex polygons in d dimensional space, $H[n] = \underline{2^n}$?
- The VC-dimension of halfspaces in *d* dimensional space is $\frac{d+1}{2}$?

4 E 6 4 E 6

- The VC-dimension of halfspaces in *d* dimensional space is $\frac{d+1}{2}$?
 - <u>Claim 1</u>: There exists a set of *d* + 1 points in ℝ^d that is shattered by halfspaces.
 - <u>Claim 2</u>: No set of d + 2 points in \mathbb{R}^d can be shattered by halfspaces.

(*) *) *) *)

- The VC-dimension of halfspaces in *d* dimensional space is $\frac{d+1}{2}$?
 - <u>Claim 1</u>: There exists a set of d + 1 points in ℝ^d that is shattered by halfspaces.
 - <u>Claim 2</u>: No set of d + 2 points in \mathbb{R}^d can be shattered by halfspaces.

Theorem (Radon)

Any set $S \subseteq \mathbb{R}^d$ with $|S| \ge d + 2$, can be partitioned into disjoint subsets A and B such that $CV(A) \cap CV(B) \ne \emptyset$. Here CV(.) denotes the convex hull of the points.

伺 ト く ヨ ト く ヨ ト

Machine Learning: Online learning and Perceptron

ヨ→

Machine Learning Online learning and Perceptron

- The learning scenario that we have seen until now is called the batch learning scenario.
- We now discuss the online learning scenario where we remove the assumption that data is sampled from a fixed probability distribution (or from any probabilistic process at all).
- Here are some main ideas of online learning:
 - At each time t = 1, 2, 3..., the algorithm is presented with an arbitrary example $x_t \in \mathcal{X}$.
 - The algorithm is told the true label c^{*}(x_t) and is charged for a mistake, i.e., when c^{*}(x_t) ≠ ℓ_t.
 - The goal of the algorithm is to make as few mistakes as possible.
- Online learning model is harder than the batch learning model. (In fact, we will show that an online algorithm can be converted to a batch learning algorithm)

直 ト イヨ ト イヨト

- Here are some main ideas of online learning:
 - At each time t = 1, 2, 3..., the algorithm is presented with an arbitrary example $x_t \in \mathcal{X}$.
 - The algorithm is told the true label c^{*}(x_t) and is charged for a mistake, i.e., when c^{*}(x_t) ≠ ℓ_t.
 - The goal of the algorithm is to make as few mistakes as possible.

• Case study:

- Let $\mathcal{X} = \{0,1\}^d$ and let the target hypothesis be a disjunction.
- <u>Question</u>: Can you give an online algorithm that makes bounded number of mistakes?
- <u>Question</u>: Argue that for any deterministic algorithm A there exists a sequence of examples σ and disjunction c* such that A makes at least d mistakes on sequence σ labeled by c*.

直 ト イヨ ト イヨト

- Here are some main ideas of online learning:
 - At each time t = 1, 2, 3..., the algorithm is presented with an arbitrary example $x_t \in \mathcal{X}$.
 - The algorithm is told the true label c^{*}(x_t) and is charged for a mistake, i.e., when c^{*}(x_t) ≠ ℓ_t.
 - The goal of the algorithm is to make as few mistakes as possible.

• Case study:

- Let $\mathcal{X} = \{0,1\}^d$ and let the target hypothesis be a disjunction.
- <u>Question</u>: Can you give an online algorithm that makes bounded number of mistakes?
- <u>Question</u>: Argue that for any deterministic algorithm A there exists a sequence of examples σ and disjunction c* such that A makes at least d mistakes on sequence σ labeled by c*.
- Question: Show that there always exists an online algorithm that makes at most $\log_2 |\mathcal{H}|$ mistakes.

End

Ragesh Jaiswal, IITD COL866: Foundations of Data Science

・ロト ・回ト ・ヨト ・ヨト

Ξ